

Page 1 of 13

Image Histogramming and Connected Components
Labeling in Parallel

Soumya Das

E-mail: soumya@winlab.rutgers.edu

December 19, 2003

(Submitted as partial fulfillment of course requirement in Introductions to Parallel and
Distributed Computing (ECE 16:332:566) to Dr. Manish Parashar, Associate Professor,

Rutgers, The State University of New Jersey)

Introduction:
In this project, two useful primitives in image processing algorithms, histogramming and
connected components labeling have been implemented in parallel. An application of
histogramming is histogram normalization which flattens the histogram to improve the
contrast of an image by “spreading out” colors that are too clumped together for human
visual distinction. Connected components labeling (CCL) of an image is a fundamental
step in the segmentation process and consists in identifying and labeling the separate
different regions of interest of the image. Applications of CCL are in the fields of image
understanding, volume visualization, character recognition, geometric modeling and
computer vision. The connected component can also be applied to the several
computational physics problems such as percolation and various Monte Carlo algorithms
for computing the spin models of magnets such as the two-dimensional Ising spin model.

Part I: Image Histogramming

Given an m x n image with k grey levels, the problem is to compute an array H [0,1..k-1]
such that H [i] is equal to the number of pixels in the image with grey level i. The
sequence of operations is described below:

• The MATLAB file image_matrix.m reads an image (for e.g. woman.jpg),
converts it into a grayscale image if its not a grayscale image and writes the pixel
values in an output file (for e.g. data file woman.txt).

• The C program (imghist.c using MPI and imhhistt.c using threads) reads the pixel
values from the input file, computes the global image histogram and writes the
histogram matrix in an output file (hist.dat for imghist.c and hist1.dat for
imghistt.c).

• The MATLAB program plothist.m plots the histogram for the image.

In order to compute the image histogram in parallel, the divide and conquer technique has
been adopted. The whole image is divided into sub images and each sub image is given to
a processor (when using message passing paradigm) or thread (in case of shared memory
paradigm). Each processor or thread then calculates the local histogram and after that the

Page 2 of 13

local histograms are merged together (by adding the corresponding entries of local
histograms) to form the global histogram. Partitioning simply divides the original
problem into similar problems of smaller dimensions. In this problem, tasks to individual
threads or processors have been distributed statically because the time required is
dependent on the task size. So if threads or processors are given almost equal amount of
work, then it is expected that the idle time of each thread or processor can be minimized
without having to go for dynamic task assignment.

The sequential implementation of the problem scans the image from left to right and from
top to bottom and if the current pixel has gray level k, it increments H[k] by one. The
divide and conquer technique partitions the problem into several smaller and similar
problems, with each processor or thread computing a portion of the original image. Thus
the computations can take place in parallel; however the final merging task is essentially
sequential at least for shared memory programming. The local histograms are computed
in the same way as the sequential implementation described above. Finally the locally
histograms are merged together one by one by adding the corresponding entries of the
local histograms. For example, in the ith merging step (when using shared memory
paradigm) we have,

global_hist [k] = global_hist [k] + local_hist_i[k];

where global_hist [k] is the total number of pixels so far with gray level k and
local_hist_i[k] is the number of pixels with gray level k in the ith sub-image.

While using message passing paradigm, MPI_Reduce is used to merge the local
histograms. However, it was observed that MPI is not very suitable for this problem due
to the enormous communication that is needed between processors both during the initial
data distribution part and final histogram merging part. Much better results are obtained
using threads (shared memory paradigm). In MPI implementation, the cost of
communication far offsets the gain in computation time using multiple processors.
Particularly with large values of M and N (M=number of rows, N=Number of columns),
performance degrades rapidly for MPI.

The following is a sample run using MPI and threads.

