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Abstract—Recently, optimum signature sequence sets that max-
imize the capacity of single-cell synchronous code division multiple
access (CDMA) systems have been identified. Optimum signature
sequences minimize the total squared correlation (TSC); they form
a set of orthogonal sequences, if the number of users is less than
or equal to the processing gain, and a set of Welch bound equality
(WBE) sequences, otherwise. We present an algorithm where users
update their transmitter signature sequences sequentially, in a dis-
tributed fashion, by using available receiver measurements. We
show that each update decreases the TSC of the set, and produces
better signature sequence sets progressively. We prove that the al-
gorithm converges to a set of orthogonal signature sequences when
the number of users is less than or equal to the processing gain. We
observe and conjecture that the algorithm converges to a WBE set
when the number of users is greater than the processing gain. At
each step, the algorithm replaces one signature sequence from the
set with the normalized minimum mean squared error (MMSE) re-
ceiver corresponding to that signature sequence. Since the MMSE
filter can be obtained by a distributed algorithm for each user, the
proposed algorithm is amenable to distributed implementation.

Index Terms—Code division multiple access (CDMA), dis-
tributed interference avoidance, minimum mean squared error
(MMSE), optimum signature sequence sets, Welch bound equality
(WBE) sequences.

I. INTRODUCTION

WE consider the uplink of a single-cell synchronous
code division multiple access (CDMA) system with

users and processing gain. In the presence of additive
white Gaussian noise (AWGN) with zero mean and power
spectral density , the received signal in one symbol interval
is [3, Sec. 2.1]

(1)

where, for user, is the received power, is the information
symbol with zero mean and variance , and is
the signature waveform. The signature waveforms of the users,
which are zero outside the symbol interval, have unit energies,
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and can be represented byorthonormal basis waveforms [3,
Sec. 2.3.6] such that

where . In standard CDMA notation,
could be chosen as the shifted versions of the

basic chip waveform by multiples of the chip duration [3, Secs.
2.3.6 and 2.9.2]. Projecting the received signal onto these basis
waveforms yields a set of sufficient statistics where

[3, Sec. 2.9.2]. By defining thesignature
sequenceof user as and the received
signal vector , we can write (1) in the
equivalent vector notation

(2)

Note that is a zero mean Gaussian random vector with
, where denotes the identity

matrix.
The information-theoreticcapacity region of a single-cell

synchronous CDMA system was derived in [4] (see also [5]).
An important measure of overall information capacity of a
multiaccess channel is thesumcapacity [4]

(3)

where is an matrix with the users’
signature sequences as its columns and
is a diagonal matrix of the users’ received powers. Note
that it will be convenient to use the matrixas a notation for the
setof column vectors of . For example, we may write
when is a column of .

When the received powers of the users are the same,
for all , (3) reduces to

(4)

where the equivalence of the two expressions in (4) follows from
the equality

for any two matrices and .
For arbitrary (unequal) powers, the optimum signature se-

quence sets that maximize the sum capacity in (3) have recently
been identified in [6]. For the case of equal powers, [7] shows
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that the sum capacity is maximized if the signature sequences
are chosen such that, if

(5)

and if

(6)

The signature sequence sets satisfying (5) containor-
thonormal signature sequences in-dimensional vector space.
The sequence sets satisfying (6) are named Welch bound
equality (WBE) sequence sets in [7], because they satisfy the
Welch bound on the sum of the squares of the cross correlations
of unit energy sequences with equality. Note that there are
infinitely many sets of sequences satisfying (5) or (6) in the
continuous space.

In [8], theusercapacity of a single-cell synchronous CDMA
system is defined as the maximum number of admissible users,
given the processing gain , and a common signal to interfer-
ence ratio (SIR) target; users are said to be admissible if
there exist positive powers and signature sequencessuch
that all users have SIRs that are at least as large as the target SIR

. The user capacity of a CDMA system was found for two kinds
of linear receiver structures in [8]: matched filters and minimum
mean squared error (MMSE) filters [9], [10]. In both cases, the
user capacity of a single-cell synchronous CDMA system was
found to be

(7)

It was shown in [8] that the user capacity is maximized if the
signature sequence set is chosen to satisfy (5) if and (6)
if , and if the received powers of the users are chosen
to be the same for all users, for both MMSE and matched-filter
receivers cases. This is expected since when signature sequences
satisfy (5), or when they satisfy (6) and for all , the
MMSE receivers reduce to matched filters [8]. Therefore, an
important consequence of [8] is that once the optimum signature
sequences are used, the optimum linear receiver filter selection
is simplified: matched filters are optimum linear receiver filters.

