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Abstract—Recently, optimum signature sequence sets that max- and can be represented Byorthonormal basis waveforms [3,
imize the capacity of single-cell synchronous code division multiple Sec. 2.3.6Kv;(t) !}Ll such that
access (CDMA) systems have been identified. Optimum signature =

sequences minimize the total squared correlation (TSC); they form N

a set of orthogonal sequences, if the number of users is less than si(t) = Z $i%; ()

or equal to the processing gain, and a set of Welch bound equality J=1

(WBE) sequences, otherwise. We present an algorithm where users )
update their transmitter signature sequences sequentially, in adis- wWhere s;; = (s;(¢), 1;(¢)). In standard CDMA notation,

tributed fashion, by using available receiver measurements. We {z/;j(t)}]f.\’zl could be chosen as the shifted versions of the
show that each update decreases the TSC of the set, and produceggsic chip waveform by multiples of the chip duration [3, Secs.

better signature sequence sets progressively. We prove that the al-; 3 5 24 5 9 2], Projecting the received signal onto these basis
gorithm converges to a set of orthogonal signature sequences when

the number of users is less than or equal to the processing gain. We Waveforms yields a set of sufficient Stat'_St!{35j j=1 Where

observe and conjecture that the algorithm converges to a WBE set 7; = (7(%), ¥;(t)) [3, Sec. 2.9.2]. By defining theignature

when the number of users is greater than the processing gain. At sequencef useri ass; = [s;1, ..., s;y]' and the received

each step, the algorithm replaces one signature sequence from thesjgnal vectorr = [ri, ..., 7~]", we can write (1) in the

set with the normalized minimum mean squared error (MMSE) re- . . '

ceiver corresponding to that signature sequence. Since the MMSE equivalent vector notation

filter can be obtained by a distributed algorithm for each user, the K

proposed algorithm is amenable to distributed implementation. r= Z /Dibis; +n. @)
Index Terms—Code division multiple access (CDMA), dis- i=1

tributed interference avoidance, minimum mean squared error Note thatn is a zero mean Gaussian random vector with
(MMSE), optimum signature sequence sets, Welch bound equality Elnn'"] = o%Iy, wherelIy denotes theV x N identity
(WBE) sequences. matrix " A

The information-theoreticcapacity region of a single-cell
I. INTRODUCTION synchronous CDMA system was derived in [4] (see also [5]).

E consider the uplink of a single-cell synchronouén i_mportant measure of overall _information capacity of a
Wcode division multiple access (CDMA) system witHnultiaccess channel is ttsemcapacity [4]
K users and processing gaM. In the presence of additive 1 —2 T
white Gaussian noise (AWGN)(¢) with zero mean and power Coum = 2 logldet(Iy +0™"SPS )] 3)
spectral density?, the received signal in one symbol intervajyhere§ = [81, ..., 8x] is anN x K matrix with the users’
is [3, Sec. 2.1] signature sequences as its columnsBnd diag{pi, ..., px’}
X isaK x K diagonal matrix of the usersér(:ceived powers. Note
that it will be convenient to use the mati$kas a notation for the
rt) = Z Vpibisi(t) +n(?) @ setof column vectors of5. For example, we may write € S
whens is a column ofS.
where, for uset, p; is the received poweb; is the information ~ When the received powers of the users are the same,p
symbol with zero mean and varianégb?] = 1, ands;(¢) is for all ¢, (3) reduces to

=1

the signature waveform. The signature waveforms of the users, 1 p -
which are zero outside the symbol interval, have unit energies, Coum =5 log [det (IN +t3 S8 )}
1
. . . . =-log [det (IK + L2 STS)} 4)
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that the sum capacity is maximized if the signature sequend®aference [11] assumes that the receiver filter of the desired
are chosen such that, ¥ < N user at the base station is updated to be the MMSE filter
corresponding to the current signature sequence of the user

-
5 85=1Ig ®) instantaneously, and presents an algorithm where the signature

andif K > N sequence of the desired user is updated to be the normalized
MMSE receiver filter given the signature sequences and the

