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ABSTRACT

Nowadays, the market of 3D human posture tracking has extended
to a broad range of application scenarios. As current mainstream
solutions, vision-based posture tracking systems suffer from pri-
vacy leakage concerns and depend on lighting conditions. Towards
more privacy-preserving and robust tracking manner, recent works
have exploited commodity radio frequency signals to realize 3D
human posture tracking. However, these studies cannot handle
the case where multiple users are in the same space. In this paper,
we present a mmWave-based multi-user 3D posture tracking sys-
tem, m3Track, which leverages a single commercial off-the-shelf
(COTS) mmWave radar to track multiple users’ postures simultane-
ously as they move, walk, or sit. Based on the sensing signals from
a mmWave radar in multi-user scenarios, m3Track first separates
all the users on mmWave signals. Then, m3Track extracts shape
and motion features of each user, and reconstructs 3D human pos-
ture for each user through a designed deep learning model. Further-
more, m3Track maps the reconstructed 3D postures of all users
into 3D space, and tracks users’ positions through a coordinate-
corrected tracking method, realizing practical multi-user 3D pos-
ture tracking with a COTS mmWave radar. Experiments conducted
in real-world multi-user scenarios validate the accuracy and ro-
bustness of m3Track on multi-user 3D posture tracking.
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Figure 1: llustration of m®Track system.

1 INTRODUCTION

Recent years have witnessed a rapid development of 3D human
posture tracking technology, which generates dynamic skeletons
that follow a person as she/he moves, walks, or sits. Together with
the increasing popularity of IoT devices, the market of 3D human
posture tracking nowadays has been largely extended from a few
specialized scenarios (e.g., filmmaking, athletic training, and mil-
itary applications) to a broader range of commercial applications,
including virtual reality (VR)/augmented reality (AR), motion-sensing
gaming, smart-home control, etc. Along with this trend, the de-
ployment of 3D human posture tracking shifts from expensive or
intrusive wearable sensors [11, 26] to non-intrusive vision-based
techniques [1, 20], which dominates current 3D human posture
tracking markets. However, vision-based approaches depend on
the lighting conditions of environments. Moreover, they suffer from
privacy leakage concerns, which are increasingly being taken seri-
ously nowadays.

With the great efforts towards more robust and privacy-preserving
3D human posture tracking approaches, researchers have exploited
radio frequency (RF) signals, such as Wi-Fi [10] and mmWave [23,
24, 32], to track 3D human postures. But all these approaches only
focus on tracking a single user’s posture, not covering more chal-
lenging yet useful multi-user scenarios. Although some studies [27,
39] enable human tracking in multi-user scenarios, they can only
track the locations of users and cannot generate dynamic skeletons
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that follow their movements. Some pioneer studies [36-38] realize
3D posture tracking for multiple users through specially-designed
RF facilities, which demonstrates the possibility of capturing the
3D posture information of multiple users with RF signals. How-
ever, although with some successful experiences, they strictly rely
on the specialized hardware (requiring to equip at least 20 anten-
nas), making it difficult to be widely deployed.

Towards this end, a robust and practical multi-user 3D human

posture tracking system based on the commercial off-the-shelf (COTS)

RF signals is highly desirable. Such a system can be easily deployed
in real-world scenarios, enabling a broad array of real-world appli-
cations including multi-user gaming, multi-object motion tracking,
etc. To achieve multi-user 3D posture tracking with a single COTS
mmWave radar, we face several challenges in practice. First, we
need to accurately separate multiple users and capture their pos-
ture information individually. Second, the system should recon-
struct fine-grained 3D posture of each user through the implicit
mmWave signals. Third, the system needs to track the positions of
multiple users’ 3D postures simultaneously.

In this paper, we focus on tracking the 3D postures of multiple
users, and propose a mmWave-based multi-user 3D posture track-
ing system, m3Track, which leverages a single COTS mmWave
radar to track 3D postures of multiple users simultaneously. First,
m®Track utilizes designed chirp signals to sense all users through
spectrum convolution and then separates the users on mmWave
signals through a minimum variance distortionless response-based
approach. Based on the mmWave signal of each separated user,
m3Track extracts spatial and temporal features that describe the
shape and motion of a user, and further reconstructs the 3D hu-
man posture of each user through a deep learning model, i.e., a
forked-ConvLSTM. Next, m3Track maps the reconstructed 3D pos-
tures of all users into real-world 3D space by finding the minimal
mapping errors between the reconstructed postures and the gener-
ated point clouds of users, and continuously tracks the positions of
multiple users through a proposed coordinate-corrected extended
Kalman filter. Finally, we validate the accuracy and robustness of
m3Track by conducting experiments with a COTS mmWave radar
in 6 real-world environments. The results show that m3Track can
effectively track 4 users at the same time with the average joint
tracking error of 42.4mm and the localization error of 21.5mm. An
example of m3Track is illustrated in Figure 1.

We highlight our main contributions as follows:

e We design a multi-user 3D posture tracking system using a
single COTS mmWave radar, m3Track, facilitating a broad
range of practical posture tracking applications for multi-
user scenarios.

e We propose a multi-user separation method to effectively
separate multiple users on mmWave signals, and build a
ConvLSTM-based deep learning model to realize 3D human
posture reconstruction for each separated user.

e We present a point cloud-based mapping method to map
all 3D human postures into real 3D space, and propose a

coordinate-corrected tracking method to realize practical multi-

user 3D posture tracking.

e We conduct extensive experiments in real-world multi-user
scenarios, and the results validate the accuracy and robust-
ness of m3Track in tracking 4 users simultaneously.
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Figure 2: System framework of m3Track.

2 SYSTEM OVERVIEW

To realize multi-user 3D posture tracking in real-world scenarios,
we propose m3Track, which leverages a single commercial off-the-
shelf (COTS) mmWave radar to reconstruct and track 3D human
postures of multiple users simultaneously. Figure 2 shows the sys-
tem framework of m3Track, which consists of four modules:

mmWave-based Sensing. In the module, we design chirp mmWave

signals to sense objects in the sensing area. A mmWave radar prop-
agates the chirp mmWave signals, and the signals are reflected by
the objects in the sensing area. Then, the reflected signals are col-
lected by the receive antennas of the same mmWave radar to sense
all objects in the sensing area.

Multi-User Detection and Separation. This module is designed
to detect and separate multiple users on mmWave signals. m3Track
first detects all users through a designed spectrum convolution
method, and further separates the users on mmWave signals through
minimum variance distortionless response approach.

Single-User 3D Posture Reconstruction. This module aims
to reconstruct the 3D human posture of each user in multi-user
scenarios. From the separated mmWave signal profiles of each user,
m3Track extracts both spatial and temporal features that describe a
user’s shape and motion, respectively. Then, m>Track reconstructs
3D human posture for each user through a designed deep neural
network, i.e., a forked-ConvLSTM.

