Video Multicast over WLAN

Soumya Das

Advisors: Dr. D. Raychaudhuri Dr. Wade Trappe Dr. Sanjoy Paul

Challenges for video streaming over WLANs:

- Wireless video transmission is a challenging task because of the following factors:
- limited bandwidth
- high bit errors compared to wired links
- time-varying error-prone environment
- receiver heterogeneity

Problem statement

How MAC multicast and error control techniques can improve service quality and/or capacity.

OPNET Simulation Model

System Model

 Multi-resolution streams of video are available from the server (co-located with AP). The bit rates are 1.5 Mbps, 768 kbps, 384 kbps and 128 kbps.

Clients subscribe to multicast groups based on the following measurements

- PHY bit rate
- Short-term BER
- Long-term BER

Multicast groups and video bit rates

Video bit rate	Multicast group
1.5 Mbps	1
768 kbps	2
384 kbps	3
128 kbps	4

BER at a mobile terminal for the four multicast streams

- node_4 of subnet_2	node_4 of subnet_2
0.010 Wireless Lan.Bit Error Rate	0.09 Wireless Lan.Bit Error Rate
0.009	0.08
0.008	0.02
0.007	
0.006	0.05
0.005	0.05
0.004	0.04
0.003	0.03
0.002	0.02
0.001	0.01
0s 3s 6s 9s 12s 15s 18s 21s	l l l l l l l l l l l l l l l l l l l
- node_4 of subnet_2	- node_4 of subnet_2
0.00275 Wireless Lan.Bit Error Rate	0.175 Wireless Lan.Bit Error Rate
0.00250	
0.00225	0.150
0.00200	0.125
0.00175	0.100
0.00125	
0.00100	0.075
0.00075	0.050
0.00050	0.025
0.00025	

Short term average BER at a mobile terminal for the four multicast streams

Long term average BER at a mobile terminal for the four multicast streams

Ongoing work

The problem has been formulated as a general feedback control system with the following observation and control variables: ■BER (long term and short term BER) MAC multicast groupings □ Percentage/type of FEC and ARQ □ Feedback rate by mobile terminals

Piecewise linear S-Curve of Satisfaction Index

Ongoing work (Contd.)

The algorithm under consideration aims to maximize the overall system satisfaction

$$Q_{system} = \sum Q_i, i = 1, 2..N$$

subject to the condition that the satisfaction for all the mobile terminals is greater than a threshold satisfaction i.e.

$$Q_i \ge Q_{threhsold}, i = 1, 2..N$$

by selecting the appropriate multicast group (and also adjusting the FEC and/or ARQ) as a function of the observed PHY bit rate and BER for each wireless client.

Satisfaction Index of a client

Client subscribed to multicast stream 1

Client subscribed to multicast stream 2

Future Work

Simulations with FEC and ARQ.

 Modify the system from the receiver driven scheme to a centralized scheme.