Sample run of imghist.c (using MPI)

discover> mpirun -np 4 imghist
Number of processors=4
ROOT processor reading data from input file
ROOT processor broadcasting data to other processors
ImagePixel array: number of rows=1485; number of columns=1100; Gray levels 0-255
Merging local histograms to the global histogram
Image Histogram data written to hist.dat file
Total time taken = 2.570091 seconds

Page 3 of 13

Sample run of imghistt.c (using threads)

discover> ./imghistt woman.txt 4
Reading data from input file woman.txt
Number of threads = 4
Thread id=0: step=275
colstart=0: colend=274
Thread id=1: step=275
colstart=275: colend=549
Thread id=2: step=275
colstart=550: colend=824
Thread id=3: step=275
colstart=825: colend=1099
clock start=7400000, clock end = 7520000
CLOCKS_PER_SEC=1000000, elapsed time =0.120000 seconds

Image Histogram data written to hist1.dat file

The following observations were made when the programs were run with different
images. The number of rows, number of columns and time taken for computing the
global histogram are tabulated below.

Shared memory using 4 threads:

Number of rows=M Number of columns=N Elapsed time (seconds)
1131 741 0.060000
868 1160 0.070000
1071 1580 0.110000
1485 1100 0.120000
1680 2240 0.270000

MPI using 4 processors:

Number of rows=M Number of columns=N Elapsed time (seconds)
1131 741 1.622046
868 1160 2.019544
1071 1580 2.769893
1485 1100 2.955591
1680 2240 5.823097

Page 4 of 13

0.5 1 1.5 2 2.5 3 3.5 4

x 106

0.05

0.1

0.15

0.2

0.25

0.3
Computation time versus number of pixels (using 4 threads)

Number of pixels

Ti
m

e
(in

 s
ec

on
ds

)

Fig 1: Computation time versus number of pixels for shared memory programming

0.5 1 1.5 2 2.5 3 3.5 4

x 106

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Computation time versus number of pixels (using MPI with 4 processors)

Number of pixels

Ti
m

e
(in

 s
ec

on
ds

)

Fig 2: Computation time versus number of pixels when using MPI with 4 processors

Page 5 of 13

From the above graphs, it can be seen that for both shared memory programming and
message passing, the computation time increases with the number of pixels almost
linearly. However, the time taken when using message passing is much more than when
using shared memory. The reason is that as number of pixels increases, the cost of
communication far outweighs the cost of computation. In MPI implementation, time is
measured from the instant when the root processor starts broadcasting the pixel values to
all the processors, so that the individual processors can start working on their portion of
data in parallel till the point when all the local histograms have been merged to form the
global histogram. Instead of broadcasting all the pixel values to all the processors, the
root processor can send to individual processors their portion of data only. However,
even then the time taken is much more than what is needed when shared memory
paradigm was used.

From the above graphs, the computation time per pixel can be computed as follows:
Computation time per pixel = slope of the fitted straight line

Thus computation time per pixel when using shared memory is 81024.7 −× seconds,
while computation time per pixel when using message passing is 61044.1 −× seconds.

Note: In the graphs, computation time refers to the total time i.e. the combined
computation time and communication time if any.

The following observations were made when the programs were run with the image
flag.jpg. The times taken for computing the global histogram for different number of
threads/processors are tabulated below:

Shared memory (number of rows=1131, number of columns=741):

Number of threads Elapsed time (seconds)
2 0.050000
3 0.050000
4 0.040000
5 0.060000

Message passing (number of rows=1131, number of columns=741):

Number of processors Elapsed time (seconds)
2 0.813986
3 1.131303
4 1.300856
5 2.075196

Page 6 of 13

2 2.5 3 3.5 4 4.5 5
0.04

0.045

0.05

0.055

0.06

0.065
Computation time versus number of threads

Number of threads

Ti
m

e
(in

 s
ec

on
ds

)

Fig 3: Computation time versus number of threads for shared memory programming

2 2.5 3 3.5 4 4.5 5
0.8

1

1.2

1.4

1.6

1.8

2

2.2
Computation time versus number of processors

Number of processors

Ti
m

e
(in

 s
ec

on
ds

)

Fig 4: Computation time versus number of processors for message passing

Page 7 of 13

From the above graphs, it can be seen that there is no speedup achieved when using
message passing paradigm. The reason as already been explained, is because of the cost
of communication dominating over the cost of computation. Thus increasing the number
of processors does not seem to have an effect on the time taken; in fact the time taken
increases with increasing number of processors. The same observations were made for
other images also. When using shared memory, there seems to be some speedup but
consistent speedup was not noticed when using more number of threads. The reason may
be attributed to the number of CPUs available on the system i.e. 2. Since this is a
computationally intensive problem, the worker threads are almost busy throughout and so
increasing number of threads do not achieve significant or any speedup.