Multi-User 3D Posture Tracking. In the module, m*Track re-
alizes 3D posture tracking for multiple users. First, in multi-user
scenarios, m3Track generates the point clouds of all users, and
maps the reconstructed 3D postures of all users with the gener-
ated point clouds in 3D space by finding the minimal mapping
errors between postures and point clouds. Then, m*Track contin-
uously tracks the positions of multiple users through a proposed
coordinate-corrected extended Kalman filter, realizing practical 3D
posture tracking for all users.



m3Track: mmWave-based Multi-User 3D Posture Tracking

3 MMWAVE-BASED SENSING

Before multi-user 3D posture tracking using mmWave signals, m>Track
first needs to transmit and collect mmWave signals from a COTS
mmWave radar to sense objects in the sensing area.

For a typical COTS mmWave radar, it leverages frequency-modulated
continues wave (FMCW) technique to transmit multiple chirps with
linearly increased frequency from the transmit antennas. The sig-
nals propagate in front of the radar and are reflected by the objects
in the sensing area. Then, the reflected signals are captured by the
receive antennas of the same radar. To reveal the sensing informa-
tion, the transmitted and received signals are mixed to generate
the intermediate frequency (IF) signal:

X[F(t) -4, - ejZn'-r(r,c) [f0+7.% t—%r(r,c)]’ 1)
where fj is the start frequency, B is the signal bandwidth, T, is
the chirp duration, A, is the amplitude coefficient that represents
the attenuation of mmWave signal, and z(r, ¢) is the delay of the
received signal with respect to the transmit signal which is deter-
mined by the distance r of the targets and the speed ¢ of mmWave
signal. Through analyzing the IF signal, the mmWave radar senses
all objects in the sensing area.

To achieve effective sensing for multi-user 3D posture tracking,
we design the chirp signals for m3Track based on the fundamental
of mmWave signals. According to Eq. (1), the resolution to detect
different objects, i.e., range resolution Dy, can be calculated as
Dyes = %, where c is the speed of light and B is the bandwidth
of signals. Similarly, the resolution to measure the movement of
objects, i.e., the speed resolution Vs, is denoted as Vies = %
where A is the wavelength associated with the average frequency
of the transmitted mmWave, and Tf is the duration of an FMCW
signal frame. According to the resolution analysis, a higher aver-
age frequency and bandwidth of the mmWave signal lead to a bet-
ter resolution for detecting multiple objects and capturing their
movements. Thus, we leverage the highest average frequency and
bandwidth in the mmWave radar, ie., a 77 ~ 81GHz frequency
range. With the frequency range, m3Track achieves a range reso-
lution of 3.75¢m and speed resolution of 0.02m/s, which enables to
detect multiple objects and capture their movements at cm-level.

Therefore, based on mmWave, m®Track further builds a practi-
cal multi-user 3D posture tracking system using mmWave signals.

4 MULTI-USER DETECTION AND
SEPARATION

Based on the collected mmWave signals, all the dynamic objects
and static objects in a sensing environment are captured. To re-
alize multi-user 3D posture tracking, m3Track first removes the
static objects and detects all potential users, and further separates
multiple users from each other on mmWave signals.

4.1 User Detection on mmWave Signals

Since the IF signal of mmWave reveals the range of sensed objects,
m3Track can detect all the objects (including dynamic and static
objects) through range analysis. Specifically, m3Track extracts the
range of sensed objects through the frequency f of the IF signal.
The range of an object is represented as r = c{ ;” , which denotes a
linear relationship between the object’s range r and the frequency
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Figure 3: Illustration of user detection.

f of the IF signal. Through performing FFT (Range-FFT) to the IF
signal, m3Track obtains a Range-Profile for the objects sensed by
mmWave radar. Hence, all the objects in the sensing environment
are first detected by m3Track, which contains both dynamic ob-
jects (i.e., users) and static objects.

Because the range analysis in m3Track detects not only dynamic
objects but also static objects, it is necessary to remove the static
objects and detect users on mmWave signals for realizing human
posture tracking. Usually, most background objects are static, while
users are not completely static. Even if a user does not move, the
tiny breathing and heartbeat movements can still be captured as
subtle changes on mmWave signals. Based on the intuition, we re-
move static objects and detect target users by measuring the move-
ment of sensed objects. To detect users, we leverage Doppler re-
sponses, which vary with the speed of movement, to filter out static
objects while retaining the target dynamic users. For extracting
Doppler responses, m>Track measures the speed of sensed objects
by phase changes w of IF signal. The speed of an object towards
the mmWave radar can be denoted as v = ﬁw, where A is the
wavelength of the mmWave signal. Similar to Range-FFT, another
FFT operation (Doppler-FFT) is conducted on the Range-Profile to
generate a Range-Doppler-Profile, which measures the speed of all
objects in different ranges.

With the range and speed, m3Track further distinguishes users
and background objects. To achieve it, a convolution-based approach,
i.e., spectrum convolution, is proposed to detect all users on the
Range-Doppler-Profile, as shown in Figure 3. Specifically, a special-
ized convolutional kernel is designed to slide along the range bins
of the Range-Doppler-Profile, and a convolution operation is per-
formed for each sliding step to detect all users. As Figure 3 shows,
the convolutional kernel has a specific width and length, in which
the width is set as the same width of the Range-Doppler-Profile,
and the length is set as 14. Setting the length to 14 leads to a 0.5m
range resolution, which is slightly larger than the typical range of
a human body, so the convolutional kernel can cover a person on
mmWave signals. For the parameters of the kernel, we set them
in the center row of the kernel as 0, and other rows increase lin-
early from the center row to the edge row. The intuition is that
the ranges with higher Doppler responses correspond to dynamic
objects, while the ranges with little Doppler responses reflect the
static environmental objects. Thus, the convolutional kernel design
assigns more weights to the high Doppler response ranges, which
focuses on dynamic objects such as users. Meanwhile, through
weighting less to the range of little Doppler responses, m>Track
can ignore the static object captured by mmWave signals.
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Figure 4: Illustration of user separation.
After the spectrum convolution, the convolution value with re-

spect to different ranges can be calculated. Then, m®Track utilizes
an empirical threshold h to detect the ranges that contain users.
Figure 3 illustrates a case where there are two users in range 1
and range 2. It can be observed that the two users are effectively
detected through the convolution-based method. In addition, we
can see the convolution value of user 2 is far less than user 1, be-
cause user 1 is moving while user 2 is holding still. But for user 2,
m>3Track can still detect the user through the continual breathing
and heartbeat movements, which has a higher convolution value
than all the background static objects.

User Joining and Leaving. User joining and leaving in multi-
user scenarios is a common and recurring scene. In m3Track, users
who enter or leave the sensing area engender convolution value
changes in the Range-Doppler-Profile. With the threshold h, m3Track
is able to judge the number of users in the sensing area in real-time.
Hence, based on the real-time judgment of user number, m3Track
can detect all users in the sensing area.

4.2 User Separation on mmWave Signals

Although users are detected on mmWave signals based on the user-
related ranges, there could be more than one user in the same
range, causing overlapping on the range dimension of mmWave
signals, as shown in Figure 4(a). However, it is intuitive that the
users with the same range are different in angles toward the radar,
making them separable on mmWave signals. Hence, to extract the
mmWave profiles of each individual user in multi-user scenarios,
we further exploit the angle relative to the radar for separating
users.

