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Abstract—In applications of wireless packet-oriented data
networks, a special coding scheme, the hybrid automatic re-
transmission request (HARQ) exhibits high throughput efficiency
by adapting its error correcting code redundancy to channel
conditions. Motivated by the increasing importance of secure
communication over wireless networks, we investigate secure
packet communication based on HARQ over block-fading (BF)
channels. More specifically, we consider two legitimate users
communicating over a BF channel in the presence of a passive
eavesdropper who intercepts the transmission through another
independent BF channel. We assume that the transmitter can
obtain a 1-bit ACK/NACK feedback from the receiver via a
reliable public channel. Under this setting, we consider incremen-
tal redundancy (IR) and repetition time diversity (RTD) HAR Q
schemes based on rate-compatible Wyner secrecy codes from an
information theoretic point of view. We study a good Wyner
code sequence, with which the legitimate receiver can decode the
message and the eavesdropper can be perfectly confused. Fora
given pair of reliability / secrecy outage probabilities, we derive
an achievable secrecy throughput of HARQ protocols for block-
fading channels. Finally, we illustrate numerically that HARQ
can benefit both throughput and secrecy.

I. I NTRODUCTION

In a seminal paper [1], Wyner proposed the discrete mem-
oryless wire-tap channel model, where the communication
between two legitimate users is eavesdropped upon via a
degraded channel. Wyner showed that secure communication
is possible without sharing a secret key between legitimate
users. The level of ignorance of the eavesdropper with respect
to the confidential message is measured by the equivocation
rate. Perfect secrecy requires that the equivocation rate is
asymptotically equal to the message entropy rate. Csiszár
and Körner generalized the result and determined the secrecy
capacity region of the broadcast channel with confidential
messages in [2]. The result was extended to the Gaussian wire-
tap channel in [3].

Secure communication over wireless networks has become
increasingly important. The effect of fading on wireless secure
communications has been studied recently in [4]–[7]. Block-
fading (BF) has been a primary consideration, where the
channel gain is constant within each coherence interval while
varying from interval to interval. As shown in [8], [9], the
block-fading channel model is good for many practical appli-
cations. Furthermore, it has been assumed in [4]–[7] that the
number of channel uses within each coherence interval is large
enough to allow for invoking random coding arguments. More

specifically, assuming that all communication parties have
perfect channel state information of both the main channel and
the eavesdropper channel prior to the message transmission,
[4] has studied the delay limited secrecy capacity of wireless
channels, based on secrecy capacity outage probability; [5]–
[7] have studied the secrecy capacity of the ergodic fading
channel with advance perfect CSI. [7] has also considered the
ergodic scenario where the transmitter does not have any CSI
describing the eavesdropper channel.

We assume in this paper that the transmitter does not have
the CSI of the main channel or the eavesdropper channel,
but receives a1-bit ACK/NACK feedback from the legitimate
receiver via a reliablepublic channel. It is well known that
HARQ protocols exhibit high throughput efficiency in wireless
communication systems with ACK/NACK feedback. An in-
formation theoretic study of HARQ protocols without secrecy
consideration has been presented by Caire and Tuninetti in
[10]. In this paper, we investigate secure packet communi-
cation based on HARQ schemes over block-fading channels.
More specifically, we consider two legitimate users commu-
nicating over a block-fading channel in the presence of a
passive eavesdropper who intercepts the transmission through
another independent block-fading channel. Under this setting,
we consider incremental redundancy (IR) and repetition time
diversity (RTD) HARQ schemes based on rate-compatible
Wyner secrecy codes from an information theoretic point of
view. We study agood Wyner code sequence, which ensures
that the legitimate receiver can decode the message and the
eavesdropper can be perfectly confused. We prove that there
exists a rate-compatible Wyner code family good for a certain
set of channel states. For a given reliability / secrecy outage
probability pair, we derive an achievable secrecy throughput
of HARQ protocols for block-fading channels. Finally, we
illustrate numerically that HARQ can benefit both throughput
and secrecy.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

As shown in Fig. 1, the transmitter sends confidential mes-
sages to the destination via the main channel in the presence
of a passive eavesdropper, who listens to the transmission
through its own channel. Both the main channel and the
eavesdropper channel experience independent block fading,
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Fig. 1. System model

where the channel gain is constant within a block while
varying independently form block to block.

