next up previous
Next: Orthogonal Signal Space Up: Linear Systems Review Previous: Properties of delta

LTI Systems: Time domain


\begin{displaymath}h(t)=T[\delta(t)] \qquad \mbox{impulse response}
\end{displaymath}


\begin{displaymath}\mbox{Time Invariant}\qquad T[\delta(t-t_0)]=h(t-t_0)
\end{displaymath}


\begin{displaymath}x(t)=\int x(\sigma)\delta(t-\sigma)d\sigma
\end{displaymath}

Integral is a sum of terms so is linear


\begin{displaymath}T[\int]=\int T[\;]
\end{displaymath}


\begin{eqnarray*}T[x(t)]&=&\int_{-\infty}^{\infty}T[x(\sigma)\delta(t-\sigma)]d\...
...d\sigma\\
&=&\int_{-\infty}^{\infty}x(t-\sigma)h(\sigma)d\sigma
\end{eqnarray*}


This is the convolution integral and that's why impulse response is useful for LTI systems.




1999-02-01