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Introduction: 
In this project, two useful primitives in image processing algorithms, histogramming and 
connected components labeling have been implemented in parallel. An application of 
histogramming is histogram normalization which flattens the histogram to improve the 
contrast of an image by “spreading out” colors that are too clumped together for human 
visual distinction. Connected components labeling (CCL) of an image is a fundamental 
step in the segmentation process and consists in identifying and labeling the separate 
different regions of interest of the image. Applications of CCL are in the fields of image 
understanding, volume visualization, character recognition, geometric modeling and 
computer vision. The connected component can also be applied to the several 
computational physics problems such as percolation and various Monte Carlo algorithms 
for computing the spin models of magnets such as the two-dimensional Ising spin model. 
 
Part I: Image Histogramming 
 
Given an m x n image with k grey levels, the problem is to compute an array H [0,1..k-1] 
such that H [i] is equal to the number of pixels in the image with grey level i. The 
sequence of operations is described below: 
 

• The MATLAB file image_matrix.m reads an image (for e.g. woman.jpg), 
converts it into a grayscale image if its not a grayscale image  and writes the pixel 
values in an output file (for e.g. data file woman.txt).  

• The C program (imghist.c using MPI and imhhistt.c using threads) reads the pixel 
values from the input file, computes the global image histogram and writes the 
histogram matrix in an output file (hist.dat for imghist.c and hist1.dat for 
imghistt.c). 

• The MATLAB program plothist.m plots the histogram for the image. 
 
In order to compute the image histogram in parallel, the divide and conquer technique has 
been adopted. The whole image is divided into sub images and each sub image is given to 
a processor (when using message passing paradigm) or thread (in case of shared memory 
paradigm). Each processor or thread then calculates the local histogram and after that the 
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local histograms are merged together (by adding the corresponding entries of local 
histograms) to form the global histogram. Partitioning simply divides the original 
problem into similar problems of smaller dimensions. In this problem, tasks to individual 
threads or processors have been distributed statically because the time required is 
dependent on the task size. So if threads or processors are given almost equal amount of 
work, then it is expected that the idle time of each thread or processor can be minimized 
without having to go for dynamic task assignment. 
 
The sequential implementation of the problem scans the image from left to right and from 
top to bottom and if the current pixel has gray level k, it increments H[k] by one. The 
divide and conquer technique partitions the problem into several smaller and similar 
problems, with each processor or thread computing a portion of the original image. Thus 
the computations can take place in parallel; however the final merging task is essentially 
sequential at least for shared memory programming. The local histograms are computed 
in the same way as the sequential implementation described above. Finally the locally 
histograms are merged together one by one by adding the corresponding entries of the 
local histograms. For example, in the ith merging step (when using shared memory 
paradigm) we have, 
 
global_hist [k] = global_hist [k] + local_hist_i[k]; 
 
where global_hist [k] is the total number of pixels so far with gray level k and 
local_hist_i[k] is the number of pixels with gray level k in the ith sub-image.  
 
While using message passing paradigm, MPI_Reduce is used to merge the local 
histograms. However, it was observed that MPI is not very suitable for this problem due 
to the enormous communication that is needed between processors both during the initial 
data distribution part and final histogram merging part. Much better results are obtained 
using threads (shared memory paradigm). In MPI implementation, the cost of 
communication far offsets the gain in computation time using multiple processors. 
Particularly with large values of M and N (M=number of rows, N=Number of columns), 
performance degrades rapidly for MPI. 
 
The following is a sample run using MPI and threads. 
 
Sample run of imghist.c (using MPI) 
 
discover> mpirun -np 4 imghist 
Number of processors=4 
ROOT processor reading data from input file ...... 
ROOT processor broadcasting data to other processors 
ImagePixel array: number of rows=1485; number of columns=1100; Gray levels 0-255 
Merging local histograms to the global histogram 
Image Histogram data written to hist.dat file 
Total time taken = 2.570091 seconds 
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Sample run of imghistt.c (using threads) 
 
discover> ./imghistt woman.txt 4 
Reading data from input file woman.txt ...... 
Number of threads = 4 
Thread id=0: step=275 
colstart=0: colend=274 
Thread id=1: step=275 
colstart=275: colend=549 
Thread id=2: step=275 
colstart=550: colend=824 
Thread id=3: step=275 
colstart=825: colend=1099 
clock start=7400000, clock end = 7520000 
CLOCKS_PER_SEC=1000000, elapsed time =0.120000 seconds 
 
Image Histogram data written to hist1.dat file 
 
The following observations were made when the programs were run with different 
images. The number of rows, number of columns and time taken for computing the 
global histogram are tabulated below. 
  
