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Abstract

Network tomography deals with the study of estimating the internal characteristics of a network from

its end–point measurements. This paper begins with a quick overview of some of the related work in this

field and introduces the problem of determining link success probabilities of a network tree from a sample of

measurements at the nodes. Both single–source and multiple–source techniques for estimation of link success

probabilities are studied and a method is proposed to obtain these link parameters for a general network

tree. the method is illustrated by deriving the probability estimates for a simple three–node network. Finally,

the problem is reformulated as a general tomography problem to which standard techniques like Maximum

Likelihood Estimation can be applied.

1 Introduction

Network monitoring of large–scale networks, like the Internet, cannot rely on measurements from each and

every node to obtain performance parameters like link loss and packet delay. Instead, these internal network

characteristics are estimated from end-to-end behavior of point-to-point traffic, and this technique is referred to

as Network Tomography [15] to highlight its similarity with medical tomography.

Network tomography analyses use logical tree–graphs [2] (in contrast to the physical tree graph which allows

intermediate nodes to have only one child [4]) to represent one–to–many communication between the root (a

single source node) and the leaves (a number of destination nodes) via various internal nodes. Studies have been

developed for both unicast [7],[8] and multicast networks [1],[4],[3], although most of the recent work focus almost

exclusively on multicast networks.

Network tomography techniques, such as multicast inference of network characteristics (MINC) [1], rely on

sending probe traffic through the network periodically and making corresponding measurements at the terminal

nodes. Internal network parameters are then inferred by exploiting the correlation in performance observed in
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multicast receivers— for instance, if a receiver observes a probe, its parent must have observed the probe as well.

This intuition may be used to estimate the path delay distribution [8], the internal loss characteristics [4], or the

network topology itself [3],[11].

By contrast, the model in this paper discusses a passive [13] monitoring method which does not use a separate

probe packet to determine the network characteristics. On the other hand, requiring the intermediate nodes to

record every packet passing through them would need enormous amounts of storage space. Instead, each of the

intermediate nodes in the network sample the packets passing through them and record information about a

fraction of them with a certain a-priori probability, the aim being to minimize the amount of data recorded by

the intermediate nodes and still obtain the network’s internal characteristics to a very high degree of accuracy.

Although this model might appear to be at odds with standard network tomography techniques, it will be shown

later that the formulation may be reduced to a standard network tomography problem.

The rest of this treatise is arranged as follows: Section 2 discusses a few existing papers that are relevant to

the current discussion, and the problem itself is formulated in Section 3. This is then analyzed in Section 4 and

comparisons drawn with existing results in Section 5. Finally, the paper concludes with areas of future work, and

the derivation of maximum likelihood estimation (mle) of link success probabilities in the Appendix.

2 Related Work

2.1 Packet Loss Estimation

The intuition behind packet loss estimation is that the arrival of a packet at a given internal node in the tree

can be inferred from the packet’s arrival at one or more receivers descended from that node [1]. Packet loss is

modeled as independent across different links of the tree and between different probes. The loss model associates

with each link in the tree, a conditional probability that a packet reaches the terminating node of the link, given

that it reaches its parent node. The outcome of each probe at each receiver is recorded. The link probabilities

are inferred by estimators obtained by using the actual frequencies of the outcomes, and it has been shown in [5]

that this estimator is the maximum likelihood estimator (MLE) when a sufficiently large number of probes are

used. The Appendix introduces a widely used method [5][4] to estimate the success/loss probabilities of each

link. A more simplistic analysis to estimate the link probabilities for a general k–node network is carried out in

Section 3.
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Figure 1: Model of two–leaf tree for calculating variance of internal link delay.

2.2 Internal Delay Estimation

The intuition behind internal delay estimation is that closely time–spaced packets should experience the same

delay on each shared link in their path [8], and therefore delay aberrations at different receivers must be caused

by delays on the individual links. Thus, associated with each individual link in the network is a probability mass

function, pmf, for the delay. The aim of this class of problems is to estimate these probabilities based on the

end-to-end measurements.