With the assistant of multiple transmit and receive antennas
on mmWave radar, the angle of sensed objects are extracted by
angle of arrival (AoA) estimation. The angle of an object with re-
spect to the mmWave radar (with azimuth angle 6 and elevation

angle ¢) is represented as 6 = sin~! ( Awg ) and ¢ = sin~! (M),

27d; 27d;

where d; and d; are physical distances of receive antennas on az-
imuth and elevation directions, respectively, w, and w, are the
phase difference of MIMO channels on azimuth and elevation di-
rections, respectively. After AoA estimation, an Angle-Profile is
generated, which reveals the angle of all sensed objects. With the
Range-Profile and Angle-Profile, a Range-Angle-Profile is then ob-
tained for separating users.

m3Track uses the TDM-MIMO scheme of the mmWave radar
to calculate the angle of multiple users. The COTS mmWave radar
(i.e., TTTWR1443BOOST) is equipped with 3 transmit antennas (Tx)
and 4 receive antennas (Rx). The antennas can be expanded to a
2D multiple-input and multiple-output (MIMO) array with 3 X 4
Tx-Rx pairs, as shown in Figure 5. With the antenna array design,
m>3Track is able to estimate the angle of targets in both azimuth
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Figure 5: Illustration of antenna array for m®Track.

Frequency

and elevation directions. In m3Track, the 2D MIMO array is acti-
vated with time-division multiplexing (TDM), which means that,
in the transmit end, alternate time slots are dedicated to Tx1, Tx2,
and Tx3, and all 4 Rx are activated to receive the mmWave signals.
With the TDM-MIMO scheme, m3Track overcomes the hardware
drawback of insufficient antenna array by generating virtual an-
tenna arrays, providing the basis for extracting the angles of mul-
tiple users on mmWave signals.

Furthermore, we utilize minimum variance distortionless response
(MVDR) [6] to refine the angles of different users. The basic idea of
MVDR is to mitigate the interference and noise from other angles
while obtaining distortionless responses to the angle of view. Com-
bined with the angle of mmWave signals obtained by TDM-MIMO,
m3Track is able to achieve a finer angle extraction. In MVDR, given
ag as the signal steer vector corresponding to the angle of arrival
0, the MVDR weight is calculated as:

R—l
we b @)

H p-1 ’
a€’¢R a9’¢,

where R is the correlation matrix of the antenna array. Then, the
output signal power of the antenna array using the optimum weight
vector from the MVDR method is:

Pyyvpr(0,¢) = !

agqu‘lag’(ﬁ ’ (3)
which is calculated by detecting the peaks in the angular spectrum.
By replacing the original Angle-Profile with the signal power cal-
culated as Eq.(3) for each range bin, m3Track is able to achieve
fine-grained angle extraction. Figure 4(b) shows the MVDR-based
Range-Angle-Profile for two users of the same range viewed from
elevation. Although the users are in the same range, they are sepa-
rated on angles in the MVDR-based Range-Angle-Profile. This demon-
strates that the MVDR-based angle solution is effective in separat-
ing multiple users on mmWave signals.

Therefore, based on range and angle, m3Track separates and
extracts mmWave profiles for each user in multi-user scenarios,
which are further leveraged for multi-user 3D posture tracking.

5 SINGLE-USER POSTURE
RECONSTRUCTION
After separating each user on mmWave signals in multi-user sce-

narios, m3Track needs to reconstruct the 3D posture of each user
for realizing the 3D posture tracking of multiple users.

5.1 Posture Feature Representation

For 3D human posture reconstruction, m>Track first obtains spa-
tial features that depict the shape of a user, and temporal features
that describe the motion of a user, from mmWave signals.
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Figure 6: Illustration of posture feature representation for
spatial and temporal features.

Spatial Features. In multi-user detection and separation, m3Track

calculates the range and angle (including azimuth angle and eleva-
tion angle) of each user with respect to the radar. With the range
and angle, m3Track obtains feature patterns of each user in the
Range-Angle-Profiles. Given the range as r;, the azimuth angle as
0;, and the elevation angle as ¢;, the coordinate of the central point
for a user i can be denoted as (rj, 0;, ¢;). To obtain the shape pat-
terns of a user, we utilize the central point as an anchor point, and
create several cylinders to cover the human body, as shown in Fig-
ure 6(a). Specifically, a 3-cylinder model M(Cy, Cy, C;) covers the
human body: a head cylinder Cy,(r;, 0;, ¢;) that relates to the head-
neck, a torso cylinder C;(r;, 0;, ¢;) relates to chest-arm, and a leg
cylinder C;y(rj, 0;, ¢;) relates to the lap-leg of the user. The radius
and height of the three cylinders change adaptively to cover the
corresponding body part of a user. To locate the three cylinders
in the human body for different postures and human subjects, we
fix the height of the torso cylinder around the anchor point and
expand the height of the other two cylinders proportionally, be-
cause the vertical length of the body torso varies less for different
postures and human subjects. In specific, with the height of the
torso cylinder set to 60cm for the body, the other two cylinders
expand vertically to the margin of the pattern. For each cylinder,
m3Track locates the region, and calculates 2 Range-Angle-Profiles
from mmWave signals corresponding to azimuth and elevation an-
gles, respectively, as shown in Figure 6(a). Since the profiles from
different cylinders are eventually stitched together in the follow-
ing neural network model, it does not matter if the proportions
of the three cylinders have some differences from the actual hu-
man body regions. In total, 6 Range-Angle-Profiles are obtained for
each user as the spatial features. Compared to directly calculating
the Range-Angle-Profiles of the entire human body, calculating the
partial Range-Angle-Profiles amplifies the feature representation of
specific body parts, which better describes the detailed shape of a
user in the 3D space. m3Track uses the spatial features as the basis
for 3D posture reconstruction.

Temporal Features. Besides spatial features, temporal features
are also critical for 3D posture reconstruction, which describes the
motion of different body parts for each user. To obtain the tem-
poral features, m3Track also leverages the 3-cylinder model. For
each cylinder, a Range-Doppler-Profile is calculated to describe the
motions for the corresponding body parts of a user. Specifically,
for 2 consecutive time slots ¢; and fz, the Range-Doppler-Profiles
describe the motions of different body parts for a user across time
are calculated, as shown in Figure 6(b). In total, 3 Range-Doppler-
Profiles are obtained from mmWave signals for each user as the
temporal features, which describe the motions of different body
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parts for each user. m3Track also utilizes the temporal features as
the basis for 3D posture reconstruction.

