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Abstract

This treatise provides a solution for the throughput of an ad-hoc

network containing n nodes, a fraction q of which have wired connec-

tions and can behave as access points. The problem attempts to build

on the results obtained by Gupta and Kumar1 for an ad-hoc network

containing n wireless nodes, namely, that the throughput falls as
√

n.

1 Problem Statement

Gupta and Kumar have proved that node throughput decreases as
√

n for a
classical ad-hoc network with identical radios.

Now suppose that some fraction q of the nodes have wires (i.e. can func-
tion as access points). A packet that reaches an access point is assumed to
tunnel through to another access point close to the destination. Otherwise,
the radios behave in the same way as in the Gupta–Kumar model.

Find a similar equation for node throughput as a function of n and q.
Does the system scale linearly for any value of q?

2 Preliminaries

Let us state some of assumptions and notations for an arbitrary ad-hoc net-
work that will be used in the course of this derivation. We assume, after

1P. Gupta and P. R. Kumar, “The Capacity of Wireless Networks”, IEEE Transactions

on Information Theory, vol. 46, pp. 388–404, March 2000.
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Gupta and Kumar, that n nodes are arbitrarily located in a disk of unit area
in the plane. The physical model is going to be used to describe a successful
reception of a transmission over one hop. In the analysis to follow, Xi de-
notes the location of a wireless node, while XAP

i represents the position of
a wired access point. The number of wireless nodes is (1 − q)n, while the
number of access points is qn.

Let {Xk; k ∈ τ} be the positions of the subset k of nodes simultaneously
transmitting at some time instant over a certain sub-channel. Let Pk be the
power level chosen by node Xk for k ∈ τ . Then the transmission from a node
Xi, i ∈ τ , is successfully received by a node Xj if the following inequality is
satisfied:

Pi

|Xi−Xj |2

N +
∑

k∈τ ;k 6=i
Pk

|Xk−Xj |2
≥ β (1)

This models a situation where a minimum signal to interference ratio
(SIR) of β is necessary for successful receptions, the ambient noise power
level is N , and signal power decays with inverse square of the distance.

The throughput of the network is defined as the time average of the
number of bits per second that can be transmitted by every node to its des-
tination.

Thus, the main assumptions may be summarised as follows:

1. There are n nodes (including access points) arbitrarily located in a disk
of unit area on the plane.

2. The network transports λnT bits over T seconds.

3. The average distance between the source and destination of a bit is L.
In combination with the above assumption, this means that a transport
capacity of λnL bit-metre/second is achieved.

4. Each node can broadcast wirelessly over any subset of M sub-channels
with capacities Wm bit/sec, 1 ≤ m ≤ M , where

∑M

m=1 Wm = W . In
addition, the access points can transmit data to another access point
through the wired connection with a throughput of W .
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3 Analysis

To obtain the throughput of an arbitrary ad-hoc network, we shall consider
the following four possibilities that correspond to different combinations of
the transmitter and receiver:

1. Node-to-node transmission.
The probability of this happening is = (1−q)n

n

(1−q)n
n

= (1 − q)2.

2. Node-to-access point transmission.
The probability of this happening is = (1−q)n

n

qn

n
= q(1 − q).

3. Access point-to-node transmission.
The probability of this happening is = qn

n

(1−q)n
n

= q(1 − q).

4. Access point-to-access point transmission.
The probability of this happening is = qn

n

qn

n
= q2.

For simplicity, it is assumed that the transmissions in the network are slotted
into synchronized slots of length τ s. The other parameters of the system are
formally defined below:

• λ: Average throughput of each node for a randomly chosen destination

• L: Mean distance between node and randomly chosen destination

• W : Maximum transmission rate of each node over common wireless
channel

• h(b): number fo hops required by bth bit to reach destination from
source

• r(h, b): distance traveled by bth bit in hth hop

3.1 Throughput determination for node-to-node trans-

mission

It has already been established that for a successful transmission from a node
Xi, i ∈ τ to a node Xj, condition (1) must be satisfied. If the signal power
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of Xi is also included in the denominator, then the signal-to-interference
requirement may be rewritten as:

Pi

|Xi−Xj |2

N +
∑

k∈τ
Pk

|Xk−Xj |2
≥ β

β + 1
(2)

where τ is the set of simultaneous transmitters (wireless nodes and access
points).

⇒ |Xi − Xj|2 ≤
β + 1

β

Pi

N +
∑

k∈τ
Pk

|Xk−Xj |2
(3)

≤ β + 1

β

Pi

N + (π
4
)
∑

k∈τ Pk

(4)

The result |Xk − Xj| ≤
√

4
π

follows from the fact that the diameter of a

unit area circle is
√

4
π

and that is the maximum possible separation between

two nodes.