Assuming that link delays are independent random variables, both spatially (i.e., between different links) and

temporally (i.e., between different packets), the delay variance estimation is based on the additive property of

time delay across successive links of a route [12]. In the logical multicast topology of Fig. 1, packets are being

multicast from the root S to receivers R1 and R2. If Di denotes the random delay on link i, then the source–to–leaf

delays in this case would be:

x1 = D0 + D1 (1)

x2 = D0 + D2 (2)
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Hence, cov(x1, x2) = E[x1x2]− E[x1]E[x2]

= E [(D0 + D1)(D0 + D2)]− E[D0 + D1]E[D0 + D2]

= E[D2
0] + E[D0D1] + E[D0D2] + E[D1D2]− E2[D0]− E[D0]E[D1]− E[D0]E[D2]− E[D1]E[D2]

= E[D2
0]− E2[D0] , assuming independence

= var(D0)

(3)

Finally, an unbiased estimate of var(D0) is obtained by forming an unbiased estimate of cov(x1, x2) directly

from end-to-end measurements of source-to-leaf delays.

If the network is approximately stationary over the measurement period, a natural approach is to use the

maximum likelihood estimator— the resulting maximization of the joint likelihood function requires numerical

optimization and may be successfully solved using the expectation maximization (EM) algorithm [10]. More

generally, however, the dynamics of the network could be changing over time and it is suggested in [8] that a

sequential Monte–Carlo (SMC) procedure may be employed for tracking the time–varying delay distributions.

2.3 Network Topology Inference

In the previous methodologies, it was assumed that the logical multicast tree was known in advance. However,

the underlying multicast topology itself may be inferred using the loss measurements by the following three

techniques [11]:

1. A grouping estimator that exploits the monotonicity of loss rates with increasing path length,

2. A maximum–likelihood estimator (MLE), and

3. A Bayesian estimator.

Details of topology inference from end-to-end measurements is well beyond the scope of this paper.

2.4 Solution Space of the Inference

Tomography techniques aim at finding certain characteristics of each link in a network using statistical inference

methods like maximum likelihood estimation. However, unless the solution space for the estimate is studied,

an iterative algorithm may get trapped in a local maximum. It is shown in [16] that if the loss on each link is
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Figure 2: Model of simple network comprising a source and k nodes.

modeled as an independent Bernoulli process, the solution space is concave, ensuring that the global maximum

would be correctly identified.

The proof hinges on the assumption that maximizing the joint probability of network with an independent

Bernoulli loss on each link is equivalent to maximizing a log-likelihood function, as given in [3]. Again, since the

logarithmic function is concave, and any linear combination of continuous concave functions is continuous and

concave, the solution space of the objective function is concave and therefore the maximum likelihood estimator

provides the global maximum solution.

3 Problem Definition

The general network model, along with the labeling notation being used, is introduced in this section.

Consider a network comprising a source and k nodes, as illustrated in Fig. 2. In terms of graph theory [2],

this is equivalent to a (k + 1)-vertex simple linear graph. Data originates at the source node 0 and is multicasted

through to the other end terminated by node k. Packets are lost in each of the links at an unknown rate, and the

packets reaching each of the intermediate nodes are sampled with a certain known probability.

The various notations used in the analysis are as follows:

Ni : number of packets at node i

αi : probability of successful transmission on link (i− 1, i)

βi : sampling rate at node i

Mi : number of packets sampled at node i
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Li : list of nodes sampled at node i, its cardinality being Mi

It may be pointed out that a one-to-many multicast tree is assumed, and therefore each link may be uniquely

identified by the index of its destination node.

The interrelationships between the various parameters introduced above are as follows:

αi =
Ni

Ni−1
(4)

βi =
Mi

Ni
(5)

The problem aims at estimating the link success probabilities αi as well as the number of packets at each of

the intermediate nodes {i 6= 0 6= k}. A multiple source network will be introduced in Section 4.2.

4 Analysis

4.1 Single Source Network

4.1.1 General k–node Network

Equation (4) gives the link success probabilities in terms of the number of packets at each node, Ni, which are

unknown except for i = 0. This leads to a formulation for the number of packets in the ith node, which again is

unknown:

Ni = αiαi−1 . . . α1N0 (6)

Equation (6) may be applied to equation (5) to obtain the general sampling probability.

βi =
Mi

Ni

=
Mi

αiαi−1 . . . α1N0

(7)

Dividing βi by βi−1, the link success probabilities may be obtained to the first degree of approximation.