Confidential messagew ∈ W is encoded into a codeword
xn = [x(1), x(2), . . . , x(n)] and divided into M blocks
{xn1

1 , xn1

2 , . . . , xn1

M } each of lengthn1 = n/M . The first block
xn1

1 is sent and decoding errors are detected at the receiver. If
no error is detected, the receiver sends back an acknowledge-
ment (ACK) to stop the transmission; otherwise a negative
acknowledgement (NACK) is sent to request retransmission.
If a retransmission is requested, the transmitter sends the
second block, which experiences independent channel gains.
Decoding is again attempted at the receiver, where the new
block is combined with the previous received blocks. This
is repeated until an ACK is generated or all blocks are sent
out. The error detection relies on the built-in error detection
capability of the suboptimal decoder as in [10].

The codewordxn spans at mostM transmissions during a
HARQ scheme. Equivalently, we can study the communication
overM parallel channels. The outputs from the main and the
eavesdropper channels are as follows:

y(t) =
√

hix(t) + v(t) (1)

z(t) =
√

gix(t) + u(t) for t = 1, . . . , n, i =

⌈
Mt

n

⌉
,

where{v(t)} and{u(t)} (t = 1, . . . , n) are i.i.d. with normal
distributionN (0, 1), andhi andgi, for i = 1, . . . , M , denote
the normalized (real) channel gains of the main channel
and the eavesdropper channel respectively. Additionally,we
assume that any codewordxn is with constant average energy
per symbol

E[|x(t)|2] ≤ P̄ . (2)

h = [h1, . . . , hM ] andg = [g1, . . . , gM ] are vectors of the
main channel and the eavesdropper channel gains, respectively.
Let (h,g) be thechannel pair. We assume that the destination
knowsh, while the eavesdropper knowsg. WhenM = 1, the
transmitted codeword only spans a single fading block, we
can easily compare the main channel and the eavesdropper
channel. For example, if the main channel is better, i.e.
h1 ≥ g1, then we say thatzn is a degradedversion ofyn.
However, whenM > 1, xn spans multiple fading blocks,
there is virtually no degraded ordering betweenyn andzn.

B. Wyner Code Ensembles

The mother code is chosen as a Wyner secrecy code [1].
Let C(2nR0 , 2nRs , n) denote an ensemble of Wyner codes of

size2nR0 to convey a message setW = {1, 2, . . . , 2nRs}. The
basic idea of the Wyner code is to use a stochastic encoding,
since randomization can increase secrecy. We describe the
random code generation in Appendix A.

The Wyner code consists of a stochastic encoderf(·) :
W → Xn and a decoding functionφ(·). A stochastic en-
coder [2] is described by a matrix of conditional probabilities
f(xn|w), herexn ∈ Xn, w ∈ W ,

∑
xn f(xn|w) = 1 and

f(xn|w) is the probability that messagew is encoded as the
channel inputxn.

For a HARQ scheme, decoding is attempted at the des-
tination after each transmission. For convenience, letxm =
[xn1

1 , . . . , xn1

m ], ym = [yn1

1 , . . . , yn1

m ], andzm = [zn1

1 , . . . , zn1

m ]
be the input, the output at the destination, and the output atthe
eavesdropper afterm transmissions, respectively. The average
error probability after them-th transmission is defined as

Pe(m) =
∑

w∈W

Pr
(
φ
(
ym(w)

)
6= w|w is sent

)
Pr(w). (3)

whereφ
(
ym(w)

)
is the output of the decoder at the destination

andPr(w) is the probability that messagew ∈ W is sent.
The secrecy, i.e., the degree to which the eavesdropper

is confused, is measured by the equivocation rate at the
eavesdropper after the HARQ scheme stops. Suppose that
the HARQ scheme stops afterm transmissions. We say that
perfect secrecyis achieved if for anyǫ > 0 the equivocation
rate satisfies

1

n
H(W |Zm,g) ≥ 1

n
H(W ) − ǫ. (4)

For conciseness, we consider the following definition of good
Wyner codes.