Shared memory using 4 threads: 
 
Number of rows=M Number of columns=N Elapsed time (seconds) 
1131 741 0.060000 
868 1160 0.070000 
1071 1580 0.110000 
1485 1100 0.120000 
1680 2240 0.270000 
 
MPI using 4 processors: 
 
Number of rows=M Number of columns=N Elapsed time (seconds) 
1131 741 1.622046 
868 1160 2.019544 
1071 1580 2.769893 
1485 1100 2.955591 
1680 2240 5.823097 
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Fig 1: Computation time versus number of pixels for shared memory programming 
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Fig 2: Computation time versus number of pixels when using MPI with 4 processors 
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From the above graphs, it can be seen that for both shared memory programming and 
message passing, the computation time increases with the number of pixels almost 
linearly. However, the time taken when using message passing is much more than when 
using shared memory. The reason is that as number of pixels increases, the cost of 
communication far outweighs the cost of computation. In MPI implementation, time is 
measured from the instant when the root processor starts broadcasting the pixel values to 
all the processors, so that the individual processors can start working on their portion of 
data in parallel till the point when all the local histograms have been merged to form the 
global histogram. Instead of broadcasting all the pixel values to all the processors, the 
root processor can send to individual processors their portion of data only. However, 
even then the time taken is much more than what is needed when shared memory 
paradigm was used. 
 
From the above graphs, the computation time per pixel can be computed as follows: 
Computation time per pixel = slope of the fitted straight line 
 
Thus computation time per pixel when using shared memory is 81024.7 −×  seconds, 
while computation time per pixel when using message passing is 61044.1 −×  seconds. 
 
Note: In the graphs, computation time refers to the total time i.e. the combined 
computation time and communication time if any. 
 
The following observations were made when the programs were run with the image 
flag.jpg. The times taken for computing the global histogram for different number of 
threads/processors are tabulated below: 
 
Shared memory (number of rows=1131, number of columns=741): 
 

Number of threads Elapsed time (seconds) 
2 0.050000 
3 0.050000 
4 0.040000 
5 0.060000 

 
 
Message passing (number of rows=1131, number of columns=741): 
 

Number of processors Elapsed time (seconds) 
2 0.813986 
3 1.131303 
4 1.300856 
5 2.075196 
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Fig 3: Computation time versus number of threads for shared memory programming 
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Fig 4: Computation time versus number of processors for message passing 
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From the above graphs, it can be seen that there is no speedup achieved when using 
message passing paradigm. The reason as already been explained, is because of the cost 
of communication dominating over the cost of computation. Thus increasing the number 
of processors does not seem to have an effect on the time taken; in fact the time taken 
increases with increasing number of processors. The same observations were made for 
other images also. When using shared memory, there seems to be some speedup but 
consistent speedup was not noticed when using more number of threads. The reason may 
be attributed to the number of CPUs available on the system i.e. 2. Since this is a 
computationally intensive problem, the worker threads are almost busy throughout and so 
increasing number of threads do not achieve significant or any speedup. 
 
The following figure shows the original RGB image, the next figure shows the 
transformed grayscale image which has been used for computing the image histogram. 
The image histogram is shown in the following figure. Then the image histograms 
obtained by shared memory programming and message passing have been compared and 
it is seen that the histograms obtained from the two methods are identical, as expected. 
 
 

 
 

Fig 5: Original RGB Image 
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Fig 6: Grayscale Image 
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Fig 7: Image Histogram of the grayscale Image 
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Fig 8: Image Histogram of the grayscale image by (i) shared memory programming and 

(ii) message passing 
 
 
 
Part II: Connected Components Labeling 
 
Detection of connected components between pixels in binary images (which have only 
two possible gray levels) is a fundamental step in segmentation of image objects and 
regions. The original algorithm was developed by Rosenfeld and Pfaltz in 1966. A 
connected component in an image is a set of connected pixels that share a specific 
property, V. Two pixels, p and q, are connected if there is a path from p to q of pixels 
with property V. A path is an ordered sequence of pixels such that any two adjacent 
pixels in the sequence are neighbors. Constructing a connected component consists of 
growing sets of pixels that are connected and have the same value of a property. This 
could be accomplished by first finding a pixel with a given property value, then looking 
at all its neighbors, labeling each that has the same value as being in the same component, 
and so on. 
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In the first part, it has been seen that message passing paradigm is not particularly suited 
for computations like this due to the large overhead associated with communication. So 
the connected components labeling has been implemented using threads only. The 
connected components labeling in parallel has been implemented using divide and 
conquer technique. In this case, after connected components labeling by each thread is 
over, the local connected component labels have to be merged together. However, there 
may be pixels which are connected but have been given separate labels as they have been 
processed by different threads. So during merging, some of the component labels may 
have to computed again by finding the equivalence of labels of connected pixels. 
 