αi =
Miβi−1

Mi−1βi
, i ∈ [1, k]

with β0 = 1

and M0 = N0

(8)
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As has already been pointed out, the intuition behind packet loss inference is that the event that a packet

has reached a given internal node in the tree can be inferred from the packet’s arrival at one or more receivers

descended from that node [6]. Thus, advantage is taken of this “information spill” to obtain better estimates for

the link probabilities. For instance, Li, consisting of the packets sampled by the ith node, can be enhanced by

appending all packets sampled by nodes i + 1, i + 2, . . . , k since they must have been received by node i as well.

Combining these ideas with the standard notation of set theory, the enhanced set M ′
k−1 for node k − 1 may

be obtained as follows:

M ′
k−1 = |Lk−1 ∪ Lk|

= |Lk−1 + Lk − Lk−1 ∩ Lk|

= Mk−1 + Mk −Mk−1αkβk

(9)

where |Lk−1 ∩ Lk| is the set of common packets in lists Lk−1 and Lk and is approximated by the number of

packets from node k − 1 that reach node k (with probability αk) and get recorded (with probability βk).

Moving on to the next node on the left, k − 2, the analysis is repeated with the modified value of Mk−1:

M ′
k−2 = Mk−2 + M ′

k−1 −
∣∣Lk−2 ∩ L′k−1

∣∣
= Mk−2 + Mk−1 + Mk −Mk−1αkβk − |Lk−2 ∩ Lk−1| − |Lk−2 ∩ Lk|+ |Lk−2 ∩ Lk−1 ∩ Lk|

= Mk−2 + Mk−1 + Mk −Mk−1αkβk −Mk−2αk−1βk−1 −Mk−2αk−1αkβk + Mk−2αk−1βk−1αkβk

(10)

In this manner, the revised sample list may be obtained by moving from the right to the left (Fig. 2), and

using the previously obtained set at each step. This formulation is now generalized for the ith node using the

Inclusion–Exclusion Principle of Set Theory [9]. Finally, the number of packets at each node, and hence the link

success probabilities, can be approximated from these quantities.
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M ′
i =

∣∣Li ∪ L′i+1

∣∣
=
∣∣Li ∪ Li+1 ∪ L′i+2

∣∣
= |Li ∪ Li+1 ∪ Li+2 ∪ . . . ∪ Lk|

=
∑

i≤j≤k

|Lj | −
∑

i≤j1<j2≤k

|Lj1 ∩ Lj2|+
∑

i≤j1<j2<j3≤k

|Lj1 ∩ Lj2 ∩ Lj3| − . . . + (−1)k−1 |Li ∩ Li+1 ∩ . . . ∩ Lk|

=
∑

i≤j≤k

Mj −
∑

i≤j1<j2≤k

Mj1αj1+1αj1+2 · · ·αj2βj2

+
∑

i≤j1<j2<j3≤k

Mj1αj1+1αj1+2 · · ·αj2βj2αj2+1αj2+2 · · ·αj3βj3

− . . . + (−1)k−i
Miαi+1βi+1αi+2βi+2 · · ·αkβk

(11)

Thus,

N ′
i =

M ′
i

βi
and (12)

α′i =
N ′

i

N ′
i−1

=
M ′

iβi−1

M ′
i−1βi

(13)

However, βi is defined for i ∈ [1, k] and M ′
i is defined for i ∈ [1, k − 1]. It follows, therefore, that α′ in (13)

will be valid for i ∈ [2, k − 1].

Thus, the complete solution for α′i is given by:

α′i =


M ′

1
β1N0

, i = 1
M ′

iβi−1
M ′

i−1βi
, i ∈ [2, k − 1]

Mkβk−1
M ′

k−1βk
, i = k

(14)

A simple three-node network (Fig. 3) is used to illustrate the use of (14) to obtain improved estimates for the

link success probabilities. The result is then compared with the estimation of the same link success probabilities

from first principles.

Example

For the three–node network illustrated in Fig. 3, the link probability estimates are obtained by applying (14):

α′1 =
M ′

1

β1N0
=

M1 + M2 −M1α2β2

β1N0
(15)

α′2 =
M2β1

M ′
1β2

=
M2β1

(M1 + M2 −M1α2β2) β2
(16)
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Figure 3: Model of simple network comprising 3 nodes to illustrate the analysis.

where α2 is defined by (8).

The problem is now repeated by obtaining the original and revised estimates for the link gain probabilities by

taking advantage of the correlation of the data recorded in lists L1 and L2.