Definition 1: A Wyner code sequenceC , {C(n)} is good
for the first m transmissions and a channel pair(h,g), if
Pe(m) → 0 and perfect secrecy requirement (4) is satisfied,
for any n → ∞.

III. C ODING AND TRANSMISSION

We consider two schemes: repetition time diversity ARQ
(RTD-ARQ) and incremental redundancy ARQ (IR-ARQ).

A. Repetition Time Diversity ARQ

The RTD codeC(n) is a concatenated code, consisting of
a Wyner codeC1(n1) ∈ C(2nR0 , 2nRs , n1) as the outer code
and a repetition code of lengthM as the inner code, where
n1 = n/M , i.e.,

C(n) = [C1(n1), C1(n1), . . . , C1(n1)︸ ︷︷ ︸
M

]. (5)

The optimal receivers perform maximal ratio combining
(MRC), which essentially transforms the vector channel pair
(h,g) into a scalar (Gaussian) channel pair(h̃(m), g̃(m)). The
equivalent channel model (after combining) is

y(t) =

√
h̃(m)x(t) + v(t); z(t) =

√
g̃(m)x(t) + u(t) (6)

for t = 1, . . . , n1, where h̃(m) =
∑m

i=1 hi and g̃(m) =∑m

i=1 gi.



Theorem 1:There exists a RTD codeC(n) good for all
m ∈ {1, . . . , M} and all channel pairs(h,g) for which

I
[RTD]
XY (m) , I(X ; Y |h̃(m)) ≥ MR0,

I
[RTD]
XZ (m) , I(X ; Z|g̃(m)) ≤ M(R0 − Rs), (7)

where I(X ; Y |h̃(m)) and I(X ; Z|g̃(m)) are single letter
mutual information characterizations of channel (6).

Proof: We show that a codeC1 constructed for a channel
pair (h∗, g∗) with I(X ; Y |h∗) = MR0 and I(X ; Z|g∗) =
M(R0 − Rs) is good for all channel pairs(h̃(m), g̃(m))
satisfying (7). The proof is given in Appendix B.

B. Incremental Redundancy ARQ

The transmitter encodes its information message by using
a codeC ∈ C(2nR0 , 2nRs , n). Codewords are divided intoM
sub-blocks of lengthn1 = n/M . Each sub-block is transmitted
over a slot (coherence interval), until either an ACK feedback
is received from the legitimate receiver or all sub-blocks are
sent.

Let
Cm = [xn1

1 , . . . , xn1

m︸ ︷︷ ︸
m

]

be the firstm transmitted blocks. We note that

Cm ∈ C(2nR0 , 2nRs , mn1),

that is, Cm is essentially a Wyner code of lengthmn1 and
rate pair(MR0/m, MRs/m). Hence, we refer to

{C1, C2, . . . , CM}
as a family of rate-compatible Wyner secrecy codes with the
rate set

{MRs, MRs/2, . . . , Rs}.
Theorem 2:There exists a family of rate compatible Wyner

secrecy codes{C1, C2, . . . , CM}, whereCm is good for all
channel pairs(h,g) for which

I
[IR]
XY (m) ,

m∑

i=1

I(X ; Y |hi) ≥ MR0,

I
[IR]
XZ (m) ,

m∑

i=1

I(X ; Z|gi) ≤ M(R0 − Rs), (8)

where I(X ; Y |hi) and I(X ; Z|gi) are single letter mutual
information characterizations of channel (1).

Proof: The proof is outlined in Appendix C, where we
show that:

i) There is a codeC⋆ good for all channel pairs satisfying
M∑

i=1

I(X ; Y |hi) ≥ MR0,

M∑

i=1

I(X ; Z|gi) ≤ M(R0 − Rs). (9)

ii) Let the mother codeCM = C⋆, the punctured codeCm

is good for all channel pairs satisfying (8).