The aim of this paper is to develop a simple iterative and
distributed algorithm that uses receiver measurements to adapt
transmitter signatures. We describe an algorithm that converges
to an optimum signature sequence set (an orthonormal set for

and a WBE set for ) for arbitrary and [1],
[2]. When , a simple Gram–Schmidt orthogonalization
procedure can be used to obtainorthonormal vectors starting
with linearly independent vectors, yielding an optimum sig-
nature sequence set. Unfortunately, this does not have a direct
generalization to the case .

The idea that the transmitter signature sequences may be
changed according to multiaccess interference (MAI) condi-
tions has also been presented in [11]. Reference [11] studies
the problem of finding jointly optimum transmitter signature
sequence and the receiver filter of asingle user in a system
where the powers of all users and the signature sequences of
all interfering users are assumed to be fixed. The mean squared
error (MSE) of this user is taken to be the optimality criterion.

Reference [11] assumes that the receiver filter of the desired
user at the base station is updated to be the MMSE filter
corresponding to the current signature sequence of the user
instantaneously, and presents an algorithm where the signature
sequence of the desired user is updated to be the normalized
MMSE receiver filter given the signature sequences and the
powers of all of the interfering users. This signature sequence
update combined with the simultaneous update of the receiver
filter to the corresponding MMSE receiver is shown to decrease
the MSE of the desired user. The significant difference between
the approach of [11] and this paper is that we consider the joint
optimization of all users’ signature sequences and receiver
filters with the intent of finding signature sequences that are
an optimumensemblefor all users. We note, however, that
although they address fundamentally different problems, a
single signature sequence update of [11] and that of this paper
are essentially the same.

A related topic to signature sequence design is transmitter
precoding [12]. In transmitter precoding, the transmit signals
intended for multiple users are passed through a linear trans-
formation at the common transmitter (base station) to minimize
the MAI at the remote receivers (users). Transmitter precoding
assumes that the symbols of the users on the downlink are al-
ready modulated with some linearly independent signature se-
quences, and essentially undoes the cross correlation introduced
by the nonorthogonality of these signature sequences. The op-
timum linear transformation was found to be the inverse of the
cross correlation matrix in [12]. Intrinsically, [12] assumes that
the number of users is less than the processing gain, so that this
cross-correlation matrix is invertible. Receiver optimization in
conjunction with transmitter precoding was studied in [13].

It is worth mentioning that transmitter beamforming in sys-
tems with multielement transmit antenna arrays [14]–[18] is
also related to signature sequence design. In transmit beam-
forming, the transmitter signal out of the multielement antenna
array is processedspatially to decrease the MAI at the receiver
sites. A fundamental difference between transmit beamforming
in multielement antenna systems and signature sequence design
in CDMA systems is that the signature sequences of the users
in CDMA systems are created and therefore can be fully con-
trolled by the transmitter. The spatial signatures in multielement
antenna systems, on the other hand, are created by the wire-
less communication channel and cannot be directly controlled
by the transmitters. The transmitters can control the transmit
beamforming weights, though, to improve the quality of com-
munication metrics such as the MSE or the SIR at the receiver.
References [14], [15] study the transmit beamforming problem,
whereas [16]–[18] study transmit beamforming in combination
with transmit power control.

In the following section, first we relate the Welch bound to the
optimum signature sequence set design problem. In Section III,
we will make some simple observations which will be the basis
of the iterative algorithm that will be given in Section IV.

II. WELCH BOUND AND THE TOTAL SQUARED CORRELATION

Welch developed lower bounds for the th power of the
maximum correlation among a set of unit energy vectors
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[19]. These lower bounds were actually obtained from the lower
bound

(8)

on the sum of the th powers of the correlations of a sequence
set. When , the Welch bound (8) reduces to the following
bound on the TSC:

TSC (9)

For a simple derivation of the bound (9), see [20], [21]. We note
that the Welch bound (9) is loose for . When ,
the minimum value TSC is achieved by orthonormal
vectors and the Welch lower bound is not achievable.
On the other hand, when , the Welch bound can be
achieved and the sets of unit energy vectors satisfying (6) are
precisely those achieving the bound [20], [21]. For general
and , we can conclude that optimum signature sequence sets,
the signature sequence sets satisfying (5) for and (6)
for , are those that achieve the minimum TSC.