α1 =
M1

β1N0
(17)

α2 =
M2β1

M1β2
(18)

M ′
1 = M1 + M2 −M1α2β2 (19)

N ′
1 =

M ′
1

β1
=

M1 + M2 −M1α2β2

β1
(20)

α′2 =
N2

N ′
1

=
N2β1

M1 + M2 −M1α2β2
(21)

α′1 =
N ′

1

N0
=

M1 + M2 −M1α2β2

N0β1
(22)

Since M2
β2

= N2, the results obtained by the two methods are the same.

Thus, substituting the expression for α2 in (15) and (16), the estimates are obtained as:

α′1 =
M1 + M2 −M2β1

β1N0
(23)

α′2 =
M2β1

(M1 + M2 −M2β1) β2
(24)

Simple Matlab simulations were performed based on equations (11) and (14), and their results were compared.

It was seen that the estimation improved with increasing number of “recording” nodes in the network. It is also
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intuitive that a higher recording probability or sampling rate is required nearer the destination since not much

information is available from succeeding nodes.

4.1.2 Modified k–node Network

If it is assumed that there is a single data source in a network located at the root of the tree, then the simple

three–node network of Fig. 3 may be converted into a symmetric two–leaf tree using the steps outlined on Fig. 4.

Standard network tomography techniques may now be applied to estimate the link characteristics α1, β1 and

α2β2. This method is perfectly general, however, and can also be applied to the k–node network of Fig. 2 to

obtain a logical tree with link characteristics β1, β2, . . . , βk−1;α1, α2, . . . , αk−1 and the product αkβk. Maximum

likelihood estimation (mle) techniques may be applied to the resulting tree to obtain the various link parameters

(assuming that the sampling probabilities, βis, are known).
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Figure 4: Modifying a simple three–node network to a standard network tomography problem.
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Figure 5: Model of a multiple source network comprising k − 1 sources and k + 1 nodes.

4.2 Multiple Source Network

As can be seen from Figure 5, a multiple source network is treated differently since the packets sampled at each

internal node include packets from the original source 0, as well as new packets from intermediate sources.

As a result, the link success probabilities now change to:

α1 =
N ′

1 −N1

N0
=

M1
β1

−N1

N0
=

M1 − β1N1

β1N0

α2 =
N ′

2 −N2

N ′
1

=
M2
β2

−N2

M1
β1

=
β1M2 − β1β2N2

β2M1

...

αk−1 =
N ′

k−1 −Nk−1

N ′
k−2

=
Mk−1
βk−1

−Nk−1

Mk−2
βk−2

=
βk−2Mk−1 − βk−2βk−1Nk−1

βk−1Mk−2

αk =
N ′

k

N ′
k−1

=
Mk

βk

Mk−1
βk−1

=
βk−1Mk

βkMk−1

(25)

Thus, the complete solution for αi may be summarized as:

αi =


M1−β1N1

β1N0
, i = 1

βi−1Mi−βi−1βiNi

βiMi−1
, i ∈ [2, k − 1]

βk−1Mk

βkMk−1
, i = k

(26)
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Proceeding in the same way as Section 4.1, and denoting the list maintained at sampler i by L′i, the enhanced

sampling list may now be created by appending all packets sampled by nodes i + 1, i + 2, . . ., k since they must

have been received by node i as well.

Consequently,

M ′
k−1 =

∣∣L′k−1 ∪ L′k
∣∣

=
∣∣L′k−1 + L′k − L′k−1 ∩ L′k

∣∣
= Mk−1 + Mk −Mk−1αkβk

(27)

where
∣∣L′k−1 ∩ L′k

∣∣ is the set of common packets in lists L′k−1 and L′k and is approximated by the number of

packets from node k − 1 that reach node k (with probability αk) and get recorded (with probability βk).

Moving on to the next node on the left, k − 2, the analysis is repeated with the modified value of Mk−1:

M ′
k−2 =

∣∣L′k−2 ∪ L′k−1 ∪ L′k
∣∣

= Mk−2 + Mk−1 + Mk −
∣∣L′k−2 ∩ L′k−1

∣∣− ∣∣L′k−1 ∩ L′k
∣∣− ∣∣L′k−2 ∩ L′k

∣∣+ ∣∣L′k−2 ∩ L′k−1 ∩ L′k
∣∣

= Mk−2 + Mk−1 + Mk −Mk−1αkβk −Mk−2αk−1βk−1 −Mk−2αk−1αkβk + Mk−2αk−1βk−1αkβk

(28)

In this manner, the revised sample list may be obtained by moving from the right to the left (Fig. 5), and

using the previously obtained set at each step. This formulation is now generalized for the ith node using the

Inclusion–Exclusion Principle of Set Theory [9]. Finally, the number of packets at each node, and hence the link

success probabilities, can be approximated from these quantities.