SST = K In. (6) powers of all of the interfering users. This signature sequence

N update combined with the simultaneous update of the receiver

The signature sequence sets satisfying (5) confsinor- filter to the corresponding MMSE receiver is shown to decrease
thonormal signature sequencesNndimensional vector space.the MSE of the desired user. The significant difference between
The sequence sets satisfying (6) are named Welch bouhe approach of [11] and this paper is that we consider the joint
equality (WBE) sequence sets in [7], because they satisfy thetimization of all users’ signature sequences and receiver
Welch bound on the sum of the squares of the cross correlatiditters with the intent of finding signature sequences that are
of unit energy sequences with equality. Note that there aag optimumensemblefor all users. We note, however, that
infinitely many sets of sequences satisfying (5) or (6) in th@though they address fundamentally different problems, a
continuousR® space. single signature sequence update of [11] and that of this paper
In [8], the usercapacity of a single-cell synchronous CDMAare essentially the same.
system is defined as the maximum number of admissible usersA related topic to signature sequence design is transmitter
given the processing gaiN, and a common signal to interfer-precoding [12]. In transmitter precoding, the transmit signals
ence ratio (SIR) targe®; K users are said to be admissible ifntended for multiple users are passed through a linear trans-
there exist positive powers and signature sequencgssuch formation at the common transmitter (base station) to minimize
that all users have SIRs that are at least as large as the targettBéRMAI at the remote receivers (users). Transmitter precoding
3. The user capacity of a CDMA system was found for two kindgssumes that the symbols of the users on the downlink are al-
of linear receiver structures in [8]: matched filters and minimumeady modulated with some linearly independent signature se-
mean squared error (MMSE) filters [9], [10]. In both cases, thguences, and essentially undoes the cross correlation introduced
user capacity of a single-cell synchronous CDMA system wéhy the nonorthogonality of these signature sequences. The op-
found to be timum linear transformation was found to be the inverse of the
1 cross correlation matrix in [12]. Intrinsically, [12] assumes that
K<N <1 + —) . (7) the number of users is less than the processing gain, so that this
p cross-correlation matrix is invertible. Receiver optimization in
It was shown in [8] that the user capacity is maximized if theonjunction with transmitter precoding was studied in [13].
signature sequence set is chosen to satisfy &) N and (6) It is worth mentioning that transmitter beamforming in sys-
if K > N, and if the received powers of the users are chost@ms with multielement transmit antenna arrays [14]-[18] is
to be the same for all users, for both MMSE and matched-filtéiso related to signature sequence design. In transmit beam-
receivers cases. This is expected since when signature sequel@gding, the transmitter signal out of the multielement antenna
satisfy (5), or when they satisfy (6) apd = p for all 7, the array is processespatiallyto decrease the MAI at the receiver
MMSE receivers reduce to matched filters [8]. Therefore, &ites. A fundamental difference between transmit beamforming
important consequence of [8] is that once the optimum signatifgnultielement antenna systems and signature sequence design
sequences are used, the optimum linear receiver filter selectidBi"DMA systems is that the signature sequences of the users
is simplified: matched filters are optimum linear receiver filterdn CDMA systems are created and therefore can be fully con-
The aim of this paper is to develop a simple iterative arigolled by the transmitter. The spatial signatures in multielement
distributed algorithm that uses receiver measurements to adaiienna systems, on the other hand, are created by the wire-
transmitter signatures. We describe an algorithm that converdss communication channel and cannot be directly controlled
to an optimum signature sequence set (an orthonormal setliyrthe transmitters. The transmitters can control the transmit
K < N and a WBE set foil > N) for arbitrary X andN [1], beamforming weights, though, to improve the quality of com-
[2]. WhenK < N, a simple Gram-Schmidt orthogonalizatiormunication metrics such as the MSE or the SIR at the receiver.
procedure can be used to obtdihorthonormal vectors starting References [14], [15] study the transmit beamforming problem,
with K linearly independent vectors, yielding an optimum sigvhereas [16]-{18] study transmit beamforming in combination
nature sequence set. Unfortunately, this does not have a dititth transmit power control.
generalization to the cadé > N. In the following section, first we relate the Welch bound to the
The idea that the transmitter signature sequences mayaggimum signature sequence set design problem. In Section IIl,
changed according to multiaccess interference (MAI) condike will make some simple observations which will be the basis
tions has also been presented in [11]. Reference [11] studd$¢he iterative algorithm that will be given in Section IV.
the problem of finding jointly optimum transmitter signature
sequence and the receiver filter ofs'mgle_user in a system II..WELCH BOUND AND THE TOTAL SQUARED CORRELATION
where the powers of all users and the signature sequences of
all interfering users are assumed to be fixed. The mean square@welch developed lower bounds for tRenth power of the
error (MSE) of this user is taken to be the optimality criteriormaximum correlation among a set &f unit energy vectors
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[19]. These lower bounds were actually obtained from the lowerIn this paper, we will construct an iterative algorithm to min-

bound imize TSC. The algorithm will update the signature sequences
K K e of the users sequentially, updating only one signature sequence
Z Z(sjsj)znl > 8) aF a time, in a way that is guaranteed to decrease (more pre-
o1 =1 (trmeh cisely, notto increase) the TSC after every update. Although one

) can find many possible signature sequence update mechanisms
on the sum of themth powers of the correlations of a sequencgyr TSC reduction, we will concentrate on a particular method
set. Whemn = 1, the Welch bound (8) reduces to the followingnat we call theMMSE updatein the MMSE update, one of

bound on the TSC: the K signature sequences in the set is replaced with the nor-
K K K? malized MMSE receiver filter corresponding to that signature

TSC= Z Z(S;rsj)Q > N (9) sequence. We will show that the set after the update will have a

i=1 j=1 lower TSC compared to the set before the update. We focus on

For a simple derivation of the bound (9), see [20], [21]. We not8® MMSE update because the MMSE receiver filter is partic-
that the Welch bound (9) is loose fé&f < N. WhenK < N, ularly well studied and understood in the context of multiuser
the minimum value TSG= K is achieved byK orthonormal Signal detection [3]. Although the MMSE update algorithm that

vectors and the Welch lower bourfd?/N is not achievable. We propose and analyze is deterministic, it is motivated by the
On the other hand, whei& > N, the Welch bound can be Possibility of adaptive [10] and even blind [22] implementations

achieved and the sets of unit energy vectors satisfying (6) &the MMSE update.

precisely those achieving the bound [20], [21]. For genéfal

and N, we can conclude that optimum signature sequence sets, Ill. TSC REDUCTION
the signature sequence sets satisfying (S)Hox. IV and (6)  Given a set of signatures represented by the columns of the
for K > N, are those that achieve the minimum TSC. matrix S = [s1, ... 8], we first separate the TSC terms that

The TSC can also be related to the total MSE in the systefiepend on a particular signature sequesicby writing
Assume that the signature sequences of the users; ate—