The sequence of operations is described below: 
 

• The MATLAB file image_label.m reads an image, converts it into a binary image 
and writes the pixel values in an output file. 

• The C program (imglbl.c ) reads the pixel values from the input file, computes the 
connected components label locally, then merges the locally computed connected 
components label by the equivalence resolution and writes the global connected 
components label in an output file. 

 
Pixel Connectivity: A pixel p at coordinate (x, y) has four direct neighbors, )(4 pN  and 
four diagonal neighbors )( pN D . To establish connectivity between pixels of 1s in a 
binary image, three type of connectivity for pixels p and q can be considered  

• 4 connectivity-connected if q is in )(4 pN  
• 8 connectivity- connected if q is in the union of )(4 pN and )( pN D . 

 
In this problem, 4 connectivity has been considered. For the purpose of simplifying the 
problem, binary image instead of grayscale image has been considered. In the case of 
grayscale images, since the number of grayscales can in the range of 0-255, pixels are 
said to be connected if their values are within a range. 
 
The whole image is divided into sub images and each sub image is given to a thread. 
Each thread calculates the local connected components label and after that the connected 
components labels are merged. In this case also, tasks to individual threads have been 
distributed statically because the time required is dependent on the task size. So if threads 
are given almost equal amount of work, then it is expected that the idle time of each 
thread can be minimized without having to go for dynamic task assignment.  
 
The neighbors of a pixel p are the pixels to the N, S, W and E of that pixel. The 
sequential implementation of the problem scans the image from left to right and from top 
to bottom and if the current pixel is 0, it moves to the next pixel. If p is 1 and the pixels to 
the N and W are 0, p is assigned a new label. If only one of the 2 neighboring pixels (N, 
W) is not 0 then p is assigned that label. If both the neighbors have non zero values, p can 
be assigned any one of the labels. The divide and conquer technique partitions the 
problem into several smaller and similar problems. Thus the computations can take place 
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in parallel; however the final merging task is more complicated than the previous part as 
has already been explained. 
 
The following is a sample run using threads. 
 
Sample run of imglbl.c (using threads) 
 
discover> ./imglbl diana.txt 4 
 
Reading data from input file diana.txt ...... 
Number of threads = 4 
Image is 641 X 1533 pixels 
Thread id=1: colstart=383, colend=765 
Thread id=0: colstart=0, colend=382 
Thread id=3: colstart=1149, colend=1532 
Thread id=2: colstart=766, colend=1148 
clock start=380000, clock end = 490000 
CLOCKS_PER_SEC=1000000, elapsed time =22.010000 seconds 
 
Image component labels written to lbl.txt file 
 
The following observations were made when the programs were run with different 
images. The number of rows, number of columns and time taken for computing the 
global histogram are tabulated below. 
  
Shared memory using 4 threads: 
 
Number of rows=M Number of columns=N Elapsed time (seconds) 
1131 741  9.890000 
868 1160 13.150000 
1485 1100  22.220000 
641 1533  11.510000 
 
Resolving Equivalence: Initially, when the connected component labels are assigned 
locally by each thread, the labels are taken from a shared counter. If a new label is 
required the associated thread would lock the global counter, increment it, take the 
incremented value as the new label and finally unlock the global counter. This ensures 
that all the component labels assigned by the different threads are unique. There are other 
ways to ensure this but this is easy to implement using a mutex lock. During the merging 
stage, only the border regions between the sub images processed by different threads 
need to be examined for finding equivalent labels. If the pixels in these regions have the 
same pixel value and their labels are different from that of their immediate neighbors to 
their north (implying that they are new sets of equivalent labels), then the two labels are 
equivalent, the latter condition preventing duplicate entries of equivalent labels. After all 
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Fig 9: Computation time of connected component labeling versus number of pixels when 

using 4 threads 
 
the equivalent labels have been resolved, the final global connected components label are 
decided.  This completes the task of connected components labeling of the whole image. 
 
Conclusion:  
 
It was observed in both the image histogramming and connected components labeling 
problems that significant speedup is not achieved while using threads because of reasons 
already discussed. On the other hand, the use of MPI resulted in even worse performance 
due to the large communication overhead. However, it became obvious that shared 
memory architecture offers the best solution to the problem in hand. Currently many 
researchers have been working on how to reduce the complexity of equivalence 
resolution in order to achieve better results. Due to time constraints, a relatively simple 
but original equivalence resolution (explained in the previous paragraph) has been 
implemented. A number of images of varying sizes were considered and it was evident 
that in both the cases, the total number of pixels and elapsed time have an almost perfect 
linear relationship; the time increasing for increasing number of pixels.  
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