Summing over all transmitter–receiver pairs,

∑

i∈(1−q)τ

|Xi − Xj|2 ≤
β + 1

β

∑

i∈(1−q)τ Pi

N + (π
4
)
∑

k∈(1−q)τ Pk

(5)

≤
(

β + 1

β

) (

4

π

)

(6)

Summing over all slots and channels,

λ(1−q)nT
∑

b=1

h(b)
∑

h=1

r2(h, b) ≤
(

β + 1

β

) (

4

π

)

WT (7)

To reduce the result in terms of r(h, b), convexity of the quadratic equa-
tion has to be invoked. In order to do that, a function H is defined that
sums the number of hops for every bit b:

H =

λn(1−q)T
∑

b=1

h(b) (8)
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Since at most n(1−q)
2

nodes can transmit over any channel in the same slot,
the upper bound of H is given by:

H ≤ WT (1 − q)n

2
(9)

By dividing both sides of (7) by H, the remaining steps in the derivation
follow directly from Gupta–Kumar’s paper:

λ(1−q)nT
∑

b=1

h(b)
∑

h=1

1

H
r2(h, b) ≤

(

β + 1

β

) (

4

π

)

WT

H
(10)

Since the quadratic function is convex,





λ(1−q)nT
∑

b=1

h(b)
∑

h=1

1

H
r(h, b)





2

≤
λ(1−q)nT

∑

b=1

h(b)
∑

h=1

1

H
r2(h, b) (11)

⇒





λ(1−q)nT
∑

b=1

h(b)
∑

h=1

1

H
r(h, b)





2

≤
(

β + 1

β

) (

4

π

)

WT

H
(12)

⇒
λ(1−q)nT

∑

b=1

h(b)
∑

h=1

r(h, b) ≤ 2√
π

√

(

β + 1

β

) (

4

π

)

WTH (13)

However, if a bit b (1 ≤ b ≤ λnT ) moves from its origin to a destination
in a sequence of h(b) hops, where the h-th hop traverses a distance of r(h, b),
then from Assumption 3, we must have:

λ(1−q)nT
∑

b=1

h(b)
∑

h=1

r(h, b) ≥ λ(1 − q)nTL (14)

⇒ λ(1 − q)nTL ≤ 2√
π

√

(

β + 1

β

) (

4

π

)

WTH (15)

The throughput is obtained by substituting (9) in (15):

λ(1 − q)nL ≤ 2√
π

√

(

β + 1

β

) (

1 − q

T

)

W
WTn

2
(16)

5



Hence,

Throughput ≤ W√
π

√

(

2β + 2

β

)

(1 − q)n (17)

This is merely scaled form of the result obtained by Gupta–Kumar for a
system with n nodes.

3.2 Throughput determination for node-to-access point

transmission

Since the number of transmitters in this case is still (1− q).n, the expression
for the throughput may be written as:

Throughput ≤ W√
π

√

(

2β + 2

β

)

(1 − q)n (18)

3.3 Throughput determination for access point-to-node

transmission

Since the number of access points is different from the wireless nodes, the
throughput expression for wireless transmission must be scaled accordingly:

Throughput ≤ W√
π

√

(

2β + 2

β

)

qn (19)

3.4 Throughput determination for access point-to-access

point transmission

It follows from assumption 4, that for wired connection:

λqnL = WqnL (20)

But, L ≤ 2√
π

since a unit area circle is being considered. Thus,

throughput ≤ Wqn
2√
π

(21)
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3.5 Expected throughput

The expected throughput is now obtained as follows:

E[throughput] ≤ (1 − q)2 W√
π

√

(

2β + 2

β

)

(1 − q)n

+q(1 − q)
W√
π

√

(

2β + 2

β

)

(1 − q)n

+q(1 − q)
W√
π

√

(

2β + 2

β

)

qn

+q2Wqn
2√
π

(22)

= (1 − q)
W√
π

√

(

2β + 2

β

)

(1 − q)n

+q(1 − q)
W√
π

√

(

2β + 2

β

)

qn

+q2Wqn
2√
π

(23)

4 Discussion

This analysis borrowed heavily from the paper by Gupta and Kumar to ob-
tain the throughput result when the scope of the ad-hoc network is increased
to include wired access points. The expression obviously reduces to the origi-
nal Gupta–Kumar result when the fraction q of access points is considered to
be zero. Simple plots with MATLAB suggest that the expected value of the
throughput increases exponentially with q for a constant n. The following
figures illustrate the expected throughput as a function of q (for different
values of n). The other fixed parameters are:

• β = 10 (i.e. 10 dB)

• W = 10
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Figure 1: MATLAB plot of expected throughput as a function of q for n =
100.
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Figure 2: MATLAB plot of expected throughput as a function of q for n =
1000.
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