1, ..., K, thesignals of the users at the base station are received T T -
by matched filters, ang; = p. In this case, from the received TSC= (81 81)" + 28, Z 8;8; | sx+n  (16)
signalr given in (2), the MSE for théth user is g7k
h
MSE; = E [(r"s; — b;)?] oy "
K =2 (s78)’ a7
=3/ |pD_ s8] +0°In |8 —2/ps s +1. (11) ik Ak
=1 represents the squared correlation terms that do not depend on
The total MSE in the system is 8. Since we will always restrict ourselves to unit energy signa-
p ture sequences, i.&, 8, = 1, we can ad®a?s, s;, and sub-
o .
MSE — Z MSE; (12) tract2a” in (16) to obtain
i=1 TSC=2s; A8, + v + 1 — 2a° (18)
K K K
=p> > (88— (2p-0%))_ 8] s+K. (13) where
==t ] . ) =t ] ) A, = Z SjS;»r + CLQIN. (19)
We observe that the first term in (13) is the TSC. Since the sig- ik

nature sequences are restricted to be of unit energy, we see that . ) .
Let us replace the signature sequence of &sgith the unit

MSE = pTSC+ (1 + ¢° — 2/p) K. (14) energy vector
Therefore, minimizing TSC subject & s; = 1 is equivalent A lsy,
to minimizing MSE subject to the same constraint, and the se- Gk = (SZ'A’:2Sk)1/2' (20)

guence sets satisfying (5) féf < N, and (6) forK” > N mini- _ _ _
mize the MSE as well. In other words, orthogonal sequences fdtis maps the set of signature sequenés a new set of sig-
K < N and WBE sequences féf > N are theglobal optimal natures

solutions of the following two equivalent problems: 5=[a Su_1 G Spa1 oo x| 21)
Pl min  TSC Note thaicy, is the normalized MMSE filter for user[9], [10].
st slsi=1, i=1,..., K Also note that this MMSE filter is a generalized owg;is the

P2 min MSE normalized MMSE filter for usek in a CDMA system where

(15) all other users have unit received power and the variance of
the AWGN isa?. It will be apparent in what follows that any

When the TSC reaches its minimum value, we will have reachgdneralized normalized MMSE filter will be as good as any

the optimum signature sequence set. other in terms of constructing optimum sequences. The MMSE

s.t. s'8=1 i=1,..., K.
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filter coefficients in (20) can be obtained using an adaptive [10§,(0) = [8:(0), ..., 8x(0)] at time0. At iterationn + 1, the

[23]-[25] or a blind [22] algorithm. algorithm replaces the vecto$(n) = [s1(n), ..., sx(n)]
The motivation for replacing;. with ¢, follows from the ob- with their corresponding normalized MMSE filters one by one,

jective of the MMSE filter. Compared to the matched filter, thand yields

MMSE filter is designed to have lower cross correlation with S 1 1 ’ 1

the signature sequences of the other users, thereby suppressing (nt1)=lsn+1), ..., sxc(n+ 1))

the interference. Note that by the nature of the mapping in (2@ .complete iteration include&” intermediate steps. At theth

cchk = skTsk = 1. Thus, from (18) and (20), the modified sig-intermediate step in iteratiom+ 1, the firstk — 1 vectors have

nature sefS has total squared correlation already been updated and the current vector set is
1
TSC= 27;4 byt 1 - 242 (2 Seilntl=lalnt1) - s+l
8, Ak 8 Sk(TL) 8k+1(7’L) s 8[((71)]. (23)

The following theorem verifies that replacing a particular s§ye update the signatueg, employing the matrix
guence with its normalized MMSE receiver cannot increase the

total squared correlation of the set. In other words, in terms e (n+1) Z 8;(n+1)s] (n+1) +Z s;(n)s; (n)+a’Iy.

the TSC (or MSE) criteria$ is a “better” set of signature se- i<k >k

quences thai$. (24)
Theorem 1: The MMSE signature updats, — ¢, reduces In particular, thekth signature is updated according to

the total squgred correlatioRnSC < TSC. The equalitf SC= B Ai(n+1)"1s(n)

TSC occurs iffe;, = 8y si(n+1) = s (25)

s (n)Ax(n + 1) 28 (n)]1/2
Proof of Theorem 1, as well as proofs of all subsequent thegyield the vector set
rems and lemmas, can be found in the Appendix. It was shown
in [11] thate;, from (20) witha? = o2 decreased the MSE of Sk(n+1) =[si(n +1) -+ sr_1(n+1)
userk at the output of the MMSE filter receiver corresponding to sp(n+1) sppi(n) -+ sg(n). (26)
transmit signaturey.. In fact, it is also true that;, decreases the . . .
MSE of user: with a matched-filter receiver in place, as define To examine the convergence of this proposed alg(_)rlthm, let
by (11). Itis interesting to note, however, that the MMSE update SCi(n) deno.te.the TSC of the.s.é‘tk(n) after thekth inter-
may increase or decrease the MSE of any other individual u g'aﬁﬁ’tep Iorl] |:ce_trat|9[n I? add',tt"sf’n’ le;\TS(C”) denote thef
while being guaranteed to decrease the total MSE of the sys eo?em elevr\l/e ﬁ;vir?diof (())r se I(?)— 15 aconsequence o
by Theorem 1 and (14). ’ DR
The following theorem states another significant property of TSGiy1(n) < TSGu(n). 27)

the MMSE update. _ L
By recursive application of (27) we have

Theorem 2:For anyz > 0

TSCn+ 1) < TSC(n). (28)
QaT T
det (xIN +55 ) 2 det (xIN +55 ) For anyK andN, TSC is lower-bounded by the Welch bound
det (a:IK +§T§) > det (a:IK +STS). K?/N. Therefore, the monotonically decreasing sequence

TSC(n) converges. This implies that at the fixed point where
TSC(n 4+ 1) = TSC(n) we must have

Corollary 1: The MMSE signature update, — ¢ in- TS +1) =TSCk(n+1) = TSCx1(n +1) =
creases the sum capacity. =TSC(n+1) =TSCn). (29)

Corollary 1 readily follows from Theorem 2 by choosing=  From Theorem 1, this occurs i (n + 1) = sx(n) for all k.
o2 /p and the monotonicity of thibg function. Therefore, we Thus, at the fixed point we must have
observe from Theorem 1 and Corollary 1 that the MMSE update, S N=§ N=§
when executed by the users sequentially, decreases the TSC and (n+1) w(n+1) (n)
the MSE monotonically and increas€s,,, monotonically. In for all &.
other words, the signature sequence set after each update isleet us denote the fixed-point set of vectors by the mairix

A simple consequence of Theorem 2 is the following.

