Probability and Stochastic Processes

A Friendly Introduction for Electrical and Computer Engineers

Roy D. Yates and David J. Goodman

Errata for the first printing

October 28, 1998
Despite our best efforts to eliminate typographical errors, several have been found. If you find others, please let us know at

> ryates@winlab.rutgers.edu or dgoodman@winlab.rutgers.edu

Note that in the following, list, the labels are intended to be read in the following way:

- Page 4 Line +6 means 6 lines down from the top of page 4 .
- Page 8 Line -5 means 5 lines up from the bottom of page 8 .
- Page 23 Def 1.8, Line +4 means the fourth line of Definition 1.8. Similarly, line numbering within a theorem, problem, or figure caption starts with the first line of that item.

Here is the actual correction list for the first printing:

- Page xi Line -8: Starting quotes " should be ".
- Page xii Line +11: Word Wide Web should be World Wide Web
- Page 19 Theorem 1.10: The words Law of Total Probability should be boldfaced Law of Total Probability
- Page 23 Line -14 (just preceding Definition 1.8) mutually exclusive sets should be independent events
- Page 23 Def 1.8, Line +4: A_{n+1} should be A_{n}
- Page 28 Line -6: for the selecting should be for selecting
- Page 31 Line +2 : $M-N$ bits should be $N-M$ bits
- Page 38 Problem 1.4.7, Line 3: $i>n$ should be $i>m$
- Page 61 Line -1 : The displayed equation at the bottom of the page should be

$$
\sum_{x=1}^{\infty} x q^{x-1}=\frac{1}{(1-q)^{2}}=\frac{1}{p^{2}}
$$

- Page 81 Problem 2.2.9: six tries should be $n=6$ tries
- Page 81 Problem 2.3.6: random variable, K should be random variable, B
- Page 84 Problem 2.6.6: geometricrandom should be geometric random
- Page 85 Problem 2.7.6: geometricrandom should be geometric random
- Page 85 Problem 2.8.6: In part (a), the repeated statement of the PMF $P_{X}(x)$ is redundant
- Page 87 Line -12: This Chapter should be This chapter
- Page 96 Line -4: Corresponding to the Theorem should be Corresponding to Theorem
- Page 138 Theorem 4.13 Line 3: and $\sigma \sqrt{a}$ should be and $a \sigma$
- Page 138 Line -8: tht should be that
- Page 148 Theorem 4.18: Part (d) should read $f_{X}\left(x_{0}\right)=q \delta(0)$.
- Page 159 Problem 4.1.1: Part (b) should be What is $P[-1 / 2<X \leq 3 / 4]$.
- Page 161 Problem 4.4.11: The difficulty should be
- Page 171 Line 8: The displayed equations marked (Figure 5.2b), (Figure 5.2c), and (Figure 5.2d) have the wrong integral limits. The three equations should read

$$
\begin{gather*}
F_{X, Y}(x, y)=\int_{0}^{y} \int_{v}^{x} 2 d u d v=2 x y-y^{2} \quad \text { (Figure 5.2b) } \tag{Figure5.2b}\\
F_{X, Y}(x, y)=\int_{0}^{x} \int_{v}^{x} 2 d u d v=x^{2} \quad \text { (Figure 5.2c) } \\
F_{X, Y}(x, y)=\int_{0}^{y} \int_{v}^{1} 2 d u d v=2 y-y^{2} \quad \text { (Figure 5.2d) }
\end{gather*}
$$

- Page 199 Problem 5.8.3: In part (a), function? should be deleted
- Page 200 Problem 5.8.7: The problem should start with Consider random variables X, Y, and W from ...
- Page 200 Problem 5.9.3, Line +2: $\operatorname{Var}[y]$ should be $\operatorname{Var}[Y]$
- Page 200 Problem 5.10.2, Line +1 : Let $X X_{1}, \ldots, X_{n}$ should be Let X_{1}, \ldots, X_{n}
- Page 270 Theorem 8.6, Line +1 : Theorem 8.6 should start If X has finite variance, then for any constant c ...
- Page 270 Line +5: Theorem 8.6(a) should be Theorem 8.6
- Page 270 Line +6 : The displayed equation should read

$$
P\left[\left|M_{n}(X)-\mu_{X}\right| \geq c\right]=1-P\left[\left|M_{n}(X)-\mu_{X}\right|<c\right]
$$