Therefore, the shape and motion patterns of each user in multi-
user scenarios are obtained in the spatial features and temporal
features respectively, which are further leveraged for 3D posture
reconstruction.
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5.2 3D Posture Reconstruction

We design a deep learning model, i.e., a forked-ConvLSTM, to map
the spatial and temporal features to a user’s skeleton joint coor-
dinates for 3D posture reconstruction. Figure 7 illustrates the ar-
chitecture of the proposed deep learning model. The model takes
the sequence of spatial features and the corresponding temporal
features as inputs of two different branches. A Global Body-Shape
Feature Extractor and a Local Body-Motion Feature Extractor are de-
signed to extract the feature embeddings underlying spatial fea-
tures and temporal features respectively. A Concatenating Regres-
sion Module is designed to concatenate the feature embeddings
from the outputs of the two feature extractors, and predict the 3D
coordinates of skeleton joints for a user to reconstruct 3D posture.
Since 3D posture reconstruction is treated as a regression prob-
lem, the deep learning model can reconstruct different postures,
enabling the universality of 3D posture reconstruction.

Global Body-Shape Feature Extractor. The Global Body-Shape
Feature Extractor is designed to learn body-shape feature embed-
dings from a user’s spatial features. The spatial features (i.e., Range-
Angle-Profiles) at a specific moment represent the global spatial re-
flection of a target user’s shape in space, i.e., they correspond to the
instantaneous state of the user’s body shape. For the next moment,
the body shape in Range-Angle-Profiles changes from the state of
the previous moment, which means that each part of the Range-
Angle-Profiles is related to the previous state. Hence, the spatial
features are correlated in both time and space, which inspires us
to leverage convolutional operation to learn regional characteris-
tics in space, and utilize memory cells to describe the sequential
characteristics in time. Based on the above analysis, we leverage
ConvLSTM [30], which is the integration of convolutional neural
network (CNN) and long short-term memory (LSTM), as the basis
to extract global body-shape features.
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The architecture of the Global Body-Shape Feature Extractor is
shown in the top part of Figure 7, which consists of three layers of
ConvLSTM. The input of multiple profiles derived from the posture
feature representation is stitched to the input layer. To describe the
sequential characteristics in time, the spatial features of t;_z, tj_1,
and t; are simultaneously fed into the network, and the output of
the last node in the third layer is taken as the feature extraction
result of t;. In addition, a convolutional operation is utilized to yield
regional attention for each spatial feature while maintaining the
sequential relationship. The output can be denoted as:

Z" = FC (CL (F (1), Fn (t = 1),---,©')), @

where Z’ is the output feature embeddings, FC(+) is the fully-connected

layer, CL(-) is the convolutional long short-term memory network
operation, and @’ is the trainable parameters. At the end of the
feature extractor, the feature embedding is stretched using a fully
connected network to facilitate the subsequent feature splicing op-
eration. Finally, the feature embeddings in spatial features describ-
ing the global body shape of a user are extracted, which are further
fed to the following Concatenating Regression Module.

Local Body-Motion Feature Extractor. The Local Body-Motion
Feature Extractor is designed to learn the feature embeddings of
local body motions of a user from the temporal features. The tem-
poral features, i.e., Range-Doppler-Profiles, are correlated with a se-
ries of local motions, which describe the motion of corresponding
body parts in terms of velocity. Hence, the Local Body-Motion Fea-
ture Extractor is designed to extract feature embeddings associated
with Doppler responses, which describes the motions of different
body parts of a user. As shown in the bottom part of Figure 7, the
module is composed of a 2-layer convolutional neural network to
extract feature embeddings of local body-motions from the Range-
Doppler-Profiles F;(t) of a user. The profiles derived in the posture
feature representation are stitched to the input layer. The output of
this module is a feature embedding of a user’s local body motions
during the corresponding time period, which is formulated as:

Z = Conv(F,(t),©), (5

where Z is the output feature embedding, Conv(-) is the convolu-
tion operation for temporal features, and © is the trainable param-
eters. Based on the feature extraction in this module, m3Track ex-
tracts the feature embeddings in temporal features describing the
local body motions of a user, which are further fed to the following
Concatenating Regression Module.

Concatenating Regression Module. In the Concatenating Re-
gression Module, the feature embeddings extracted from the previ-
ous two modules are combined to encode a stitching vector, which
aims to predict the skeleton joint coordinates of a user. The Con-
catenating Regression Module consists of three fully-connected
layers, as shown in the right part of Figure 7. The first layer en-
codes a stitching vector that embeds the feature embeddings ob-
tained from the previous two modules. Based on the stitching vec-
tor, the second and the third layers predict the coordinates of skele-
ton joints in the 3D Cartesian coordinate system. The operation of
the Concatenating Regression Module can be expressed as:

P=G (Concat (z,2'), @)) , (6)
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where P is the output of the predicted 3D skeleton joints, G(-) is the
coding regression network operation, Concat(-) is the feature con-
nection operation, and @ is the trainable parameters. Finally, the
regression module outputs the predicted 3D coordinates of skele-
ton joints of a user, once the whole deep learning model is trained.

Loss Function Design. To train the deep learning model for ob-
taining the 3D skeleton joints of a user, we design a loss function
according to the distance between the predicted skeleton joints and
the ground truth label obtained by Kinect. The loss function is de-
signed based on Smooth L loss [3], i.e.,

1(P-P)? [P-P| <6
Ly = ) . ; (7)
S(lP-P|-18) |P-P|>6

where P is the ground truth of 3D skeleton joint coordinates, and P
is the output of predicted 3D skeleton joint coordinates. To prevent
non-convergence of the model caused by the high penalty coeffi-
cient of outliers, an outlier threshold ¢ is introduced into the loss
function for outlier joint detection. The ground truth of 3D skele-
ton joint coordinates is calibrated by subtracting the coordinates
center of the user’s joints, which obtains the relative coordinates of
the user’s joints. This helps to train a robust and accurate skeleton
joint estimation model, because the influence of a user’s absolute
position is eliminated by the operation of ground truth data. By
training the parameters ©, ® and © with the loss function, the
deep learning model finally outputs the 3D coordinates of each
user’s skeleton joints in multi-user scenarios.

Different from classification models, the proposed deep learn-
ing model establishes the space mapping between mmWave pro-
files and skeleton joint coordinates in regression. Hence, for any
mmWave profiles induced by human postures, m3Track is able to
predict the 3D coordinates of corresponding skeleton joints, which
achieves the universality towards different postures. With the 3D
skeleton joint coordinates of each user, the 3D posture of each user
in multi-user scenarios is reconstructed.

6 MULTI-USER 3D POSTURE TRACKING

Although m3Track reconstructs the 3D postures for each user in
multi-user scenarios, the reconstructed 3D postures of the users
are not accurately mapped to real-world 3D space. To realize 3D
posture tracking, m3Track needs to map the reconstructed pos-
tures of all users into real-world 3D space, and track the position
of each user in the 3D space for multi-user 3D posture tracking.