“better” set not only in terms of the TSC and the MSE, but ifs1, - .., sx]. For evaluation of the fixed point, it will prove
terms of the sum capacity as well. convenient to write the MMSE update of (20) in the form
B_lsk
V. CONVERGENCE OF ANITERATIVE ALGORITHM (81 B™%8;,)1/2

We have observed in the previous section that given a sgtere
of unit energy vectors, if any one of these vectors is replaced
with the corresponding normalized MMSE vector, then the B = Z 3}3 +aIy = 88" +d’Iy. (31)
TSC of the set decreases. We start wifhunit length vectors
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Therefore, the fixed poin satisfiesB™'s; = x;s; or, equiva- S of the MMSE algorithm. We will assume in the following
lently, Bs; = s;/x;. It follows from (31) that discussion tha(0) has rank¥, so that by Corollary 4, the
. ) fixed pointS has ranky.
8i = ¢isi, i=1,..., K (32) From (32),@ is the eigenvalue of the eigenveckgof SST.
That is, at the fixed point, eack is an eigenvector o§S". SinceSS " is real and symmetrigy; # ¢ impliess; ands; are
In the following, we will investigate the properties of the fixedrthogonal. That is, the distinct elgenvalues% define an

point for the cased < N andK > N separately. We will orthogonal partition of. SinceSS " is N x N, we let{w;}-,
need the following claim. denote itsl, < N distinct eigenvalues. We ush to denote the

) ) N x K; matrix whosek; columns are the signature sequences
Corollary 2: If the signatures;. is replaced by, at stepk  ith common eigenvalue;. Since each user must belong to one

of iterationn, then subset, we hav®r_, K; = K. Let N; denote the rank af;.
a) det(S},1(n)Sk41(n)) > det(S) (n)Sk(n)) Since we assume th&t0) is full rank, § must be full rank as

well, and we must hav® =, N, = N.
b) det(Si41(n)8 )41 (1)) > det(Si(n)S), (n)). R N
Corollary 2 readily follows from Theorem 2 by choosing-= 0.
Corollary 2 a) implies that iflet (ST (0)S(0)) > 0, then at the
fixed point,det(S "' 8) > 0. Similarly, Corollary 2 b) says that
if det(8(0)ST(0)) > 0, then at the fixed pointlet(SS™) > 0
Although these results are valid whethlér< N or K > N,
their utility depends o’ and N. The following corollaries  Theorem 4 says that, whét > N, the properties of the con-
which are immediate consequences of Corollary 2 will be usefugrgence point signature sequence set depend on whether they
in the discussion of the convergence of the MMSE algorithmare partitioned into orthogonal subsets, and the condition that
Corollary 3: If K < N andST(O)S(O) has rankic, then for the initial S|_gr_1ature sequence set must have full rank is necessary
T ) T but not sufficient to ensure convergence to a WBE set. A simple
alln, 8" (n)S(n) has rankk, and at the fixed point§ " S has X ; S
consequence of Theorem 4 is that if the convergence point sig-
rank K. .
nature sequence set does not include any orthogonal subsets,
Corollary 4: If K > N andS(0)8 T (0) has rankV, then for then the algorithm has converged to a WBE set, as stated in the
all n, §(n)S" (n) has rank¥, and at the fixed poini$§ " has following corollary.

rank . Corollary 5: If K > N, and the fixed poinfS is not parti-
Corollaries 3 and 4 ensure thatd{0) is full rank, then the tioned, thenSS "' = (K/N)I .

fixed pointS'is full rank. ForK < N, this leads to the following

result.

Theorem 4: For each, the matrixSlSlT has eigenvalues of
K; /Ny ando with multiplicities of V; and N — N, respectively.
The signature sequencesSpconstitute a WBE set, in the sense
that, for K; signatures occupying/; signal space dimensions,
they achieve the Welch bourdd? /N; on TSC with equality.

Corollary 5 follows from the fact that afy x N symmetric
matrix with all of its N eigenvalues equal t&/N must be
Theorem 3:If K < N andS(0) has ranki(, then atthe fixed (K/N)Iy.
point If the fixed-point signature sequence set contains orthogonal
- partitions, then the algorithm might have converged to a subop-
S5 §=1Ik. (33)  timum point. That is, an orthogonally partitioned set, in general,
has a larger TSC than a WBE set. As stated in the following
Theorem 3 simply says that wheéi < N, the signature se- lemma, whenk > N, an orthogonally partitioned signature
guences converge to an orthonormal set. The only condition Egquence set is strictly suboptimal, unless the particular orthog-
this to happen is that the algorithm must be started with a fulhal partition happens to satisfy the “equal loading” condition,
rank signature sequence set. i.e., the number of users in each subset is proportional to the di-
We also see in Theorem 3 that the MMSE update algoiensionality of the subset.
rithm looks to move the users’ signatures toward orthogonal
subspaces. We will say th& is partitioned into orthogonal
subsetsSy, ..., 8y, or simply partitioned if we can order
the signatures of so as to writeS = [S1|82|---|SL] where
fori # j, S S; = 0. In the next claim, we observe that the
MMSE algonthm preserves a partition of the signature set.

