next up previous
Next: LTI Systems: Time domain Up: Linear Systems Review Previous: Signal Menagerie

Properties of delta $\delta(t)$


\begin{displaymath}\int_{-\infty}^{\infty}\delta(t-t_0)\phi(t)dt=\phi(t_0) \mbox{\qquad \qquad sifting}
\end{displaymath}


\begin{displaymath}\int_{-\infty}^{\infty}\delta(t)dt=1
\end{displaymath}


\begin{displaymath}\delta(t)=0 \qquad \vert t\vert>0 \quad \delta(0)=\infty
\end{displaymath}


\begin{displaymath}\delta(at)=\frac{1}{\vert a\vert}\delta(t)
\end{displaymath}


\begin{displaymath}\delta(t-t_0)\ast h(t)=h(t-t_0)
\end{displaymath}


\begin{displaymath}u(t)=\int_{-\infty}^{t}\delta(\tau)d\tau \Leftrightarrow \delta(t)=\frac{d}{dt}u_{-1}(t)
\end{displaymath}




1999-02-01