IV. A CHIEVABLE SECRECYTHROUGHPUT

We define two outage events: reliability outage for the main
channel and secrecy outage for the eavesdropper channel.
Reliability outage occurs when the legitimate receiver cannot
decode the mother codeCM . Assuming that the HARQ
scheme completes afterm transmissions, secrecy outage oc-
curs when the eavesdropper cannot be perfectly confused when
the HARQ scheme completes.

Definition 2: A channel pair (h,g) is in the reliability
outageif

IXY (M) < MR0. (10)

The secrecy outageoccurs afterm transmissions if

IXZ(m) > M(R0 − Rs). (11)

1) Repetition Time Diversity ARQ:The optimal input dis-
tribution is Gaussian [3] and the mutual information pair can
be written as

I
[RTD]
XY (m) = log2

(
1 +

m∑

i=1

λi

)
,

I
[RTD]
XZ (m) = log2

(
1 +

m∑

i=1

νi

)
, (12)

whereλi = hi · P̄ andνi = gi · P̄ are the signal-to-noise ratio
at the receiver and eavesdropper respectively during thei-th
slot.

2) Incremental Redundancy ARQ:The optimal input distri-
butionp(X) is not known in general when both CSIs are not
available to the transmitter and the codeword spans multiple
fading blocks. For the sake of mathematical tractability, we
consider Gaussian input. Hence, the channel mutual informa-
tion pair is given by

I
[IR]
XY (m) =

m∑

i=1

log2 (1 + λi) ,

I
[IR]
XZ (m) =

m∑

i=1

log2 (1 + νi) . (13)

The probability that an HARQ transmission completes after
the transmission ofm sub-blocks is

p[m] = Pr (IXY (m − 1) < MR0 andIXY (m) ≥ MR0)

= Pr (IXY (m − 1) < MR0) − Pr (IXY (m) < MR0) .

Let Pe be the probability of reliability outage andPs be the
probability of secrecy outage.Pe andPs can be evaluated as

Pe = Pr (IXY (M) < MR0) ; (14)

Ps =

M∑

m=1

p[m]Pr (IXZ(m) > M(R0 − Rs)) . (15)

Given a target outage probability pair(ζe, ζs), we can prop-
erly chooseR0 and Rs to maximize the secrecy throughput



while satisfying reliability and secrecy requirements. Let η
denote the secrecy throughput, we consider the problem

max
{R0,Rs}

η (16)

s.t. Pe ≤ ζe andPs ≤ ζs.

By applying the renewal-reward theorem [10], [11], we
obtain the secrecy throughput as

η =
M

E[m]
Rs (17)

where E[m] is the expected number of sub-blocks being
transmitted in order to complete a codeword transmission.

To evaluatep[m], Pe andPs, we need the CDFs ofIXY (m)
andIXZ(m). For RTD-ARQ, we can use the fact that

∑m

i=1 λi

and
∑m

i=1 νi are Gamma distributed with meansmλ andmν

respectively, express the CDFs ofI
[RTD]
XY (m) and I

[RTD]
XZ (m)

in terms of incomplete Gamma functions. For IR-ARQ, distri-
butions ofI [IR]

XY (m) andI
[IR]
XZ (m) cannot be written in a closed

form. Hence, we resort to Monte-Carlo simulation to obtain
empirical CDFs. For both RTD-ARQ and IR-ARQ, we can
solve (16) by a search method.

V. NUMERICAL RESULTS

In this section, we study the secrecy throughput of Rayleigh
block fading channels based on numerical evaluations. Due to
the page limit, we only show the relationship between the
secrecy throughputη and the number of fading blocksM .
We choose average main channel SNRλ = 20dB, average
eavesdropper channel SNRν = 10dB, target probability of
reliability outageζe = 0.05, target probability of secrecy
outage ζs = 0.05. Through simulations, we observe that
similar results are obtained by using other parameter settings.

The result is shown in Fig. 2. It is clear that RTD and M-
FBC are outperformed by their ARQ versions (RTD-ARQ and
IR-ARQ respectively) significantly. This confirms the intuition
that to send more symbols than what is just enough for
message decoding during the codeword transmission causes
not only the loss of data rate but also the risk of message
interception by the eavesdropper.