Lemma 2: If the convergence point signature sequencesset
is partitioned intaL orthogonal subsets witK; users and rank
N, for subset, then the TSC of this set is larger than or equal
to K% /N, the TSC achievable with a WBE set. The TSC equals
K?/N iff K;/N, = K/N foralll.

Lemma 1:1f §(0) is partitioned intoS,(0), ..., 5.(0), V. CONJECTURE OBSERVATIONS AND CONCLUSION
then, for alln, S(n) is partitioned a$S1(n)|---|Sr(n)] such

that for eacH, spanSi(n) = spanS;(0). Because the MMSE algorithm is completely deterministic,

whether the convergence point signature sequence set contains
For K < N, the property that the MMSE update preservesrthogonal partitions or not depends only on the initial signature

partitions plays no role since the eventual fixed point hagquence sef(0).

every signature in an orthogonal subspace. WRep N, the In this section, we describe our experiments with MMSE

preservation of partitions complicates the description of trsiggnature update. We will see that our experimental evidence

fixed points. ForK > N, we now characterize the fixed pointencourages us to believe that if the initial signature sequence
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3 ‘ : . : - . — 10 T . T . T T : T ,
——  min. and max. e.v. of §8 for K=5 ol ——  min. and max. e.v. of S i
N ---  min. and max. e.v. of §S for K=10 - KN
25 - 1 4
8 |
o ks,
% 2 i
B 2 4 k]
0 0
E A -
o ©
> 3
= =4
() @
3 o; K=50
g g 0
h=] o =
s 1 2 K=40
e ¢ 3k NS -
g £ K=30
0.5 ] =20
1 L)
!
/
ob=' . ) . : . . : . . 0 . s : . . . . : .
0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
iteration (n) iteration (n)
Fig. 1. Minimum and maximum eigenvalues of matfiX (n)S(n). Fig. 3. Minimum and maximum eigenvalues of matfixn)S ™ (n).
20 ‘ : . . i : : . . 350 . T T T T T : : T
—— TSC — TC
18 K 200 K#/N
16 4
K=50
,-é‘m 4 "%
0 "o 2001 J
(%)
L12 4 T \¥
it Q
S g B
n w150 K=40
Q 10 (o]
A (2]
- K=10 =
ol 1oof\¥
K=30
6_ | 50 .......
) K=20
4+ K=5 1
. ‘ . . . . ) . . 0 . . . L ! ! . . .
0 1 2 3 4 5 6 7 8 9 10 0 i 2 8 4 5 6 7 8 9 10
iteration (n) iteration (n)
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setS(0) is not partitioned then the signature sequence set waktquences is also satisfied with probability one wis¢a) is
never, including the fixed point, be partitioned. Although wereated randomly.
have observed this through a substantial number of experimentd/e now present some simple numerical results to verify our
we have not been able to prove it formally. Therefore, we makaalysis and support our conjecture. We take the processing gain
the conjecture below. to be N = 10. The initial signature sequences are created ran-
domly. In all the figures /X updates take place between itera-
tionsn and(n + 1). In each update, thih user’s signature se-
guence is replaced with the corresponding normalized MMSE
If the above conjecture is true, the fact that we have nevidter, for ¢ = 1, ..., K. Figs. 1 and 2 show the minimum and
observed orthogonal partitioning of the signature set at theaximum eigenvalues of the mati$k' (n)S(n), and TSGn),
fixed point in our experiments when we started our algorithmespectively, as a function of the iteration index for number of
with randomly generated signature sequence®is under- userskK = 5, 10. As expected, the minimum and maximum
standable. Because, when we view the initial set of signatugigenvalues of ' (n)S(n) converge td implying that the ma-
seguences as a set of continuous random vectors, the probalitikyconverges t8 'S = I, and the TSC converges 16.
that it has orthogonal subsets is zero. Also worth mentioning isFigs. 3 and 4 show the minimum and maximum eigenvalues
the fact that, as in the case of orthogonal partitioning problewf, the matrix $(n)S" (n) and TSGn), respectively, for a
when the initial set is created randomly, the probability thatumber of userdd = 20, 30, 40, 50. As expected, the min-
the matricesS'(0)S(0) for K < N and §(0)S'(0) for imum and maximum eigenvalues of the mat§¥n)S ' (n)
K > N will have nonfull rank is zero. Thus, the condition thatonverge to K/N implying that the matrix converges to
S(0) must havemin{K, N} linearly independent signature§S' = (K/N)I, and the TSC converges /N .

Conjecture 1: ForK > N, 8(n)forall n, and the fixed point
S = lim,, .., S(n), is partitioned only ifS(0) is partitioned.
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S — ‘ ' ' ' ———— ' sequence set achieving a TSCKf /N, = 15%/5 = 45, and
\ —__ min, ang max. e.v. 0; Sg forK1=10 the signature sequences B = 5 users converge to orthog-
10p TOT e andmax.e.v. of SS forKi=18 |1 g set yielding a TSC ok, = 5. Thus, the combined TSC is

) 45+ 5 = 50 which can be seen in Fig. 6.

A. Further Remarks

From the numerical experiments, it appears that the determin-
istic MMSE update results in fast convergence to an optimal
set of signatures. However, we must keep in mind that a prac-
tical implementation of the MMSE algorithm will rely on sto-
chastic receiver measurements and adaptive implementations of
the MMSE receiver filter. Stochastic convergence of an MMSE

min. and max. eigenvalues of ss’

S--TTTTTTTTTTTT oI T o update algorithm needs to be examined. Practice also dictates

of--- 1 that the feedback transmission of filter coefficients to the trans-

. : . — L — : +~——,  Mitter must not require excessive bandwidth. These concerns
iteration (n) will need to be addressed for signature optimization to be useful

in practical systems. An intriguing aspect of the MMSE update
is that the basic approach extends readily to systems with mul-
180 . . ‘ , ‘ , . . . tiple receivers. However, in this case, appropriate objectives for

— T§C signature optimization for an ensemble of users must be formu-
------- MN |1 lated.