6.1 Posture Mapping with Point Cloud

To map the postures of all users into 3D space, m3Track first gen-
erates point clouds to acquire specific position information of all
users in the 3D space, and further maps the reconstructed 3D pos-
tures of users with the generated point clouds in the 3D space.
For mmWave-based point cloud generation, m3Track generates
the point clouds of all users based on the constant false alarm rate
algorithm (CFAR) [22], which is a classical target detection method
to generate point clouds for radar systems. After the point clouds
of all users are generated, m3Track further maps the reconstructed
posture of each user with the generated point clouds in 3D space.
However, we are unaware of the mapping relations between the
postures and the point clouds in 3D space. To map the postures
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with the point clouds for posture tracking, we establish the map-
ping relation by finding the minimal mapping errors between pos-
tures and point clouds, as shown in Figure 8. Specifically, for ev-
ery point cloud, m*Track clusters the points to multiple clusters
through K-Means algorithm [14]. Each cluster has a cluster center,
which corresponds to a posture joint. If there is a minimal distance
error between all the joints and cluster centers, m3Track considers
that the posture is accurately mapped with the point cloud. Hence,
m3Track maps the 3D postures of all users with the point clouds
by finding the minimal mapping error between postures and point
clouds, which is denoted as:

J
Z(]Ointk,j +3§— Xi’j)z,
Jj=1

Mw

m(i, k) = arg min

®)

I
—

i

where m(i, k) is the optimal mapping relation between point clouds
and reconstructed postures, P is the number of observable point
clouds, J is the number of observable joints, Jointy ; is the j-th
joint for k-th posture, § is the correction displacement, and Xj ;
is the j-th cluster center for the i-th point cloud. By solving the
optimization problem, we can obtain an optimal mapping relation
between all the postures and point clouds, so the reconstructed 3D
postures of all users can be mapped into real-world 3D space.

6.2 3D Posture Tracking

Based on the mapped 3D postures of all users, m3Track further
tracks the positions of the users in 3D space to realize multi-user
3D posture tracking through a proposed coordinate-corrected ex-
tended Kalman filter (coordinate-corrected EKF).

EKF [21] is a classical state estimation method, which can be uti-
lized to track targets’ positions. The basic idea of KEF is to combine
the estimated position and measured position for deriving an accu-
rate position of a target, which mitigates measurement errors and
interferences during tracking. However, the mmWave radar works
in the polar coordinate system while the 3D human postures are re-
constructed in the Cartesian coordinate system. Hence, we present
a coordinate-corrected extended Kalman filter, which applies EKF
on the two coordinate systems, for accurately tracking the position
of users in the Cartesian coordinate system.

Specifically, in the coordinate-corrected EKF, we first define a
state function to describe the current state of the tracking target,
which can be expressed as:

0 w), 9)

where (x,y) is the position of the target in the Cartesian coordi-
nate system, v is the Doppler (i.e., radial speed) in the polar co-
ordinate system, 6 is the deflection angle in the polar coordinate
system, and w is the deflection angle speed in the polar coordinate

=(x y v
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Figure 9: Relations in two coordinate systems.
system. Figure 9 shows geometrical relations of the target’s move-
ment in the two coordinate systems. With the initial definition and
the geometrical relations, we estimate the state function in every
step At as:

vcos(0)At +x

vsin(0)At +y
0 if 0 =0,
0
®
Strit = (Cos(e) +0At) - cos(wAt + 0) (10)
(=7 Sm(@) +0At) - sin(wAt + 6)
0 if o # 0.
wAt +0
12)

After the estimation of the state function at t+A¢, m3Track further
calculates the covariance of the state function. Then, m3Track mea-
sures the ground-truth value of state function at t + At, i.e., z;4As,
and also calculates its covariance correspondingly. Based on the
above variables, m®Track combines the estimation and measure-
ment to derive an accurate state of the target, i.e.,

(11)

where K;4a; is the Kalman Gain calculated by the two covariances,
H is a transformation matrix, and I is a unit matrix. Hence, with the
combination of the estimation and measurement, m>Track obtains
a more accurate state (i.e., position) of the target in §;44;. Through
the iteration of the above process, the position trajectories of user
objects are accurately and continuously tracked.

With the position trajectories, m3Track continuously tracks the
positions of the mapped postures in real-world 3D space. How-
ever, in practical scenarios, people may block each other some-
times, so that the mmWave signals cannot sense the blocked user
due to signal propagation blockage. To obtain the walking trajec-
tory of a transiently blocked user, m3Track estimates the position
of the blocked user based on the estimation step of the coordinate-
corrected EKF, i.e., (x, y) in s;1a¢. Hence, m3Track still captures the
position trajectory of each user when they are transiently blocked.
Given that the crossover scenes are brief during walking, even if
the posture of the blocked user is missing, m3Track can still contin-
uously track the user’s position, which enables robust and practical
3D posture tracking in multi-user scenarios.

7 EVALUATION

In the section, we conduct experiments to evaluate m3Track’s per-
formance in real environments.

Stene = Keyar - zevnr + (I = KeparH)seaass
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7.1 Evaluation Setup

Testbed. m3Track is implemented with a single commercial off-
the-shelf (COTS) mmWave radar, i.e., Texas Instruments(TI) AWR1443
mmWave radar [7], as the sensing front. The mmWave radar is
equipped with three onboard transmit antennas and four receive
antennas. It is configured to generate mmWave chirp signals with
a bandwidth of 77 ~ 81GHz and a signal frame of 128 pulses
within 50ms. The sampling rate is 512 sampling points for each
pulse. The mmWave radar is connected with a TI DCA1000EVM
data capture card [8] to achieve high-speed data transmission be-
tween the mmWave radar and the back end. The back end is a DELL
G15 laptop for reading and processing mmWave data. We utilize
two Kinect V2 [16] to capture the ground truth of human postures.
With the RGB and infra-red cameras, the Kinect devices can cap-
ture the depth images of users and generate human skeleton joints.

Environmental Settings. The experiments are conducted in
different environments, including indoor areas (e.g., lab, corridor,
meeting room), and outdoor spaces. Figure 10 shows the environ-
mental settings in the lab. In specific, a mmWave radar is placed
in the environment, continuously emitting FMCW signals towards
the orientation of the radar’s antenna panel, and continuously re-
ceiving the FMCW signals reflected by users. The two Kinect de-
vices are placed in opposite positions to capture the ground truth
postures, where one Kinect is placed closely around the mmWave
radar and the other is placed on the opposite side of the mmWave
radar with a distance of 8m. The mmWave radar and Kinect devices
are placed in the same horizontal plane of 1.3m. The users perform
activities in front of the mmWave radar. The distance of users to-
ward the mmWave radar is from a minimum of 1.2m to a maximum
of 7m. The settings of device placement in other environments are
the same as that in the lab.

Data Collection. In terms of posture tracking, we select 17
skeleton joints from the human body, as shown in Figure 10. With
the key joint nodes supporting the human body, m3Track is able
to reconstruct the human postures as users move, walk, or sit. We
recruit 15 volunteers to participate in the experiments. The vol-
unteers naturally perform various daily activities in the sensing
area, including in-place activities (such as lifting arms, lifting legs,
squatting, etc.), and walking activities (such as walking forward,
walking back, walking across, etc.). The ground truth posture joints
captured by Kinect are calibrated by subtracting the coordinates
center of a user’s joints to obtain relative coordinates.