The following figure shows the original RGB image, the next figure shows the
transformed grayscale image which has been used for computing the image histogram.
The image histogram is shown in the following figure. Then the image histograms
obtained by shared memory programming and message passing have been compared and
it is seen that the histograms obtained from the two methods are identical, as expected.

Fig 5: Original RGB Image

Page 8 of 13

Fig 6: Grayscale Image

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.5

1

1.5

2

2.5

3

x 104

graylevels

N
o.

 o
f p

ix
el

s

Image Histogram

Fig 7: Image Histogram of the grayscale Image

Page 9 of 13

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
x 104

graylevels

N
o.

 o
f p

ix
el

s

Image Histogram

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
x 104

graylevels

N
o.

 o
f p

ix
el

s

Image Histogram

Fig 8: Image Histogram of the grayscale image by (i) shared memory programming and

(ii) message passing

Part II: Connected Components Labeling

Detection of connected components between pixels in binary images (which have only
two possible gray levels) is a fundamental step in segmentation of image objects and
regions. The original algorithm was developed by Rosenfeld and Pfaltz in 1966. A
connected component in an image is a set of connected pixels that share a specific
property, V. Two pixels, p and q, are connected if there is a path from p to q of pixels
with property V. A path is an ordered sequence of pixels such that any two adjacent
pixels in the sequence are neighbors. Constructing a connected component consists of
growing sets of pixels that are connected and have the same value of a property. This
could be accomplished by first finding a pixel with a given property value, then looking
at all its neighbors, labeling each that has the same value as being in the same component,
and so on.

Page 10 of 13

In the first part, it has been seen that message passing paradigm is not particularly suited
for computations like this due to the large overhead associated with communication. So
the connected components labeling has been implemented using threads only. The
connected components labeling in parallel has been implemented using divide and
conquer technique. In this case, after connected components labeling by each thread is
over, the local connected component labels have to be merged together. However, there
may be pixels which are connected but have been given separate labels as they have been
processed by different threads. So during merging, some of the component labels may
have to computed again by finding the equivalence of labels of connected pixels.

The sequence of operations is described below:

• The MATLAB file image_label.m reads an image, converts it into a binary image
and writes the pixel values in an output file.

• The C program (imglbl.c) reads the pixel values from the input file, computes the
connected components label locally, then merges the locally computed connected
components label by the equivalence resolution and writes the global connected
components label in an output file.

Pixel Connectivity: A pixel p at coordinate (x, y) has four direct neighbors,)(4 pN and
four diagonal neighbors)(pN D . To establish connectivity between pixels of 1s in a
binary image, three type of connectivity for pixels p and q can be considered

• 4 connectivity-connected if q is in)(4 pN
• 8 connectivity- connected if q is in the union of)(4 pN and)(pN D .

In this problem, 4 connectivity has been considered. For the purpose of simplifying the
problem, binary image instead of grayscale image has been considered. In the case of
grayscale images, since the number of grayscales can in the range of 0-255, pixels are
said to be connected if their values are within a range.

The whole image is divided into sub images and each sub image is given to a thread.
Each thread calculates the local connected components label and after that the connected
components labels are merged. In this case also, tasks to individual threads have been
distributed statically because the time required is dependent on the task size. So if threads
are given almost equal amount of work, then it is expected that the idle time of each
thread can be minimized without having to go for dynamic task assignment.

The neighbors of a pixel p are the pixels to the N, S, W and E of that pixel. The
sequential implementation of the problem scans the image from left to right and from top
to bottom and if the current pixel is 0, it moves to the next pixel. If p is 1 and the pixels to
the N and W are 0, p is assigned a new label. If only one of the 2 neighboring pixels (N,
W) is not 0 then p is assigned that label. If both the neighbors have non zero values, p can
be assigned any one of the labels. The divide and conquer technique partitions the
problem into several smaller and similar problems. Thus the computations can take place

Page 11 of 13

in parallel; however the final merging task is more complicated than the previous part as
has already been explained.