In practice, different delay limits require different number of
transmission blocksM . When the delay limit is strict (M ≤ 3
is small), it is shown that RTD-ARQ may outperform IR-ARQ.
If the delay limit is relaxed, IR-ARQ quickly outperforms
RTD-ARQ as M increases. We observe that the secrecy
throughput of RTD-ARQ actually decrease whenM gets large.
In fact, there exists an optimalM for RTD-ARQ scheme, e.g.,
in Figure 2, the optimal number of fading blocks isM = 4
for RTD-ARQ (andM = 5 for RTD). In contrast, the secrecy
throughput of IR-ARQ increase monotonically withM .

APPENDIX

A. Wyner Code Generation

Code Construction: Generate2nR0 codewordsxn(w, v),
w = 1, 2, . . . , 2Rs , v = 1, 2, . . . , 2n(R0−Rs) by choosing the
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Fig. 2. Secrecy throughputη versus the number of fading blocksM

n2R0 symbolsxi(w, v) independently at random according to
the input distributionpX(·).

Encoder: Given w, randomly and uniformly selectv from
(1, 2, . . . , 2n(R0−Rs)) and transmitxn = xn(w, v).

Decoder: Given yn, try to find a pair (w̃, ṽ) such that
(xn(w̃, ṽ), yn) ∈ T n

ǫ (PXY ). If there is no such pair, then put
out w̃ = 1.

B. Proof of Theorem1

To avoid confusion, denoteY n1

1 andZn1

1 to be the output
at the legitimate receiver and the eavesdropper respectively,
through a ‘virtual’ Gaussian wire-tap channel(h∗, g∗) with
single letter mutual informationI(X ; Y1|h∗) = MR0 and
I(X ; Z1|g∗) = M(R0 − Rs).

SinceRs = (1/M)[I(X ; Y1|h∗)−I(X ; Z1|g∗)], there exists
a codeC1 ∈ C(2nR0 , 2nRs , n1) good for the channel pair
(h∗, g∗) [3], such thatY n1

1 can be decoded with arbitrarily
small error probability and the equivocation at the eavesdrop-
per with Zn1

1 is

H(W |Zn1

1 , g∗) ≥ H(W ) − n1ǫ (18)

It can be shown that this codeC1 is good for all channel
pairs (h̃(m), g̃(m)) such thatI(X ; Y |h̃(m)) > MR0 and
I(X ; Z|g̃(m)) < M(R0 − Rs). Since I(X ; Y |h̃(m)) >
MR0 = I(X ; Y1|h∗), h̃(m) > h∗ and Y n1

1 is a degraded
version of Y n1 , if Y n1

1 can be decoded at the legitimate
receiver with arbitrarily small error probability, so canY n1 .
We also have

H(W |Zn1 , g̃(m)) − H(W |Zn1

1 , g∗)

= I(W ; Zn1

1 |g∗) − I(W ; Zn1 |g̃(m)) ≥ 0

where we use the fact thatZn1 is a degraded version ofZn1

1 .

H(W |Zn1 , g̃(m)) ≥ H(W |Zn1

1 , g∗) ≥ H(W ) − n1ǫ. (19)

for any ǫ > 0 asn1 → ∞.

C. Outline of the proof of Theorem2

For convenience, denote a channel pairP , (h,g) and
denoteP as the set of channel pairs satisfying (9). We also



denoteP∗ as the set of channel pairs satisfying

1

M

M∑

i=1

I(X ; Y |hi) = R0 + δ, (20)

1

M

M∑

i=1

I(X ; Z|gi) = R0 − Rs + δ. (21)

It is clear thatP∗ ⊂ P when δ → 0. To prove that there
exists a code good forP , we start with proving that there is
a code good forP∗.