Model Training and Testing. We leverage 2 users’ data as the
training data for the deep learning model. The 2 users perform in-
place activities and walking activities in the lab to provide training
data. As mentioned in Section 5.2, since the deep learning-based
human posture reconstruction is implemented for an individual
user, the 2 users’ mmWave data are collected individually, each of
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which contains 7200 frames collected within the training data col-
lection process. Together with the skeleton joint coordinates from
Kinect as ground truth, the 2 users’ data are fed to the deep learning
model for training. During the training of the system, the learning
rate of the deep learning model is set to 0.001. The batch size is
32. The number of epochs is 200. We use Keras to implement the
deep learning model in the backend laptop with Intel i7-11800H
and NVIDIA RTX3060. The other 13 users’ data are leveraged for
evaluating the system’s performance. The evaluation process lasts
about 27 hours within 19 days in different environments, including
the lab, corridor, meeting room, and outdoor space. The 13 users
perform arbitrary daily activities including in-place activities and
walking activities, which are not necessarily the same as those per-
formed during training. The users are grouped with different user
numbers (i.e., 1 to 4) in each evaluation scenario for evaluating
multi-user 3D posture tracking capability.

7.2 Overall Performance

We first evaluate the overall performance of m3Track on multi-
user 3D posture tracking by intuitively exhibiting the reconstructed
postures in 3D space. Figure 11 shows 3D postures tracking results
for in-place activities with corresponding ground truth and video
frames in the lab. It can be observed from Figure 11 that m®Track
accurately reconstructs and tracks the 3D posture of each user.
Specifically, we can see from Figure 11(a) that the skeleton of the
single user is effectively reconstructed by the proposed m3Track
compared with the ground truth. Then, when multiple users simul-
taneously perform activities in the sensing environment, as shown
in Figure 11(b), 11(c), and 11(d), m3Track is also capable of con-
structing the skeletons of each user and accurately tracking the
posture dynamics with little interference. The examples demon-
strate that m3Track can effectively reconstruct and track the 3D
human postures of multiple users.

Besides posture tracking for in-place activities, we also evaluate
the performance of m3Track on tracking the walking users. Fig-
ure 12 shows the consecutive 3D human postures reconstructed by
m3Track when tracking three walking users in the lab. It can be
first seen that m®Track effectively reconstructs the 3D postures for
the walking users, including the details of arm swing and leg step-
ping, compared to the real scenes and ground truth. In addition, the
reconstructed postures follow the real scenes of users’ positions
continuously. The results demonstrate that the proposed tracking
solution is effective in mapping the reconstructed postures into
real-world 3D space and continuously tracking the walking trajec-
tories of each user. Therefore, m3Track is able to realize practical
multi-user 3D posture tracking.
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7.3 Quantitative Results

We also quantitatively evaluate m3Track by measuring the joint
tracking errors, which is the Euclidean distance of skeleton joint
coordinates between tracked postures and ground truth postures,
in depth (X), azimuth (Y), and elevation (Z). Table 1 shows the joint
tracking errors for different user scenarios. Specifically, the overall
joint tracking error is 32.4mm, 34.9mm, 38.6mm, and 42.4mm for
1-user, 2-user, 3-user, and 4-user scenarios, respectively, demon-
strating an effective multi-user 3D posture tracking of m3Track.
Compared to single-user scenarios, tracking the postures of multi-
ple users simultaneously only introduces a small increase in track-
ing errors. Besides the overall joint tracking errors, the errors in
depth, azimuth, and elevation have a similar tendency under dif-
ferent user numbers. The results demonstrate that m3Track effec-
tively extends 3D posture tracking from single-user scenarios to
multiple-user scenarios.

Table 1: Tracking errors under different user numbers.

Users 1 2 3 4

Overall 32.4mm  349mm 38.6mm  42.4mm
Depth 144mm 155mm 16.9mm 17.4mm
Azimuth  222mm 24.6mm 28.4mm 32.5mm
Elevation 18.7mm 19.3mm 20.0mm  20.9mm
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Figure 14: Multi-user 3D posture tracking in different envi-
ronments.
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Figure 15: Joint tracking errors in different environments.
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Furthermore, we study the tracking errors of each joint in de-
tail. Figure 13 shows the detailed joint tracking errors under dif-
ferent user numbers. The corresponding relationship between the
17 joints and the human body is shown in Figure 10. It can be ob-
served that there is a variation in tracking errors among different
joints. Specifically, the joints corresponding to the arms (No. 5, 6, 8,
9) and the legs (No. 11, 12, 14, 15) have relatively higher tracking er-
rors, and also relatively large increases from single-user scenarios
to multi-user scenarios, compared to other joints. This is because
the movements of the limbs are more complex and variable, and
sometimes they are obscured by other body parts in multi-user sce-
narios. However, although tracking limbs have relatively higher er-
rors, the maximum error on tracking hands is still less than 90mm,
which demonstrates the effectiveness of m3Track on tracking dif-
ferent parts of the human body.

7.4 Performance in Different Environments

To demonstrate the feasibility and robustness of m3Track in broader
scenarios, we further evaluate the 3D posture tracking performance
of m3Track in different environments. The experimental environ-
ments include a lab, two corridors, a meeting room, and two out-
door spaces, with different space sizes and environmental layouts.

Figure 14 shows the examples of multi-user 3D posture track-
ing in different environments. For each user in the environment,
m3Track effectively tracks the 3D posture of the user, which is
less affected by the environmental layouts. For example, in Figure
14(b), although there are walls right next to the users, m3Track is
still able to track the postures of the users without being affected
by the multipath reflection of the walls. Moreover, in the two out-
door spaces, i.e., Figure 14(e) and 14(f), the postures of all the users
are tracked accurately, indicating the effectiveness of multi-user
3D posture tracking in outdoor spaces.

Then, we quantitatively evaluate the performance of multi-user
3D posture tracking in different environments. Figure 15 shows
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Figure 16: Multi-user 3D posture tracking in occluded sce-
narios.

the joint tracking errors under different user scenarios in the 6 en-
vironments, respectively. It can be observed that the joint tracking
errors among different environments have few differences. Specifi-
cally, the standard deviation of joint tracking errors in different en-
vironments is only 3.2mm. Hence, m3Track achieves effective and
robust multi-user 3D posture tracking in different environments,
which can work on a broad range of scenarios.

7.5 Performance in Occluded Scenarios

To investigate the capability of m3Track working in non-line-of-
sight (NLOS) conditions, we experiment on 3D posture tracking in
occluded scenarios. Specifically, we place 4 different barriers be-
tween mmWave radar and users as occlusions, i.e., a mural paint-
ing, a cloth screen, a whiteboard, and a projector screen, respec-

tively. With the mmWave radar placed right behind a barrier, m3Track

senses and tracks users behind the barrier.