The TSC can also be related to the total MSE in the system.
Assume that the signature sequences of the users are,

the signals of the users at the base station are received
by matched filters, and . In this case, from the received
signal given in (2), the MSE for theth user is

MSE (10)

(11)

The total MSE in the system is

MSE MSE (12)

(13)

We observe that the first term in (13) is the TSC. Since the sig-
nature sequences are restricted to be of unit energy, we see that

MSE TSC (14)

Therefore, minimizing TSC subject to is equivalent
to minimizing MSE subject to the same constraint, and the se-
quence sets satisfying (5) for , and (6) for mini-
mize the MSE as well. In other words, orthogonal sequences for

and WBE sequences for are theglobal optimal
solutions of the following two equivalent problems:

P1 TSC

s. t.

P2 MSE

s. t. (15)

When the TSC reaches its minimum value, we will have reached
the optimum signature sequence set.

In this paper, we will construct an iterative algorithm to min-
imize TSC. The algorithm will update the signature sequences
of the users sequentially, updating only one signature sequence
at a time, in a way that is guaranteed to decrease (more pre-
cisely, not to increase) the TSC after every update. Although one
can find many possible signature sequence update mechanisms
for TSC reduction, we will concentrate on a particular method
that we call theMMSE update. In the MMSE update, one of
the signature sequences in the set is replaced with the nor-
malized MMSE receiver filter corresponding to that signature
sequence. We will show that the set after the update will have a
lower TSC compared to the set before the update. We focus on
the MMSE update because the MMSE receiver filter is partic-
ularly well studied and understood in the context of multiuser
signal detection [3]. Although the MMSE update algorithm that
we propose and analyze is deterministic, it is motivated by the
possibility of adaptive [10] and even blind [22] implementations
of the MMSE update.

III. TSC REDUCTION

Given a set of signatures represented by the columns of the
matrix , we first separate the TSC terms that
depend on a particular signature sequenceby writing

TSC (16)

where

(17)

represents the squared correlation terms that do not depend on
. Since we will always restrict ourselves to unit energy signa-

ture sequences, i.e., , we can add and sub-
tract in (16) to obtain

TSC (18)

where

(19)

Let us replace the signature sequence of userwith the unit
energy vector

(20)

This maps the set of signature sequencesto a new set of sig-
natures

(21)

Note that is the normalized MMSE filter for user [9], [10].
Also note that this MMSE filter is a generalized one;is the
normalized MMSE filter for user in a CDMA system where
all other users have unit received power and the variance of
the AWGN is . It will be apparent in what follows that any
generalized normalized MMSE filter will be as good as any
other in terms of constructing optimum sequences. The MMSE
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filter coefficients in (20) can be obtained using an adaptive [10],
[23]–[25] or a blind [22] algorithm.

The motivation for replacing with follows from the ob-
jective of the MMSE filter. Compared to the matched filter, the
MMSE filter is designed to have lower cross correlation with
the signature sequences of the other users, thereby suppressing
the interference. Note that by the nature of the mapping in (20),

. Thus, from (18) and (20), the modified sig-
nature set has total squared correlation

TSC (22)

The following theorem verifies that replacing a particular se-
quence with its normalized MMSE receiver cannot increase the
total squared correlation of the set. In other words, in terms of
the TSC (or MSE) criteria, is a “better” set of signature se-
quences than .

Theorem 1: The MMSE signature update reduces
the total squared correlation:TSC TSC. The equalityTSC
TSC occurs iff .

Proof of Theorem 1, as well as proofs of all subsequent theo-
rems and lemmas, can be found in the Appendix. It was shown
in [11] that from (20) with decreased the MSE of
user at the output of the MMSE filter receiver corresponding to
transmit signature . In fact, it is also true that decreases the
MSE of user with a matched-filter receiver in place, as defined
by (11). It is interesting to note, however, that the MMSE update
may increase or decrease the MSE of any other individual user,
while being guaranteed to decrease the total MSE of the system
by Theorem 1 and (14).