- Page 276 Problem 8.2.2, Line $+3: X$ is within k standard deviations of \ldots should read X is more than k standard deviations from ...
- Page 276 Problem 8.2.3, Line +3: standard deviations of ... should read standard deviations from ...
- Page 312 Theorem 9.4 Should start: If X has finite variance, then the sample mean
- Page 317 Problem 9.2.1: λ_{0} and λ_{1} should be α_{0} and α_{1}
- Page 317 Problem 9.3.1, Line -3: What is the acceptance region should be What are the acceptance regions
- Page 318 Just preceding the figure in Problem 9.3.2, s_{111} should be \mathbf{s}_{111}
- Page 318 Problem 9.3.6: In part (a), Sketch the decision regions should be Sketch the acceptance regions
- Page 318 Problem 9.3.7, Line -2: when $\sqrt{E}=1$, and \ldots should be when $\sigma=0.8$, $E=1$,
- Page 319 Problem 9.4.2, part (b): $\hat{X}_{M}(y)$ should be $\hat{x}_{M}(y)$
- Page 319 Problem 9.4.3 part (c): $\sigma_{X, Y}$ should be $\operatorname{Cov}[X, Y]$
- Page 319 Problem 9.4.3 part (e): pmf should be PMF
- Page 319 Problem 9.4.3 part (g): $e_{\text {MMSE }}(-3)$ should be $\hat{e}_{M}(-3)$
- Page 319 Problem 9.4.4 part (b): $\hat{u}(V)$ should be $\hat{U}_{L}(V)$
- Page 319 Problem 9.5.1: The displayed equation should read

$$
f_{V}(v)= \begin{cases}1 / 12 & -6 \leq v \leq 6 \\ 0 & \text { otherwise }\end{cases}
$$

- Page 324 Table 10.1, line +7 : hline $\cos 2 \pi f_{0} \tau$ should be $\cos 2 \pi f_{0} \tau$
- Page 326 Theorem 10.1 Proof, Line 3, Line 5, Line 8: each instance of $R_{Y}(t, t+\tau)$ should be $R_{Y}(t, \tau)$
- Page 332 Line -14, Line -9, Line -8, Line -7: each instance of $R_{Y}(t, t+\tau)$ should be $R_{Y}(t, \tau)$
- Page 332 Lines -12 and -11: $R_{N X}(t, t+\tau)$ should be $R_{N X}(t, \tau)$
- Page 332 Lines -12 and -11: $R_{X N}(t, t+\tau)$ should be $R_{X N}(t, \tau)$
- Page 333 Theorem 10.6, Line $+3: R_{X Y}(t, t+\tau)$ should be $R_{X Y}(t, \tau)$
- Page 333 Theorem 10.6 Proof, Line $+3: R_{X Y}(t, t+\tau)$ should be $R_{X Y}(t, \tau)$
- Page 339 Quiz 10.5, Line 3: $R_{Y}(t, t+\tau)$ should be $R_{Y}(t, \tau)$
- Page 342 Problem 10.1.1, Line +3: IS should be $I s$
- Page 342 Problem 10.2.1: Parts (a) and (b) should be reversed.
- Page 343 Problem 10.4.1, Line $+2: C_{X}(t, t+\tau)$ should be $C_{X}(t, \tau)$
- Page 378 Theorem 11.25: In the displayed equation, $R(t)$ should be $R_{j}(t)$.
- Page 387 Theorem 11.30: In the displayed equation, in both the numerator and denominator of the right side, the starting index $j=1$ should be $j=0$
- Page 387 Line -1: aGeneral should be a General
- Page 392 Problem 11.1.2, Line 3: In the displayed equation preceding part (a), the denominator on the right side should be j ! instead n !
- Page 394 Problem 11.4.1: The - difficulty symbol is missing
- Page 394 Problem 11.8.1: The - difficulty symbol is missing
- Page 394 Problem 11.8.3, Line -5: (measured in minutes) should be (measured in seconds)
- Page 394 Problem 11.8.3, Line -4: 2 minutes should be 120 seconds
- Page 394 Problem 11.9.1: The difficulty should be $\boldsymbol{\square}$ instead of
- Page 395 Problem 11.11.6: The final sentence should read Find the limiting state probabilities for this queue when the arrivals are Poisson with rate λ and service times are exponential with mean $1 / \mu$.