Figure 16 shows the scenarios of 4 different barriers and cor-
responding results of m*Track. For the mural painting and cloth
screen, m®Track is capable of tracking the 3D postures of all users,
as shown in Figure 16(a) and 16(b). The average joint tracking er-
rors under the two barriers are 45.7mm and 44.2mm respectively,
which is close to that in non-occluded scenarios. However, for the
barriers of whiteboard and projector screen, m>Track loses the de-
tails of the closer users and the main information of further users,
leading to an incomplete multi-user 3D posture tracking results,
as shown in Figure 16(c) and 16(d). The reason is that the barri-
ers of complex structures and hardly-penetrated materials cause
significant amplitude attenuation and phase change of signals, so
the range, angle, and Doppler of users could not be accurately mea-
sured. The results demonstrate that m3track only works under bar-
riers of simple structures and easily-penetrated materials.

7.6 Performance of User Joining and Leaving

We evaluate the 3D posture tracking performance of m3Track in
user joining and leaving scenarios. In the experiment, with 2 users
already existing in the sensing area, another user walks into the
area and then leaves. Figure 17 shows the reconstructed 3D posture
and corresponding video frames when the user joins and leaves
in a multi-user scenario. It can be observed that m3Track is able
to accurately reconstruct and track all the users in the sensing
area when a user enters and leaves. Specifically, when the user
walks into the sensing area, as shown from Figure 17(a) to 17(b),
m3Track detects the presence of the user at a specific frame and
starts tracking the user’s posture. Later, as the user leaves in the
sensing area shown from Figure 17(c) to 17(d), m3Track loses the
information about the user at a certain frame. The above results
demonstrate that the proposed m3Track is able to accurately track
multiple users in user joining and leaving scenarios.
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7.7 Comparison with SOTA Systems

We compare the performance of posture tracking of the proposed
system with two state-of-the-art (SOTA) systems, i.e., WiPose [10],
and mm-Pose [24]. WiPose uses commodity WiFi devices, extract-
ing CSI data and 3D velocity profiles, to construct 3D skeletons for
a single user through an RNN-based deep learning model. And mm-
Pose uses COTS mmWave radar to extract mmWave range-angle
patterns for estimating and constructing a single user’s skeleton
through a CNN-based learning model. Besides the two systems,
there are other RF-based skeleton construction and tracking sys-
tems (e.g., RF-Pose3D [38]), but it is difficult to implement these sys-
tems for comparison due to the dedicated hardware design. Hence,
we leverage the two SOTA systems that work on COTS devices for
comparison. Specifically, we implement WiPose and mm-Pose us-
ing WiFi testbed and mmWave radar respectively. Since the two
systems are designed for single-user scenarios, we compare the
joint tracking errors by collecting the same single-user experimen-
tal data. In addition, we also exhibit the average joint tracking er-
rors of m3Track in multi-user scenarios for comparison.

Figure 18 shows the joint tracking errors of WiPose, mm-Pose,
m3Track in single-user scenarios, and m3Track in multiple-user
scenarios, respectively. It can be observed that m3Track has the
minimum errors on posture reconstruction compared to other sys-
tems. Specifically, compared to WiPose that has an average 38.7mm
joint tracking error, m3Track achieves similarly effective perfor-
mance for both single-user scenarios and multi-user scenarios. How-
ever, WiPose cannot construct the postures of multiple users si-
multaneously, while m3Track expands human posture tracking to
multi-user scenarios. For another COTS mmWave-based method
mm-Pose, it has relative high joint tracking errors in joints (81.3mm)
and other dimensions (37.6mm, 61.8mm, and 32.4mm). This is be-
cause it only leverages a CNN to extract spatial features but dis-
cards the temporal relations between different moments. In con-
trast, m3Track incorporates convolutional operation and tempo-
ral relations together, which achieves more effective multi-user 3D
posture tracking based on the same COTS mmWave radar.



m3Track: mmWave-based Multi-User 3D Posture Tracking

Video Frames m*Track w/ MVDR m*Track w/o MVDR

Figure 20: Posture tracking in adjacent distances.

7.8 Localization Performance

Since m3Track constantly localizes all the users and tracks their
walking trajectories in the 3D space, it is necessary to evaluate the
localization performance for multiple users in m3Track. To cover
a wide range of scenes, the experiment is conducted in an indoor
environment (the lab) and outdoor space (as shown in Figure 14(f)).
In the experiment, we calculate the geometric center of the mapped
posture in 3D space as the predicted location of each user. Since it
is difficult to get the accurate user locations through video frames,
the ground truth of user location is marked on the floor, and the
users follow the marked trajectories for the evaluation.

Figure 19 shows the cumulative distribution function (CDF) of
localization errors under different user numbers in two environ-
ments respectively. It can be observed that the user numbers and
environments have little impact on the localization performance of
m>3Track. Specifically, m3Track achieves a median localization er-
ror of 18.9mm with a standard deviation of 11.4mm for single-user
scenarios, and 21.5mm with a standard deviation of 13.5mm for
4-user scenarios, which have little differences. Compared with RF-
Pose3D [38] that achieves 17mm, 28mm, and 23mm localization er-
ror on X, Y, and Z for multiple users through specially-designed RF
radar, our system achieves a comparable localization performance
with only a COTS mmWave radar. The results demonstrate that
the proposed m3Track can accurately localize each user and con-
tinuously track the user’s trajectory in multi-user scenarios.

7.9 Impact of Distance between Users

We further evaluate the impact of distance between users on sepa-
rating multiple users and tracking users‘ postures. Since we utilize
a MVDR approach to improve the signal-to-noise rate for refining
the angle of different users and thus separating users, we evaluate
the impact of user distance with and without the MVDR approach,
respectively. Figure 20 shows the examples of posture reconstruc-
tion for two users with and without the MVDR approach respec-
tively, where the two users stand closely and their arms are adja-
cent. It can be observed that the m3Track with the MVDR-based ap-
proach can effectively separate the two users and accurately recon-
struct the posture of each user. However, if the MVDR approach is
not employed, the two users are not well separated in the adjacent
body part. This indicates that multiple users can be separated and
tracked at close distances with the MVDR approach.

Furthermore, we evaluate the user detection recall, which is the
fraction of users that are detected and separated over the total
amount of users, to measure m>Track’s ability on separating all the
users without misses in different distances. The distance of users
is measured by the linear distance of users’ nearest body parts. Fig-
ure 21(a) shows the user detection recall in different distances for
different user numbers. As the distance between users decreases,
the user detection recall also decreases, which indicates that close
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Figure 21: Performance under different user distances.
distance affects multi-user separation. However, with MVDR ap-
plied, even if the users are adjacent, m®>Track can still separate each
user with an average of 90.5%, 89.5%, and 87.6% accuracy for 2-user,
3-user, and 4-user scenarios respectively, which demonstrates the
robustness of m3Track on detecting and separating multiple users.

Moreover, we evaluate joint tracking errors under different dis-
tances with and without the MVDR-based approach respectively,
as shown in Figure 21(b). We can see that the tracking errors are
low and stable beyond a distance of 0.6m, and increase rapidly
as the distance gets smaller. However, with the MVDR-based ap-
proach, m3Track can realize multi-user 3D human posture track-
ing with only 51.7mm errors on average even if the distance be-
tween users is only 0.4m. According to [25], a suitable face-to-face
communication distances of people is between 0.46m and 1.22m.
Hence, m3Track can effectively track multiple users’ postures un-
der the majority of suitable communication distances.