The following theorem states another significant property of
the MMSE update.

Theorem 2: For any

A simple consequence of Theorem 2 is the following.

Corollary 1: The MMSE signature update in-
creases the sum capacity.

Corollary 1 readily follows from Theorem 2 by choosing
and the monotonicity of the function. Therefore, we

observe from Theorem 1 and Corollary 1 that the MMSE update,
when executed by the users sequentially, decreases the TSC and
the MSE monotonically and increases monotonically. In
other words, the signature sequence set after each update is a
“better” set not only in terms of the TSC and the MSE, but in
terms of the sum capacity as well.

IV. CONVERGENCE OF ANITERATIVE ALGORITHM

We have observed in the previous section that given a set
of unit energy vectors, if any one of these vectors is replaced
with the corresponding normalized MMSE vector, then the
TSC of the set decreases. We start withunit length vectors

at time . At iteration , the
algorithm replaces the vectors
with their corresponding normalized MMSE filters one by one,
and yields

A complete iteration includes intermediate steps. At theth
intermediate step in iteration , the first vectors have
already been updated and the current vector set is

(23)

We update the signature employing the matrix

(24)

In particular, the th signature is updated according to

(25)

to yield the vector set

(26)

To examine the convergence of this proposed algorithm, let
TSC denote the TSC of the set after the th inter-
mediate step in iteration. In addition, let TSC denote the
TSC at the end of iteration for set . As a consequence of
Theorem 1, we have for

TSC TSC (27)

By recursive application of (27) we have

TSC TSC (28)

For any and , TSC is lower-bounded by the Welch bound
. Therefore, the monotonically decreasing sequence

TSC converges. This implies that at the fixed point where
TSC TSC we must have

TSC TSC TSC

TSC TSC (29)

From Theorem 1, this occurs iff for all .
Thus, at the fixed point we must have

for all .
Let us denote the fixed-point set of vectors by the matrix

. For evaluation of the fixed point, it will prove
convenient to write the MMSE update of (20) in the form

(30)

where

(31)
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Therefore, the fixed point satisfies or, equiva-
lently, . It follows from (31) that

(32)

That is, at the fixed point, each is an eigenvector of .
In the following, we will investigate the properties of the fixed
point for the cases and separately. We will
need the following claim.

Corollary 2: If the signature is replaced by , at step
of iteration , then

a)

b)

Corollary 2 readily follows from Theorem 2 by choosing .
Corollary 2 a) implies that if , then at the
fixed point, . Similarly, Corollary 2 b) says that
if , then at the fixed point, .
Although these results are valid whether or ,
their utility depends on and . The following corollaries
which are immediate consequences of Corollary 2 will be useful
in the discussion of the convergence of the MMSE algorithm.

Corollary 3: If and has rank , then for
all , has rank , and at the fixed point, has
rank .

Corollary 4: If and has rank , then for
all , has rank , and at the fixed point, has
rank .

Corollaries 3 and 4 ensure that if is full rank, then the
fixed point is full rank. For , this leads to the following
result.

Theorem 3: If and has rank , then at the fixed
point

(33)

Theorem 3 simply says that when , the signature se-
quences converge to an orthonormal set. The only condition for
this to happen is that the algorithm must be started with a full
rank signature sequence set.

We also see in Theorem 3 that the MMSE update algo-
rithm looks to move the users’ signatures toward orthogonal
subspaces. We will say that is partitioned into orthogonal
subsets , or simply partitioned, if we can order
the signatures of so as to write where
for , . In the next claim, we observe that the
MMSE algorithm preserves a partition of the signature set.

Lemma 1: If is partitioned into ,
then, for all , is partitioned as such
that for each, .

For , the property that the MMSE update preserves
partitions plays no role since the eventual fixed point has
every signature in an orthogonal subspace. When , the
preservation of partitions complicates the description of the
fixed points. For , we now characterize the fixed point

of the MMSE algorithm. We will assume in the following
discussion that has rank , so that by Corollary 4, the
fixed point has rank .