Fig. 5. Minimum and maximum eigenvalues of matfixn)S ™ (n).
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140 ] APPENDIX
ADDITIONAL PROOFS

-

N

=]
L

Proof of Theorem 1:From (18) and (22), we observe that
TSC < TSC iff

trace(SS'SS")
]
o
\

TSC=
@
(=]
s

s A s < (skTA,ZQSk) (s Ansy) - (34)
gor K,=15 1 Sinced, is symmetric and positive definite we can wridg =
VAV T with A being the diagonal matrix of eigenvaluesyf
K,=10 and with the columns oV being the orthonormal eigenvec-
ol e . tors of the same matrix. Sincd;,* = VA™'V' and 4, % =
o2 3 e S 7 %% VATV, bydefinings = V' s, we see thaTSC < TSC iff

40 -

Fig. 6. Total squared correlation, T&E). 2" A7z < (:rTA_Q:r) (z'Ax). (35)

In the following experiment, we observe the effects of orthogincez " = 1, we can employ the Cauchy—Schwarz inequality
onal partitioning mentioned previously. The number of userstes write

K = 20 and the processing gain i§ = 10. Figs. 5 and 6 y

show the minimum and maximum eigenvalues of the matrix | — (:,;TAl/QAfl/?w) < A 2|2 A 2|2
S(n)ST(n) and TSGn), respectively. Two kinds of orthog-

onal partitioning are examined. In the first, the users are parti- = (ETA_I-'E) (z'Ax). (36)
tioned into two orthogonal subspaces with = K, = 10 and

N, = N, = 5. Since this is an “equal loading” case, the whol®nce again, we use the Cauchy—Schwarz inequality to find that
signature sequence set converges to a WBE sequence set: the ) )

matrix converges t&S' = (K/N)Iy = 2Iy and the TSC (mTA—lm) — ((A—lz)Tm) < A |2 |fz]? = 2T A 2z,
converges taK?/N = 40; see the solid curves in Fig. 5 and 37)

the curve corresponding th; = 10 in Fig. 6. In the second

orthogonal partitioning we examined, the users are partitioned . . . : .
into two orthogonal sets accordinghk = 15andK> = 5and, ﬁ\pplymg (36) and (37) in succession yields

again,N; = N, = 5. Note that this partitioning does not yield B N2 B

equal loads to both subsets and the mag)S " (n) does % A % < (-’l’TA 1-"’) (27 Az) < (f':TA 2-"’) (=7 Az).
not converge to a multiple of the identity matrix (see dashed (38)
lines in Fig. 5), and the TS@) does not decrease down to

K?/N = 40, but converges t560. Note that the signature se-Thus, we have showlSC < TSC. Note that inequalities (36)
quences of{; = 15 users in the first subset converge to a WBEnNd (37) are equalities it = /JA’lz or, equivalentlys;, =
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[JA,jlsk. That is, TSC < TSC is satisfied with equality iff the Thus, (44) is true iff

normalized MMSE operation os), yields sy. O
Proof of Theorem 2:We will only show that
det(zIy +887) > det(zIy + SST). (39)

E

<Y+x><1Y+a2>2} =4 {Ofix)} v [<Y+1a2>2}
(47)

which follows from Lemma 3.

The second inequality in Theorem 2 follows from the determi- Thus far, we proved (39) for > 0. Let us denote the eigen-

nant equalitydet(I + AB) = det(I + BA). Assume for the
time being that: > 0. We will treat the case af = 0 sepa-
rately at the end.

By defining Z;, = >
can be written as

ik

det(zIy + SST)
=det (v y + Zx + 518y, )

= det(Zk + .’L’IN) det (IN + (Zk + .’L’IN)_ISkS;—)

=det(Zy +2ln) (1 +85 (Zy +zIy) " si).  (40)
Similarly, the left-hand side of (39) can be written as
det(zIy +SST)
=det(Zy +zly) (L+el (Zy+zIy)rer)  (41)
wheregy, is given by (20). Thus, (39) holds iff
cZ(Zk +aly) e > SZ(Zk +azln) sy (42)

Applying ¢; from (20) with Ay, = Z;, + oI, we must show
that
SZ(Zk + CLQIN)_I(Zk + .’IZIN)_I(Zk + CLQIN)_IS
SZ(Zk + CLQIN)_QSk
> sy (Zy +aly)”

13k~ (43)
Let us denoteZ, = VDV, where diagonal matri) =
diag{ds, ..., dy} contains the eigenvalues &% andV con-
tains the eigenvectors d&; as its columns. Definingy =

Vs, we can write (43) as
]\T 2
w;
d; —|—x> <; (di—l-a?)?) '

N
2 m 2 (Z
(44)

Thus, in order to prove (39) and therefore the claims of The-

s;s/ , the right-hand side of (39)

values ofSST by Ar, ..., Ay and the eigenvalues &S by

i1, ---, iy - Thus, both sides of (39) can be represented as
N
f(@) = det(zly +88%) = [[(z +\)
=1
— —_—— ]\T
f(z) = det(zIy +88%) = H(a: + ). (48)
=1

Note that bothf(z) and f(z) are continuous functions af. In
particular, they arévth-order polynomials i:. Similarly, f(x)
defined asf(x) = f(z)— f(z) is also anVth-order polynomial
function of z and is continuous. We have already proved that
f(z) > 0forz > 0. From the continuity off () we must have
f(0) > 0, proving the desired result. O