The following is a sample run using threads.

Sample run of imglbl.c (using threads)

discover> ./imglbl diana.txt 4

Reading data from input file diana.txt
Number of threads = 4
Image is 641 X 1533 pixels
Thread id=1: colstart=383, colend=765
Thread id=0: colstart=0, colend=382
Thread id=3: colstart=1149, colend=1532
Thread id=2: colstart=766, colend=1148
clock start=380000, clock end = 490000
CLOCKS_PER_SEC=1000000, elapsed time =22.010000 seconds

Image component labels written to lbl.txt file

The following observations were made when the programs were run with different
images. The number of rows, number of columns and time taken for computing the
global histogram are tabulated below.

Shared memory using 4 threads:

Number of rows=M Number of columns=N Elapsed time (seconds)
1131 741 9.890000
868 1160 13.150000
1485 1100 22.220000
641 1533 11.510000

Resolving Equivalence: Initially, when the connected component labels are assigned
locally by each thread, the labels are taken from a shared counter. If a new label is
required the associated thread would lock the global counter, increment it, take the
incremented value as the new label and finally unlock the global counter. This ensures
that all the component labels assigned by the different threads are unique. There are other
ways to ensure this but this is easy to implement using a mutex lock. During the merging
stage, only the border regions between the sub images processed by different threads
need to be examined for finding equivalent labels. If the pixels in these regions have the
same pixel value and their labels are different from that of their immediate neighbors to
their north (implying that they are new sets of equivalent labels), then the two labels are
equivalent, the latter condition preventing duplicate entries of equivalent labels. After all

Page 12 of 13

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

x 106

8

10

12

14

16

18

20

22

24
Computation time versus number of pixels (using 4 threads)

Number of pixels

Ti
m

e
(in

 s
ec

on
ds

)

Fig 9: Computation time of connected component labeling versus number of pixels when

using 4 threads

the equivalent labels have been resolved, the final global connected components label are
decided. This completes the task of connected components labeling of the whole image.

Conclusion:

It was observed in both the image histogramming and connected components labeling
problems that significant speedup is not achieved while using threads because of reasons
already discussed. On the other hand, the use of MPI resulted in even worse performance
due to the large communication overhead. However, it became obvious that shared
memory architecture offers the best solution to the problem in hand. Currently many
researchers have been working on how to reduce the complexity of equivalence
resolution in order to achieve better results. Due to time constraints, a relatively simple
but original equivalence resolution (explained in the previous paragraph) has been
implemented. A number of images of varying sizes were considered and it was evident
that in both the cases, the total number of pixels and elapsed time have an almost perfect
linear relationship; the time increasing for increasing number of pixels.

Page 13 of 13

Acknowledgements:

I wish to thank Professor. Manish Parashar for his helpful suggestions and comments that
helped me to narrow down on the project goals and create a well-defined problem
statement. This also made it feasible for me to valuable insight into the area.

References:

[Aya] D. Ayala, J. Rodriguez, A. Aguilera, “Connected Component Labeling

Based on the EVM Model”.
[Bau] A. Baumker, W. Dittrich, “Parallel Algorithms for Image Processing:

Practical Algorithms with Experiments (Extended Abstract)”.
[Paa] J. Park, C. G. Looney, H. Chen, “Fast Connected Component Labeling

Algorithm Using a Divide and Conquer Technique”.
[Bad] D. A. Bader, J. JaJa, “Parallel Algorithms for Image Histogramming and

Connected Components with an Experimental Study (Extended
Abstract)”.

[Aln] H. M. Alnuweiri, V. K. Prasanna, “Parallel Architectures and Algorithms
for Image Component Labeling”.

[Gre] J. Greiner, “A Comparison of Data-Parallel Algorithms for Connected
Components”.

[Wil] Barry Wilkinson and Michael Allen, “Parallel Programming: Techniques
and Applications Using Networked Workstations and Parallel
Computers”, Prentice Hall, 1999.