M ′
i =

∣∣L′i ∪ L′i+1

∣∣
=
∣∣L′i ∪ L′i+1 ∪ L′i+2

∣∣
=
∣∣L′i ∪ L′i+1 ∪ L′i+2 ∪ . . . ∪ L′k

∣∣
=
∑

i≤j≤k

∣∣L′j∣∣− ∑
i≤j1<j2≤k

∣∣L′j1 ∩ L′j2
∣∣+ ∑

i≤j1<j2<j3≤k

∣∣L′j1 ∩ L′j2 ∩ L′j3
∣∣− . . . + (−1)k−1 ∣∣L′i ∩ L′i+1 ∩ . . . ∩ L′k

∣∣
=
∑

i≤j≤k

Mj −
∑

i≤j1<j2≤k

Mj1αj1+1αj1+2 · · ·αj2βj2

+
∑

i≤j1<j2<j3≤k

Mj1αj1+1αj1+2 · · ·αj2βj2αj2+1αj2+2 · · ·αj3βj3

− . . . + (−1)k−i
Miαi+1βi+1αi+2βi+2 · · ·αkβk

(29)

Substituting this in (26), the improved link success probabilities are obtained.
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Figure 6: Model of a multiple source network comprising k − 1 sources and k + 1 nodes and probabilities γ

associated with each source.

Now, if the sources also have a success probability, γ, associated with them (as shown in Fig. 6), the proba-

bilities α and γ are obtained as follows:

α1 =
N ′

1 − γ1N1

N0
=

M1
β1

− γ1N1

N0
=

M1 − β1γ1N1

β1N0

α2 =
N ′

2 − γ2N2

N ′
1

=
M2
β2

− γ2N2

M1
β1

=
β1M2 − β1β2γ2N2

β2M1

...

αk−1 =
N ′

k−1 − γk−1Nk−1

N ′
k−2

=
Mk−1
βk−1

− γk−1Nk−1

Mk−2
βk−2

=
βk−2Mk−1 − βk−2βk−1γk−1Nk−1

βk−1Mk−2

αk =
N ′

k

N ′
k−1

=
Mk

βk

Mk−1
βk−1

=
βk−1Mk

βkMk−1

(30)
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The values of γ are similarly obtained:

γ1 =
N ′

1 −N0

N1
=

M1
β1

−N0

N1
=

M1 − β1N0

β1N1

γ2 =
N ′

2 −N ′
1

N2
=

M2
β2

− M1
β1

N2
=

β1M2 − β2M1

β1β2N2

...

γk−1 =
N ′

k−1 −N ′
k−2

Nk−1
=

Mk−1
βk−1

− Mk−2
βk−2

Nk−1
=

βk−2Mk−1 − βk−1Mk−2

βk−2βk−1Nk−1

(31)

Thus, the link success probabilities may be summarized as follows:

αi =


M1−β1γ1N1

β1N0
, i = 1

βi−1Mi−βi−1βiγiNi

βiMi−1
, i ∈ [2, k − 1]

βk−1Mk

βkMk−1
, i = k

(32)

and,

γi =


M1−β1N0

β1N1
, i = 1

βi−1Mi−βiMi−1
βi−1βiNi

, i ∈ [2, k − 1]

0, i = k

(33)

Once again, the values of γ and α can be improved by using the enhanced sample number M ′ from (29) in

the calculations.

5 Results

The link success probabilities of a three–node network (Fig. 4) have been obtained in [5], and derived in the

Appendix, as follows:

α̂1 =
(p̂(01) + p̂(11)) (p̂(10) + p̂(11))

p̂(11)

α̂2 =
p̂(11)

p̂(01) + p̂(11)

α̂3 =
p̂(11)

p̂(10) + p̂(11)

(34)
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The probabilities {p01, p10, p11} are now expressed in terms of the number of observations of the three combi-

nations at the leaf nodes:

α̂1 =
(n(01) + n(11)) (n(10) + n(11))

n(11)

α̂2 =
n(11)

n(01) + n(11)

α̂3 =
n(11)

n(10) + n(11)

(35)

Here n denotes the total number of probes sent out, so that n(00) + n(01) + n(10) + n(11) = n.