Proof of Lemma 3:We will prove the lemma by induc-
tion onn. Whenn = 1, Y = w, and the claim holds triv-
ially. Assume the claim holds for any discrete random variable
with range{y:, ..., y.—1} and letY” be a random variable with
range{vi, - .., yn}. Without loss of generality, we can assume
y1 < yo < -+ < yp. Definingp,, = PY(yn)! hp = h(yn)! and
gn = 9(yn) We can write

n—1

By = (1 -p) Y 2

i=1

p gihi+pngnhn~ (49)

By our induction hypothesis
E[g(Y)h(Y)]

n 1
Pi b\ +pngnhn (50)
—1 1_pn

] Prhin)

> (1_pn)

_( [( )] pngn

B 1—pn
ElgWIERY )]+ f’;n (Elg(Y)]=gn)(ERY )] =)
(52)

+Pngnhin (51)

orem 2 forz > 0, we have to prove (44). To do so, we use thBlote thaty; < , for all 4. If g(-) andh(-) are both nonin-
following Lemma which is proved immediately following thiscreasingg; > g, andh; > h,, for all . In this caseE[g(Y)] >

proof.

Lemma 3: Let Y be a discrete random variable with finite
-, Yn}- If g(-) and h(-) are both nonincreasing

range{y1, .-

an @and E[h(Y)] > h,,. This implies

(Elg(Y)] = gn)(EMY)] = hn) 2 0 (53)

functions ory(-) andh(-) are both nondecreasing functions, the@nd thus the claim follows. If(-) and 2(-) are both nonde-

E[g(Y)h(Y)] = Elg(Y)]E[A(Y)]- (45)

Sinced", w? = 1, we can define a discrete random variable

such that

otherwise. (46)

creasingg; < g, andh; < h,, forall<. Inthis caseF[g(Y)] <
gn ANd E[L(Y)] < h,,. Thus, (53) remains true and the claim
follows. O

Proof of Theorem 3:Rewriting (32) in a matrix form, we
obtain

(SST) §=So (54)
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where® = diag{¢1, ..., ¢x }. Multiplying (54) from left by there areNl nonzero eigenvalues amd — N, zero eigenvalues
ST yields with 3= A; = K;. Now, the TSC of sef, is
Ta\2_ oT Al
(s s) = 5758 (55) TSG, = trace[(Si57 ] = 3 A2
If the algorithm is started witli( linearly independent vectors j=t
5(0), then by Corollary 3r5 S WI|| be invertible. Multiplying We define a random variabl& which takes values of; for
both sides of (55) witl{S S§)~! yields j = 1,..., N; with probability 1/N;. Then, the S|mple in-

5TS— & (56) equalityE[X?] > (E[X])? is equivalent taf SC; > TSG. This

) inequality is satisfied with equality ifX is deterministic, i.e.,
Thus STSisa diagonal matrix. By the nature of the algorithmall A; are equal When they are equal, they must all be equal to
8] s; = 1 for all 4, and the diagonal elements 8f S are all KI/NI smcezj=1 ;=K. O

unity. Therefore, we hav " § = I;. H Proof of Lemma 2: The TSC of the set is equal to the sum

Proof of Lemma 1:Let us denote§(0) asS which is par- of the TSCs of the orthogonal subsets sigeS,,, = 0 for
titioned into orthogonal subset$;, I = 1,..., L, asS = [ #m
[81]---|S.] so thatS; §,,, = 0 for I # m. Suppose we up- Lo
dates in §,,, to ¢ in the current iteration. From (30), the new TSC = trace [(SS } Z trace [ 5151 } K;

signature sequence is = = Ny
11 61
c=a"'B's (57) since the eigenvalues (.ﬂ’lSlT are K;/N; and 0 with mEJItl-)
whereq is chosen to normalizeto unit length, and plicities of N; and N — N;, as stated in Theorem 4. Similar
L to the proof of Theorem 4, define a random varialillevhich
B=S5" +a’Iy = Z 58] +a’Iy. (58) takes the values ok;/N, for I = 1, e L with probability
P N;/N forl = 1,..., L. Note that) ;" , N; = N, by The-

_ T _ orem 4. Then, TSC K?/N follows from E[X?] > (E[X])?;
We defineB,, = 5,8, +a"Iy.Since (57)saysthatBe = s, and TSC= K2/N iff X is deterministic, i.e., iff allk;/N,
we have thaivB,,Be¢ = B,,s. We observe thaB and B,, oincide. 0
commute, and thaB,,,s = Bs. Thus,aBB,,,c = Bs. SinceB
is invertible, it follows that = o' B_'s. This implies that the

span ofS,,, is unchanged. Now note that foe£ m, B,,,S; = REFERENCES
a8y, henceB;ﬁS; = a~28,. Therefore, foll # m [1] S. Ulukus, “Power control, multiuser detection and interference avoid-
ance in CDMA systems,” Ph.D. dissertation, Dept. Elec. Comput, Eng.,
¢'S, = oflsTB;lIS'l =ata2878,=0 (59) Rutgers Univ., Piscataway, NJ, July 1998. Available: [Online] http:/
www.research.att.com/~ulukus.
which proves that the new signaturis also orthogonal to a¥; [2] S. Ulukus and If? D. Yates, “Iterative sir?nature aﬁaptation f(;r capacity
P : - : maximization of CDMA systems,” i36th Annu. Allerton Conf. Com-
forl # m. Repeated application of this result yields the desired munications, Control and Compuitingept. 1998.
result. O [3] S. Verdu, Multiuser Detection Cambridge, U.K.: Cambridge Univ.
. T Press, 1998.
Proof of Theorem 4:We note that we can writd$§ = [4] —, “Capacity region of Gaussian CDMA channels: The symbol-syn-
S S’T_|_. . +5 ST Since asignature; € S; is an eigenvector chronous case,” i4th Allerton Conf. Communication, Control and
fISfS'T ith L L | di I'; ! | Il si Computing Oct. 1986, pp. 1025-1034.
0 ) with eigenvaluev; and Is orthogonal to all signatures [5] S. Verdd and S. Shamai (Shitz), “Spectral efficiency of CDMA with
not in S;, we have random spreading/[EEE Tran. Inform. Theoryvol. 45, pp. 622-640,
T T Mar. 1999.
88 s, =58, 8; = wis;. (60) [6] P.Viswanath and V. Anantharam, “Optimal sequences and sum capacity
- of synchronous CDMA systemslEEE Trans. Inform. Theorwol. 45,
Since every eigenvector &;S; with nonzero eigenvalue is a pp. 1984-1991, Sept. 1999.