From (32), is the eigenvalue of the eigenvectorof .
Since is real and symmetric, implies and are
orthogonal. That is, the distinct eigenvalues of define an
orthogonal partition of . Since is , we let
denote its distinct eigenvalues. We use to denote the

matrix whose columns are the signature sequences
with common eigenvalue . Since each user must belong to one
subset, we have . Let denote the rank of .
Since we assume that is full rank, must be full rank as
well, and we must have .

Theorem 4: For each , the matrix has eigenvalues of
and with multiplicities of and , respectively.

The signature sequences inconstitute a WBE set, in the sense
that, for signatures occupying signal space dimensions,
they achieve the Welch bound on TSC with equality.

Theorem 4 says that, when , the properties of the con-
vergence point signature sequence set depend on whether they
are partitioned into orthogonal subsets, and the condition that
the initial signature sequence set must have full rank is necessary
but not sufficient to ensure convergence to a WBE set. A simple
consequence of Theorem 4 is that if the convergence point sig-
nature sequence set does not include any orthogonal subsets,
then the algorithm has converged to a WBE set, as stated in the
following corollary.

Corollary 5: If , and the fixed point is not parti-
tioned, then .

Corollary 5 follows from the fact that an symmetric
matrix with all of its eigenvalues equal to must be

.
If the fixed-point signature sequence set contains orthogonal

partitions, then the algorithm might have converged to a subop-
timum point. That is, an orthogonally partitioned set, in general,
has a larger TSC than a WBE set. As stated in the following
lemma, when , an orthogonally partitioned signature
sequence set is strictly suboptimal, unless the particular orthog-
onal partition happens to satisfy the “equal loading” condition,
i.e., the number of users in each subset is proportional to the di-
mensionality of the subset.

Lemma 2: If the convergence point signature sequence set
is partitioned into orthogonal subsets with users and rank

for subset , then the TSC of this set is larger than or equal
to , the TSC achievable with a WBE set. The TSC equals

iff for all .

V. CONJECTURE, OBSERVATIONS, AND CONCLUSION

Because the MMSE algorithm is completely deterministic,
whether the convergence point signature sequence set contains
orthogonal partitions or not depends only on the initial signature
sequence set, .

In this section, we describe our experiments with MMSE
signature update. We will see that our experimental evidence
encourages us to believe that if the initial signature sequence
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Fig. 1. Minimum and maximum eigenvalues of matrixSSS (n)SSS(n).

Fig. 2. Total squared correlation, TSC(n).

set is not partitioned then the signature sequence set will
never, including the fixed point, be partitioned. Although we
have observed this through a substantial number of experiments,
we have not been able to prove it formally. Therefore, we make
the conjecture below.

Conjecture 1: For , for all , and the fixed point
, is partitioned only if is partitioned.

If the above conjecture is true, the fact that we have never
observed orthogonal partitioning of the signature set at the
fixed point in our experiments when we started our algorithm
with randomly generated signature sequences inis under-
standable. Because, when we view the initial set of signature
sequences as a set of continuous random vectors, the probability
that it has orthogonal subsets is zero. Also worth mentioning is
the fact that, as in the case of orthogonal partitioning problem,
when the initial set is created randomly, the probability that
the matrices for and for

will have nonfull rank is zero. Thus, the condition that
must have linearly independent signature

Fig. 3. Minimum and maximum eigenvalues of matrixSSS(n)SSS (n).

Fig. 4. Total squared correlation, TSC(n).

sequences is also satisfied with probability one when is
created randomly.

We now present some simple numerical results to verify our
analysis and support our conjecture. We take the processing gain
to be . The initial signature sequences are created ran-
domly. In all the figures, updates take place between itera-
tions and . In each update, theth user’s signature se-
quence is replaced with the corresponding normalized MMSE
filter, for . Figs. 1 and 2 show the minimum and
maximum eigenvalues of the matrix , and TSC ,
respectively, as a function of the iteration index for number of
users . As expected, the minimum and maximum
eigenvalues of converge to implying that the ma-
trix converges to , and the TSC converges to.

Figs. 3 and 4 show the minimum and maximum eigenvalues
of the matrix and TSC , respectively, for a
number of users . As expected, the min-
imum and maximum eigenvalues of the matrix
converge to implying that the matrix converges to

, and the TSC converges to .
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Fig. 5. Minimum and maximum eigenvalues of matrixSSS(n)SSS (n).