These link success probabilities are now compared with the results obtained in (15) and (16), which are

reproduced below.

α′1 =
M1 + M2 −M1α2β2

β1N0

α′2 =
M2β1

(M1 + M2 −M1α2β2) β2

α2 =
M2β1

M1β2

(36)

Comparing with the notation of [5], it follows from Fig. 4 that

N0 = n

N1 = n(11) + n(10) + n(01) + n(11)

M1 = n(11) + n(10)

M2 = n(11) + n(01)

(37)

and, (38)

α̂1 = α1

α̂2 = β1

α̂3 = α2β2

(39)
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Then,

α̂1 = α1 =
M1 + M2 −M2β1

β1N0

=
n(11) + n(10) + n(11) + n(01)− β1 [n(11) + n(01)]

nβ1

(40)

α̂2 = β1 = known (41)

α̂3 = α2β2 =
M2β1

M1 + M2 −M2β1

=
β1 (n(11) + n(01))

n(01) + n(10) + 2n(11)− β1 [n(11) + n(01)]

(42)

It may be pointed out, however, that an important point of difference between the two approaches is that [5]

uses n active probes to get an estimate of the link losses, whereas the method outlined in this paper relies on

passive network tomography with measurements being made in the course of the transportation of data packets.

This has the additional advantage of not contributing to network traffic, since a large multicast network may

easily get overburdened with active probes. The use of the expectation-maximization (em) algorithm in passive

network tomography is outlined in [14].

6 Conclusion

This paper introduces the subject of network tomography through a variety of existing papers and applications.

These ideas are then correlated to the problem at hand, namely, attempting to estimate the packet transfer

probability of each link of a linear graph. The technique exploits the fact that packets that pass through a node

must also pass through its parent node, and derives estimates for the individual links of a simple three–node

network. The problem is then recast as a typical network tomography problem and methods like the mle are

suggested to obtain its solution.

This paper considers only one–to–two tree topologies; the analysis can be extended to two–to–one trees so that

a general multiple source network may be analyzed. The use of the em algorithm for passive network tomography

is also a prospective area of research.
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Appendix

This section derives the Maximum Likelihood (ml) estimate for link success probabilities using the approach

outlined by Caceres et al. in [5],[4]. Before proceeding with the analysis, the following notation is defined:

τ = (V,L) : logical multicast tree consisting of set of nodes V and set of links L

d(j) : set of children of node j, i.e., d(j) = {k ∈ V : (j, k) ∈ L}
f(j) : parents of node j, i.e., d(j) = {k ∈ V : (k, j) ∈ L}
fn(j) = f

(
fn−1(k)

)
: j is a descendant of k if k = fn(j) for some integer n > 0

R ⊂ V : set of leaf nodes representing the children

U = V \{0} : vertex set V excluding node 0 (root)

0 ∈ V : root node, i.e., source of the probes

αk ∈ [0, 1] : probability that a given probe is not lost on the link terminating at k ∈ V

X = (Xk)k∈V : passage of probes down the tree, where each Xk takes a value in {0, 1}
Pα : distribution of outcomes (Xk)k∈V for a given set of link probabilities α = (αk)k∈V

Ω = {0, 1}R : space of all outcomes

n : number of probes sent out, each with outcome x ∈ Ω

n(x) : number of probes for which outcome x is obtained

p(x;α) = Pα

(
X(R) = x

)
: probability mass function for a single outcome x ∈ Ω

k ≺ k′ : k is descended from k′, but k 6= k′ for k, k′ ∈ V

l = l(k) : link k is at level l(k) if there is a chain of l ancestors leading to the root of τ ,

i.e., k = f0(k) ≺ f1(k) ≺ · · · ≺ f l(k)

τ(k) = (V (k), L(k)) : sub-tree within τ rooted at node k

R(k) = R ∩ V (k) : set of receivers descended from k

Ω(k) : set of outcomes x in which at least one receiver in R(k) receives a packet

γk = Pα [Ω(k)] : probability that probe reaches at least one receiver

p̂(x) = n(x)
n : observed proportion of trials with outcome x

γ′(k) =
∑

x∈γ(k) p̂(x) : estimate of γk

βk = P[γ(k)|Xf(k) = 1] : probability that probe reaches at least one receiver, given that it reaches the parent f(k)

=

 1−
(
ᾱk + αk

∏
j∈d(k) β̄j

)
, k ∈ V \R

αk, k ∈ R
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Using this notation, the probability of n independent observations x1, . . . , xn, given the link success probability

α is:

p
(
x1, . . . , xn;α

)
=

n∏
m=1

p (xm;α)

=
∏
x∈Ω

p(x;α)n(x)

The aim is to estimate the value of α from a set of experimental data (n(x))x∈Ω so that the maximum likelihood

estimator mle, α′, will maximize p
(
x1, . . . , xn;α

)
for the data x1, . . . , xn.