linear combination of columns &, every nonzero eigenvalue 7] M. Rupf and J. L. Massey, “Optimum sequence multisets for syn-
chronous code-division multiple-access channeélsFE Trans. Inform.

of SleT isw;. SincesS; has rank\V;, the eigenvalue, has mul- Theory vol. 40, pp. 1261-1266, July 1994.
tiplicity &V; and the eigenvalué has multiplicity of N — N,. [8] P. Viswanath, V. Anantharam, and D. Tse, “Optimal sequences, power
Using control, and user capacity of synchronous CDMA systems with linear
MMSE multiuser receivers,[EEE Trans. Inform. Theorwol. 45, pp.
_ Ty _ T _ 1968-1983, Sept. 1999.
wilNy = trace(S5,8; ) = trace(S; 51) = Ki [9] Z. Xie, R. T. Short, and C. K. Rushforth, “A family of suboptimum de-
: o - tectors for coherent multiuser communication&EE J. Select. Areas
one findsw; = K;/N;. The TSC of the subsé; is Commun.vol. 8, pp. 683-690, May 1990.
T [10] U. Madhow and M. L. Honig, “MMSE interference suppression for di-
TSG = trace[(SlS' ) ] - K /Nl rect-sequence spread-spectrum CDMAEE Trans. Communvol.

. . — . 42, pp. 3178-3188, Dec. 1994.
which is lower than the TSC of any other matiy which [11] P. B. Rapajic and B. S. Vucetic, “Linear adaptive transmitter-re-

containsK; signature sequences and has ranhkThis can be ceiver structures for asynchronous CDMA systerrSiirop. Trans.
seen by first noting that for any oth&; having K; unit-en- Telecommunyol. 6, no. 1, pp. 21-27, Jan./Feb. 1995.

. d INGf th f ei [12] B. R. Vojcic and W. M. Jang, “Transmitter precoding in synchronous
ergy signature sequences and a rankVpf the set of eigen- multiuser communications,1EEE Trans. Commun.vol. 46, pp.

values ofS;S] has the form{)\;, ..., Ax,, 0, ..., 0} where 1346-1355, Oct. 1998.



1998 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001

[13] W. M. Jang, B. R. Vojcic, and R. L. Pickholtz, “Joint transmitter-re- [19] L. R. Welch, “Lower bounds on the maximum cross correlation of sig-
ceiver optimization in synchronous multiuser communications over nals,”|IEEE Trans. Inform. Theoryol. IT-20, pp. 397-399, May 1974.
multipath channels,'"EEE Trans. Commun.vol. 46, pp. 269-278, [20] J. L. Massey, “Welch’s bound for the correlation of a sequence set,” in

Feb. 1998. Proc. IEEE Int. Symp. Information TheordQ91, p. 385.

[14] D. Gerlach and A. Paulraj, “Adaptive transmitting antenna arrays with[21] J. L . Massey and T. Mittelholzer, “Welch’s bound and sequence sets
feedback,”|EEE Signal Processing Lettvol. 1, pp. 150-152, Oct. for code-division multiple-access systems.,"Saquences IL Methods
1994. in Communication, Security and Computer ScieficeCapocelli, A. De

[15] ——, “Adaptive transmitting antenna methods for multipath environ- Santis, and U. Vaccaro., Eds. New York: Springer-Verlag, 1991.
ments,” inProc. IEEE Global Telecommun. Cont994, pp. 425-429.  [22] M. Honig, U. Madhow, and S. Verd(, “Blind adaptive multiuser detec-

[16] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit beam- tion,” IEEE Trans. Inform. Theorwol. 41, pp. 944-960, July 1995.
forming for cellular communication systems,” Rroc. Conf. Informa-  [23] P. B. Rapajic and B. S. Vucetic, “Adaptive receiver structures for asyn-
tion Sciences and System997, pp. 92-97. chronous CDMA systems.[EEE J. Select. Areas Communol. 12,

[17] J.-H.Chang, L. Tassiulas, and F. Rashid-Farrokhi, “Joint transmitter and pp. 685-697, May 1994.
receiver beamforming for maximum capacity in spatial division multi- [24] M. Abdulrahman, A. U. H. Sheikh, and D. D. Falconer, “Decision feed-

access,” inProc. 35th Annu. Allerton Conf. Communications, Control back equalization for CDMA in indoor wireless communicationEEE
and Computing1997, pp. 93-101. J. Select. Areas Communol. 12, pp. 698-706, May 1994.

[18] E. Visotsky and U. Madhow, “Optimum beamforming using transmit [25] S. L. Miller, “An adaptive direct-sequence code-division multiple-access
antenna arrays,” iRroc. IEEE Vehicular Technology Confday 1999, receiver for multiuser interference rejectionBEE Trans. Commun.

pp. 851-856. vol. 43, pp. 1746-1755, Feb./Mar./Apr. 1995.