Fig. 6. Total squared correlation, TSC(n).

In the following experiment, we observe the effects of orthog-
onal partitioning mentioned previously. The number of users is

and the processing gain is . Figs. 5 and 6
show the minimum and maximum eigenvalues of the matrix

and TSC , respectively. Two kinds of orthog-
onal partitioning are examined. In the first, the users are parti-
tioned into two orthogonal subspaces with and

. Since this is an “equal loading” case, the whole
signature sequence set converges to a WBE sequence set: the
matrix converges to and the TSC
converges to ; see the solid curves in Fig. 5 and
the curve corresponding to in Fig. 6. In the second
orthogonal partitioning we examined, the users are partitioned
into two orthogonal sets according to and and,
again, . Note that this partitioning does not yield
equal loads to both subsets and the matrix does
not converge to a multiple of the identity matrix (see dashed
lines in Fig. 5), and the TSC does not decrease down to

, but converges to . Note that the signature se-
quences of users in the first subset converge to a WBE

sequence set achieving a TSC of , and
the signature sequences of users converge to orthog-
onal set yielding a TSC of . Thus, the combined TSC is

which can be seen in Fig. 6.

A. Further Remarks

From the numerical experiments, it appears that the determin-
istic MMSE update results in fast convergence to an optimal
set of signatures. However, we must keep in mind that a prac-
tical implementation of the MMSE algorithm will rely on sto-
chastic receiver measurements and adaptive implementations of
the MMSE receiver filter. Stochastic convergence of an MMSE
update algorithm needs to be examined. Practice also dictates
that the feedback transmission of filter coefficients to the trans-
mitter must not require excessive bandwidth. These concerns
will need to be addressed for signature optimization to be useful
in practical systems. An intriguing aspect of the MMSE update
is that the basic approach extends readily to systems with mul-
tiple receivers. However, in this case, appropriate objectives for
signature optimization for an ensemble of users must be formu-
lated.

APPENDIX

ADDITIONAL PROOFS

Proof of Theorem 1:From (18) and (22), we observe that
TSC iff

(34)

Since is symmetric and positive definite we can write
with being the diagonal matrix of eigenvalues of

and with the columns of being the orthonormal eigenvec-
tors of the same matrix. Since and

, by defining , we see thatTSC TSC iff

(35)

Since , we can employ the Cauchy–Schwarz inequality
to write

(36)

Once again, we use the Cauchy–Schwarz inequality to find that

(37)

Applying (36) and (37) in succession yields

(38)

Thus, we have shownTSC TSC. Note that inequalities (36)
and (37) are equalities iff or, equivalently,
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. That is,TSC TSC is satisfied with equality iff the
normalized MMSE operation on yields .

Proof of Theorem 2:We will only show that

(39)

The second inequality in Theorem 2 follows from the determi-
nant equality . Assume for the
time being that . We will treat the case of sepa-
rately at the end.

By defining , the right-hand side of (39)
can be written as

(40)

Similarly, the left-hand side of (39) can be written as

(41)

where is given by (20). Thus, (39) holds iff

(42)

Applying from (20) with , we must show
that

(43)

Let us denote , where diagonal matrix
contains the eigenvalues of and con-

tains the eigenvectors of as its columns. Defining
, we can write (43) as

(44)

Thus, in order to prove (39) and therefore the claims of The-
orem 2 for , we have to prove (44). To do so, we use the
following Lemma which is proved immediately following this
proof.

Lemma 3: Let be a discrete random variable with finite
range . If and are both nonincreasing
functions or and are both nondecreasing functions, then

(45)

Since , we can define a discrete random variable
such that

otherwise.
(46)

Thus, (44) is true iff

(47)

which follows from Lemma 3.
Thus far, we proved (39) for . Let us denote the eigen-

values of by and the eigenvalues of by
. Thus, both sides of (39) can be represented as

(48)

Note that both and are continuous functions of. In
particular, they are th-order polynomials in . Similarly,
defined as is also an th-order polynomial
function of and is continuous. We have already proved that

for . From the continuity of we must have
, proving the desired result.

