Network Tomography 4 node problem

Atin Kumar Soumya Das

January 17, 2003

Contents

1	Notations															1											
2	\mathbf{Esti}	Istimation															2	1									
	2.1	Step1																								2)
	2.2	Step 2																								2)
	2.3	Step3																								3	;
	2.4	Step4																								3	;
	2.5	Step 5																								4	-

1 Notations

2 Estimation

2.1 Step1

Estimate p_{03} by

$$\hat{p}_{03} = M_{03}/N_{03}$$

= $R_{03}/\beta_3 N_{03}$

Estimate p_{23} by

$$\hat{p}_{23} = |L_{02} \cap L_{03}| / \beta_3 R_{02}$$

2.2 Step2

Estimate p_{02} by

$$\hat{p}_{02} = R_{02} / \beta_2 N_{02} \tag{1}$$

But we can make a better estimate of p_{02} by extracting the mutual information between R_{02} and R_{03} . This comes from the fact that those packets which were not recorded by 2 but were recorded by 3, surely made it through 2. This gives us a better estimate of p_{02} .

Hence

$$L'_{02} = L_{02} + packets \ recorded \ by \ 3 \ but \ not \ by \ 2.$$

= $L_{02} + (L_{03} - L_{02})$

$$\begin{aligned} R'_{02} &= |L'_{02}| \\ &= R_{02} + |L_{03} - L_{02}| \\ &= R_{02} + \{R_{03} - R_{02}p_{23}\beta_3\} \\ &= \beta_2 M_{02} + \{\beta_3 M_{03} - \beta_2 M_{02}\beta_3 p_{23}\} \\ &= \beta_2 M_{02} + \{\beta_3 M_{02}p_{23} - \beta_2 M_{02}\beta_3 p_{23}\} \\ &= M_{02}\{\beta_2 + \beta_2 p_{23}(1 - \beta^2)\} \end{aligned}$$

$$Now,$$

$$R'_{02} = \beta'_2 M_{02}$$

$$\Rightarrow \beta'_2 = \beta_2 + \beta_2 p_{23} (1 - \beta_2)$$

Therefore we get a refined estimate of p_{02} by

$$\widehat{p'_{02}} = R'_{02} / \beta'_2 N_{02} \tag{2}$$

2.3 Step3

Now we re-estimate p_{23} by

$$\widehat{p_{23}} = \widehat{p_{03}}/\widehat{p'_{02}} \tag{3}$$

2.4 Step4

Initial Estimate of p_{01}

$$\widehat{p_{01}} = R_{01} / \beta_1 N_{01} \tag{4}$$

Initial Estimate of p_{12}

$$\widehat{p_{12}} = |L_{01} \cap L'_{02}| / \beta_2 R_{01} \tag{5}$$

Now we update the list L_{01}

$$L'_{01} = L_{01} + (L'_{02} - L_{01})$$

$$R'_{01} = R_{01} + |L'_{02} - L_{01}|$$

$$= R_{01} + \{R'_{02} - R_{01}p_{12}\beta'_{2}\}$$

$$= R_{01} + \{\beta'_{2}M'_{02} - \beta_{1}\beta'_{2}M_{01}p_{12}\}$$

$$= \beta_{1}M_{01} + M_{01}p_{12}(\beta'_{2} - \beta_{1}\beta'_{2})$$

$$= M_{01}\{\beta_{1} + p_{12}\beta'_{2}(1 - \beta_{1})\}$$

$$NowR'_{01} = \beta'_{1}M_{01}$$

$$Therefore\beta'_{1} = \beta_{1} + p_{12}\beta'_{2}(1 - \beta_{1})$$

Now we can recalculate p_{01} by

$$\widehat{p'_{01}} = R'_{01} / \beta'_1 N_{01} \tag{6}$$

2.5 Step5

Re-estimate p_{12} by

$$\widehat{p'_{12}} = \widehat{p'_{02}}/\widehat{p'_{01}} \tag{7}$$