7.10 Impact of Distance to Radar

We further quantitatively evaluate joint tracking errors of posture
tracking when users are of different distances to radar. In the exper-
iment, we leverage the data in 4-user scenarios under the 1.2m to
7m experimental space, record the straight-line distance between
each user and the radar, and measure joint tracking errors for each
user in different distance ranges. Table 2 shows the average joint
tracking errors for each user at different distance ranges to radar.
We can see that with the increase of distance, the joint tracking
errors increase slightly due to the attenuation of mmWave signals
in long propagation, but the difference in joint tracking errors be-
tween the optimal and worst distance range is only around 20mm
on average. The result demonstrates that m3Track is less sensitive
to different distances to radar.

7.11 Impact of Body Shape and Clothes

We further evaluate the performance of m3Track when users are
of different body shapes and wear different clothes. In the experi-
ment, we recruit 2 users, in which one female and one male. The
female user is of 1.53m height and 50Kg weight while the male
user is of 1.81m height and 82K g weight. The two users wear heavy
coats and light clothes in the experiment, respectively. Figure 22
shows the examples of 3D posture reconstruction for the 2 users.
We can see that m3Track effectively reconstructs the postures of
users who are of different body shapes. This is because m>Track
estimates the skeleton joint coordinates of 3D postures, and the 3D
Table 2: Joint tracking errors of different distances to radar.

Distance(m) | 1.2-2.0 | 2.0-3.0 | 3.0-4.0 | 4.0-5.0 | 5.0-6.0

6.0-7.0

39.3 38.4 40.1 42.0 48.6 58.7

Error(mm)
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Figure 22: Multi-user 3D posture tracking with different
body shapes and clothes.

modeling of such coordinates exhibits a user’s body shape. Also, it
can be observed that users with different clothes are effectively re-
constructed. The reason is that the mmWave signals can effectively
propagate cloth materials and thus 3D human posture reconstruc-
tion is less affected by clothes. Therefore, m3Track is capable of
reconstructing users with different body shapes and clothes.

7.12 Time Consumption

We evaluate the time consumption of m3Track to explore whether

it is real-time for practical use. Using the laptop with Intel i7-11800H
and NVIDIA RTX3060 as the back end, the time consumption of
each module for tracking 4 users is measured, as shown in Table 3.
Among them, the mmWave-based sensing module is the most time-
consuming process, which costs 251ms to read IF signals using

UDP protocol. In addition, the prediction of skeleton joints using

the forked-ConvLSTM model also spends 214ms. In total, m3Track

costs 745ms to output the tracking results for each frame. Such a

processing time is close to real-time for general applications. Fur-
thermore, if a shorter response time is needed to facilitate more

delicate and real-time applications, m3Track can be implemented

on devices with more computing power.

8 RELATED WORK

In this section, we review works related to m®Track.

mmWave Sensing. With the development of 60GHz WiFi and
5G cellular communication, millimeter wave technology (mmWave)
becomes ubiquitous in daily life and industrial manufacturing. Due
to its high popularity, researchers are attracted to design mmWave-
based sensing solutions to extend their capabilities from cellular
communication to ubiquitous sensing for the physical world. For
example, many efforts have been made to utilize mmWave signals
for promoting the realization of smart homes through mmWave-
based behavior recognition [15, 35], acoustic sensing [12, 31], vital
sign monitoring [33, 34], human identification [4], etc. Other re-
searches focus on facilitating the deployment of mmWave sensing
in industrial manufacturing, such as vibration measurement [9],
and car imaging [5]. All these studies have proved the capability
of millimeter waves in sensing areas.

Human Posture Reconstruction. Reconstructing human pos-
tures has drawn considerable concern and has been widely ex-
plored. A popular approach to realizing human posture reconstruc-
tion is based on dedicated vision cameras [1, 20], but they depend
on lighting conditions and suffer from privacy concerns. Towards
privacy-preserving manner, others leverage RF signals to realize
single-user posture reconstruction in contact-free manner, such as
Wi-Fi [10] and mmWave [23, 24, 32]. However, all the works only
enable single-user posture or mesh reconstruction, while the more

Table 3: Time consumption of different modules.

Track
127

Total
745

Reconstruct
214

Sense
251

Module
Time(ms)

Separate
153

502

H. Kong et al.

complex and common multi-user scenarios cannot be achieved. Al-
though some recent pioneer studies [36-38] realize multi-user pos-
ture reconstruction, they strictly rely on specialized hardware de-
sign (e.g., requiring to equip at least 20 antennas), making it diffi-
cult to be practically deployed. Along the direction, a human pos-
ture reconstruction method for multi-user scenarios using a COTS
RF device is highly desirable.

Indoor Localization and Tracking. Indoor localization and
tracking in a device-free manner have been widely studied in re-
cent years, supporting a wide range of applications that requires
knowing the location of users. Among existing methods, wireless
signals have been extensively utilized, emerging a variety of indoor
localization works. For example, some studies leverage Wi-Fi sig-
nals for achieving localization and tracking in indoor environment
[13, 17-19, 28, 29]. However, WiFi-based approaches are usually
susceptible to environmental interferences. Besides Wi-Fi signals,
the emerging mmWave signals are also widely exploited for indoor
localization and tracking in device-free manner [2, 27, 27, 39, 39].
Although multi-user scenarios are considered, these researches are
mostly limited to localizing users, which cannot track the dynamic
postures of users as they move, walk, or sit.

9 DISCUSSION

In this section, we discuss several practical issues.

Overlap Between Users. The overlap between users is a prac-
tical situation in multi-user scenarios. In m3Track, the overlap be-
tween users causes the loss of mmWave signals for sensing blocked
users. For example, if user A is behind user B, user B blocks the
propagation of mmWave signals, so that m3Track cannot trans-
mit the mmWave signals to user A for sensing the user. Hence,
m3Track is unable to reconstruct the 3D human postures of blocked
users in overlap scenarios. However, if users are only transiently
blocked by others, m*Track can potentially utilize the coordinate-
corrected EKF to track the position trajectories of blocked users.

Complex Indoor Structure. m3Track works in different en-
vironments and even occluded scenarios. However, these environ-
ments are of wide area and with less furniture. Like other wireless
signals, the propagation of mmWave signals is also affected by
complex environmental structures. An indoor environment with
more complex structures, such as a classroom or a canteen, may
cause significant signal amplitude attenuation and phase change,
leading to inaccurate sensing and tracking for the users.

10 CONCLUSION

In this paper, we propose m>Track, which utilizes a single COTS
mmWave radar to realize 3D postures tracking for multi-user sce-
narios. m®Track first detects and separates all users on mmWave
signals, and designs a novel deep learning model to reconstruct 3D
posture for each user. After that, m3Track maps the reconstructed
3D postures of all users into real-world 3D space, and continuously
tracks the positions of the users, realizing practical multi-user 3D
posture tracking. Extensive experiments in real-world multi-user
scenarios validate the accuracy and robustness of m3Track.
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