Proof of Lemma 3:We will prove the lemma by induc-
tion on . When , , and the claim holds triv-
ially. Assume the claim holds for any discrete random variable
with range and let be a random variable with
range . Without loss of generality, we can assume

. Defining , , and
we can write

(49)

By our induction hypothesis

(50)

(51)

(52)

Note that for all . If and are both nonin-
creasing, and for all . In this case,

and . This implies

(53)

and thus the claim follows. If and are both nonde-
creasing, and for all . In this case,

and . Thus, (53) remains true and the claim
follows.

Proof of Theorem 3:Rewriting (32) in a matrix form, we
obtain

(54)



ULUKUS AND YATES: CONSTRUCTION OF OPTIMUM SIGNATURE SEQUENCE SETS IN CDMA SYSTEMS 1997

where . Multiplying (54) from left by
yields

(55)

If the algorithm is started with linearly independent vectors
, then by Corollary 3, will be invertible. Multiplying

both sides of (55) with yields

(56)

Thus, is a diagonal matrix. By the nature of the algorithm,
for all , and the diagonal elements of are all

unity. Therefore, we have .

Proof of Lemma 1:Let us denote as which is par-
titioned into orthogonal subsets , , as

so that for . Suppose we up-
date in to in the current iteration. From (30), the new
signature sequence is

(57)

where is chosen to normalizeto unit length, and

(58)

We define . Since (57) says that ,
we have that . We observe that and
commute, and that . Thus, . Since
is invertible, it follows that . This implies that the
span of is unchanged. Now note that for ,

; hence, . Therefore, for

(59)

which proves that the new signatureis also orthogonal to all
for . Repeated application of this result yields the desired
result.

Proof of Theorem 4:We note that we can write
. Since a signature is an eigenvector

of with eigenvalue and is orthogonal to all signatures
not in , we have

(60)

Since every eigenvector of with nonzero eigenvalue is a
linear combination of columns of , every nonzero eigenvalue
of is . Since has rank , the eigenvalue has mul-
tiplicity and the eigenvalue has multiplicity of .
Using

one finds . The TSC of the subset is

TSC

which is lower than the TSC of any other matrix which
contains signature sequences and has rank. This can be
seen by first noting that for any other having unit-en-
ergy signature sequences and a rank of, the set of eigen-
values of has the form where

there are nonzero eigenvalues and zero eigenvalues
with . Now, the TSC of set is

TSC

We define a random variable which takes values of for
with probability . Then, the simple in-

equality is equivalent toTSC TSC . This
inequality is satisfied with equality iff is deterministic, i.e.,
all are equal. When they are equal, they must all be equal to

since .

Proof of Lemma 2:The TSC of the set is equal to the sum
of the TSCs of the orthogonal subsets since for

TSC

(61)
since the eigenvalues of are and with multi-
plicities of and , as stated in Theorem 4. Similar
to the proof of Theorem 4, define a random variablewhich
takes the values of for with probability

for . Note that , by The-
orem 4. Then, TSC follows from ;
and TSC iff is deterministic, i.e., iff all
coincide.

REFERENCES

[1] S. Ulukus, “Power control, multiuser detection and interference avoid-
ance in CDMA systems,” Ph.D. dissertation, Dept. Elec. Comput, Eng.,
Rutgers Univ., Piscataway, NJ, July 1998. Available: [Online] http://
www.research.att.com/~ulukus.

[2] S. Ulukus and R. D. Yates, “Iterative signature adaptation for capacity
maximization of CDMA systems,” in36th Annu. Allerton Conf. Com-
munications, Control and Computing, Sept. 1998.

[3] S. Verdú,Multiuser Detection. Cambridge, U.K.: Cambridge Univ.
Press, 1998.

[4] , “Capacity region of Gaussian CDMA channels: The symbol-syn-
chronous case,” in24th Allerton Conf. Communication, Control and
Computing, Oct. 1986, pp. 1025–1034.

[5] S. Verdú and S. Shamai (Shitz), “Spectral efficiency of CDMA with
random spreading,”IEEE Tran. Inform. Theory, vol. 45, pp. 622–640,
Mar. 1999.

[6] P. Viswanath and V. Anantharam, “Optimal sequences and sum capacity
of synchronous CDMA systems,”IEEE Trans. Inform. Theory, vol. 45,
pp. 1984–1991, Sept. 1999.