Given a channel pairP and a code ensembleC, we consider
Pr(E1|P, C), the error probability that the legitimate receiver
cannot decode messageW . We also considerPr(E2 |P, C),
the probability that the eavesdropper cannot decodeXn given
that it knowsW and observesZn. When channel pairP ∈ P∗

is given, on every fading blocki = 1, . . . , M , the channel is
time-invariant and memoryless. By following the same stepsin
[12, Theorem8.7.1], we can show that the error probabilities,
averaged over the Wyner code ensembleC(2nR0 , 2nRs , n) are

EC [Pr(E1|P, C)] ≤ ǫ1; EC [Pr(E2|P, C)] ≤ ǫ2 (22)

for any channel pairP ∈ P∗ and codeword lengthn → ∞.
We define a new eventE = E1∪E2. By using the union bound
and taking the expectation over allP ∈ P∗,

EP [EC [Pr(E|P, C)]] ≤ ǫ3

where ǫ3 = ǫ1 + ǫ2. After exchanging the order of two
expectations, we found that there exists a sequence of codes
C⋆ such that

EP[Pr(E|P, C⋆)] ≤ ǫ3.

wherePr(E|P, C⋆) is a random variable which is a function
of P ∈ P∗. According to the Markov inequality, we have

Pr (Pr(E|P, C⋆) ≥ √
ǫ3) ≤

EP[Pr(E|P, C⋆)]√
ǫ3

≤ ǫ3√
ǫ3

=
√

ǫ3

Let
√

ǫ3 = ǫ4 and change the direction of the inequality. Also
note thatPr(E1|P, C⋆) andPr(E2|P, C⋆) are upper bounded
by Pr(E|P, C⋆), we have

Pr (Pr(E1|P, C⋆) < ǫ4) ≥ 1 − ǫ4 (23)

Pr (Pr(E2|P, C⋆) < ǫ4) ≥ 1 − ǫ4 (24)

(23) and (24) reveal that we can find a sequence of code
C⋆ ∈ C(2nR0 , 2nRs , n), for all P ∈ P∗ with probability 1,
such that the legitimate receiver can decode the messageW
with arbitrarily small error probability (A.S.E.P.), while the
eavesdropper can decodeXn with A.S.E.P., given thatW is
known andZn is observed. Using Fano’s inequality,

H(Xn|W, Zn,h∗,g∗) ≤ 1+n(R0−Rs)Pr(E2|P, C⋆) , nδn

for all (h∗,g∗) satisfying (20) and (21). With codeC⋆ being
used, the equivocation at the eavesdropper can be bounded as

H(W |Zn,h∗,g∗) ≥ H(Xn|h∗,g∗) − I(Xn; Zn|h∗,g∗)

− H(Xn|W, Zn,h∗,g∗)

We can also show thatI(Xn; Zn|h∗,g∗) ≤ n(R0−Rs+δ−ǫ)
for any δ, ǫ > 0 andH(Xn|h∗,g∗) = nR0. Hence,

H(W |Zn,h∗,g∗) ≥ n(Rs − δ1)

The perfect secrecy can be achieved for anyP ∈ P∗ with
probability 1, when codeC∗ is used. Therefore, codeC∗ is
good for all channel pairP ∈ P∗ with probability 1.

To show that codeC⋆ is good for any channel pair inP ,
we can now use the degradation arguments as in the proof of
Theorem 1. For any channel pair(h,g) ∈ P , we can always
find a channel pair(h∗,g∗) ∈ P∗, such thath∗ � h and
g∗ � g. Since codeC⋆ is good for (h∗,g∗), we can show
that C⋆ is also good for(h,g) by following the same steps
as in the proof of Theorem 1.

Now we prove that the punctured codeCm is good for
any channel pair satisfying (8), for allm = 1, . . . , M . The
punctured codeCm is obtained by taking the firstm sub-
blocks ofC, which are then transmitted overm memoryless
channel pairs(hm,gm), where hm = [h1, . . . , hm] and
gm = [g1, . . . , gm]. We can form a new sequence of channel
pairs by adding otherM − m dummy memoryless channels
whose outputs are independent of the input. For example,
we can letP = (h,g) with h = [h1, . . . , hm, . . . , hM ] and
g = [g1, . . . , gm, . . . , gM ], where hi = 0 and gi = 0 for
all i = m + 1, . . . , M . The dummy channel pairs have zero
mutual information between the input and output. Hence, if
(hm,gm) satisfies (8),P = (h,g) satisfies (9). By usingC⋆

as the mother code, which is good forP, one can see that the
punctured codeCm is good for(hm,gm) satisfying (8).
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