Since the logarithmic function is monotonically increasing, maximizing p
(
x1, . . . , xn;α

)
is equivalent to max-

imizing the log-likelihood function below:

L(α) = log p
(
x1, . . . , xn;α

)
=
∑
x∈Ω

n(x) log p(x;α)

Furthermore, a map Γ : α 7→ γ will be defined in Theorem 1, and the strategy would be to obtain the mle

α′ = arg max
α∈[0,1]R

L(α)

from the estimates γ′ instead by using the inverse mapping Γ−1.

Using the notation defined, the relationship between α and γ is as follows:

γk = βk

l(k)∏
i=1

αfi(k)

= αk

l(k)∏
i=1

αfi(k), k ∈ R

=
l(k)∏
i=0

αfi(k)

≡ Ak

Before proceeding any further, the following Lemma is necessary.

Lemma 1 Let C be the set of c = (ci)i=1,2,...,imax
with ci ∈ (0, 1) and

∑
i ci > 1. Then the equation

(1− x) =
∏

i

(1− cix)

has a unique solution x(c) ∈ (0, 1).

19



Proof

Let

h1(x) = (1− x)

h2(x, c) = h2(x) =
∏

i

(1− cix)

and qi =
ci

1− cix

Then, log h2(x) =
∑

i

log (1− ci(x))

⇒ h′2(x) = −h2(x)
∑

i

qi(x)

⇒ h′′2(x) = h2(x)

(∑
i

qi

)2

−
∑

i

q2
i


> 0

Thus, h(x) = h1(x) − h2(x) is strictly concave and continuous on [0,1], and therefore there is exactly one

solution to h(x) = 0 for x ∈ (0, 1).

Theorem 1 Let

A =
{
(αk)k∈U : αk > 0

}
A(1) =

{
(αk)k∈U : 1 ≥ αk > 0

}
G =

(γk)k∈U : γk > 0∀k, γk <
∑

j∈d(k)

γj∀k ∈ U\R


The map α 7→ γ defined on A(1) extends to a bijection Γ from a subset of A onto G.

Proof

It has already been demonstrated that γk = Ak, k ∈ R. Now define the following:

Hk(Ak, γ) =
(

1− γk

Ak

)
−
∏

j∈d(k)

(
1− γj

Ak

)
= 0, k ∈ U\R
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This is of the same form as Lemma 1, with x = γk

Ak
and cj = γj

γk
, and therefore, for each γ ∈ G, there is a unique

Ak > γk that solves Hk(Ak, γ) = 0. αk is uniquely recovered from Ak by taking the appropriate quotient

αk =
Ak

Af(k)
, k ∈ U

and setting A0 = α0 = 1. This construction specifies the inverse map Γ−1.

For the equivalent three-node network shown in Fig. 4 (bottom), the outcomes corresponding to Ω = {0, 1}2

can be represented by {00, 01, 10, 11}. Then,

γ′1 = p̂(11) + p̂(10) + p̂(01)

γ′2 = p̂(11) + p̂(10)

γ′3 = p̂(11) + p̂(01)

Using the result of Lemma 1, the following estimates are obtained:

α̂1 =
γ′2γ

′
3

γ2 + γ3 − γ1
=

(p̂(01) + p̂(11)) (p̂(10) + p̂(11))
p̂(11)

α̂2 =
γ′2 + γ′3 − γ1

γ′3
=

p̂(11)
p̂(01) + p̂(11)

α̂3 =
γ′2 + γ′3 − γ1

γ′2
=

p̂(11)
p̂(10) + p̂(11)

It can be shown that the estimates α̂i satisfy the following two properties [1]:

• Consistency : α̂i converges to the true value αi almost surely as the number of probes, n grows to infinity.

• Asymptotic normality : The distribution of the quantity
√

n (α̂i − αi) converges to a normal distribution as

n grows to infinity.
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