Network Tomography 4 node problem

Atin Kumar Soumya Das

January 17, 2003

Contents

1 Notations 1
2 Estimation 2
2.1 Step1 2
2.2 Step2 2
2.3 Step3 3
2.4 Step4 3
2.5 Step5 4

1 Notations

p_{01} - probability of a packet sent from 0 , successfully arriving at 1 .
$p_{12^{-}}$probability of a packet sent from 1 , successfully arriving at 2 .
p_{23} - probability of a packet sent from 2 , successfully arriving at 3 .
$N_{0 k}$ - Number of packets sent from node 0 to node K
$M_{0 k}$ - Number of packets received at node K
$R_{0 k}$ - Number of packets recorded at node K
β_{j} - Probability with which node j records a packet identifier.
$L_{0 k}$ - List of packets recorded at node k.
The quantities with primes are the refined estimates.

2 Estimation

2.1 Step1

Estimate p_{03} by

$$
\begin{aligned}
\hat{p_{03}} & =M_{03} / N_{03} \\
& =R_{03} / \beta_{3} N_{03}
\end{aligned}
$$

Estimate p_{23} by

$$
\hat{p_{23}}=\left|L_{02} \cap L_{03}\right| / \beta_{3} R_{02}
$$

2.2 Step2

Estimate p_{02} by

$$
\begin{equation*}
p_{\hat{0} 2}=R_{02} / \beta_{2} N_{02} \tag{1}
\end{equation*}
$$

But we can make a better estimate of p_{02} by extracting the mutual information between R_{02} and R_{03}. This comes from the fact that those packets which were not recorded by 2 but were recorded by 3 , surely made it through 2. This gives us a better estimate of p_{02}.

Hence

$$
\begin{aligned}
L_{02}^{\prime} & =L_{02}+\text { packets recorded by } 3 \text { but not by } 2 . \\
& =L_{02}+\left(L_{03}-L_{02}\right) \\
R_{02}^{\prime} & =\left|L_{02}^{\prime}\right| \\
& =R_{02}+\left|L_{03}-L_{02}\right| \\
& =R_{02}+\left\{R_{03}-R_{02} p_{23} \beta_{3}\right\} \\
& =\beta_{2} M_{02}+\left\{\beta_{3} M_{03}-\beta_{2} M_{02} \beta_{3} p_{23}\right\} \\
& =\beta_{2} M_{02}+\left\{\beta_{3} M_{02} p_{23}-\beta_{2} M_{02} \beta_{3} p_{23}\right\} \\
& =M_{02}\left\{\beta_{2}+\beta_{2} p_{23}(1-\beta 2)\right\} \\
& \\
\text { Now, } & \\
\Rightarrow \quad R_{02}^{\prime} & =\beta_{2}^{\prime} M_{02} \\
\Rightarrow \quad \beta_{2}^{\prime} & =\beta_{2}+\beta_{2} p_{23}(1-\beta 2)
\end{aligned}
$$

Therefore we get a refined estimate of p_{02} by

$$
\begin{equation*}
\widehat{p_{02}^{\prime}}=R_{02}^{\prime} / \beta_{2}^{\prime} N_{02} \tag{2}
\end{equation*}
$$

2.3 Step3

Now we re-estimate p_{23} by

$$
\begin{equation*}
\widehat{p_{23}}=\widehat{p_{03}} / \widehat{p_{02}^{\prime}} \tag{3}
\end{equation*}
$$

$2.4 \quad$ Step4

Initial Estimate of p_{01}

$$
\begin{equation*}
\widehat{p_{01}}=R_{01} / \beta_{1} N_{01} \tag{4}
\end{equation*}
$$

Initial Estimate of p_{12}

$$
\begin{equation*}
\widehat{p_{12}}=\left|L_{01} \cap L_{02}^{\prime}\right| / / \beta_{2} R_{01} \tag{5}
\end{equation*}
$$

Now we update the list L_{01}

$$
\begin{aligned}
L_{01}^{\prime} & =L_{01}+\left(L_{02}^{\prime}-L_{01}\right) \\
R_{01}^{\prime} & =R_{01}+\left|L_{02}^{\prime}-L_{01}\right| \\
& =R_{01}+\left\{R_{02}^{\prime}-R_{01} p_{12} \beta_{2}^{\prime}\right\} \\
& =R_{01}+\left\{\beta_{2}^{\prime} M_{02}^{\prime}-\beta_{1} \beta_{2}^{\prime} M_{01} p_{12}\right\} \\
& =\beta_{1} M_{01}+M_{01} p_{12}\left(\beta_{2}^{\prime}-\beta_{1} \beta_{2}^{\prime}\right) \\
& =M_{01}\left\{\beta_{1}+p_{12} \beta_{2}^{\prime}\left(1-\beta_{1}\right)\right\} \\
\text { Now } R_{01}^{\prime} & =\beta_{1}^{\prime} M_{01} \\
\text { Therefore } \beta_{1}^{\prime} & =\beta_{1}+p_{12} \beta_{2}^{\prime}\left(1-\beta_{1}\right)
\end{aligned}
$$

Now we can recalculate p_{01} by

$$
\begin{equation*}
\widehat{p_{01}^{\prime}}=R_{01}^{\prime} / \beta_{1}^{\prime} N_{01} \tag{6}
\end{equation*}
$$

2.5 Step5

Re-estimate p_{12} by

$$
\begin{equation*}
\widehat{p_{12}^{\prime}}=\widehat{p_{02}^{\prime}} / \widehat{p_{01}^{\prime}} \tag{7}
\end{equation*}
$$