[7] M. Rupf and J. L. Massey, “Optimum sequence multisets for syn-
chronous code-division multiple-access channels,”IEEE Trans. Inform.
Theory, vol. 40, pp. 1261–1266, July 1994.

[8] P. Viswanath, V. Anantharam, and D. Tse, “Optimal sequences, power
control, and user capacity of synchronous CDMA systems with linear
MMSE multiuser receivers,”IEEE Trans. Inform. Theory, vol. 45, pp.
1968–1983, Sept. 1999.

[9] Z. Xie, R. T. Short, and C. K. Rushforth, “A family of suboptimum de-
tectors for coherent multiuser communications,”IEEE J. Select. Areas
Commun., vol. 8, pp. 683–690, May 1990.

[10] U. Madhow and M. L. Honig, “MMSE interference suppression for di-
rect-sequence spread-spectrum CDMA,”IEEE Trans. Commun., vol.
42, pp. 3178–3188, Dec. 1994.

[11] P. B. Rapajic and B. S. Vucetic, “Linear adaptive transmitter-re-
ceiver structures for asynchronous CDMA systems,”Europ. Trans.
Telecommun., vol. 6, no. 1, pp. 21–27, Jan./Feb. 1995.

[12] B. R. Vojcic and W. M. Jang, “Transmitter precoding in synchronous
multiuser communications,”IEEE Trans. Commun., vol. 46, pp.
1346–1355, Oct. 1998.



1998 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001

[13] W. M. Jang, B. R. Vojcic, and R. L. Pickholtz, “Joint transmitter–re-
ceiver optimization in synchronous multiuser communications over
multipath channels,”IEEE Trans. Commun., vol. 46, pp. 269–278,
Feb. 1998.

[14] D. Gerlach and A. Paulraj, “Adaptive transmitting antenna arrays with
feedback,”IEEE Signal Processing Lett., vol. 1, pp. 150–152, Oct.
1994.

[15] , “Adaptive transmitting antenna methods for multipath environ-
ments,” inProc. IEEE Global Telecommun. Conf., 1994, pp. 425–429.

[16] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit beam-
forming for cellular communication systems,” inProc. Conf. Informa-
tion Sciences and Systems, 1997, pp. 92–97.

[17] J.-H. Chang, L. Tassiulas, and F. Rashid-Farrokhi, “Joint transmitter and
receiver beamforming for maximum capacity in spatial division multi-
access,” inProc. 35th Annu. Allerton Conf. Communications, Control
and Computing, 1997, pp. 93–101.

[18] E. Visotsky and U. Madhow, “Optimum beamforming using transmit
antenna arrays,” inProc. IEEE Vehicular Technology Conf., May 1999,
pp. 851–856.

[19] L. R. Welch, “Lower bounds on the maximum cross correlation of sig-
nals,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 397–399, May 1974.

[20] J. L. Massey, “Welch’s bound for the correlation of a sequence set,” in
Proc. IEEE Int. Symp. Information Theory, 1991, p. 385.

[21] J. L . Massey and T. Mittelholzer, “Welch’s bound and sequence sets
for code-division multiple-access systems.,” inSequences IL Methods
in Communication, Security and Computer Science, R. Capocelli, A. De
Santis, and U. Vaccaro., Eds. New York: Springer-Verlag, 1991.

[22] M. Honig, U. Madhow, and S. Verdú, “Blind adaptive multiuser detec-
tion,” IEEE Trans. Inform. Theory, vol. 41, pp. 944–960, July 1995.

[23] P. B. Rapajic and B. S. Vucetic, “Adaptive receiver structures for asyn-
chronous CDMA systems.,”IEEE J. Select. Areas Commun., vol. 12,
pp. 685–697, May 1994.

[24] M. Abdulrahman, A. U. H. Sheikh, and D. D. Falconer, “Decision feed-
back equalization for CDMA in indoor wireless communications,”IEEE
J. Select. Areas Commun., vol. 12, pp. 698–706, May 1994.

[25] S. L. Miller, “An adaptive direct-sequence code-division multiple-access
receiver for multiuser interference rejection,”IEEE Trans. Commun.,
vol. 43, pp. 1746–1755, Feb./Mar./Apr. 1995.


