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Abstract—We investigate the reliability of radio channel simu-
lators in predicting channel responses throughout a well-specified
environment. Indoor environments for which the geometric
layout and material properties of surfaces are known lend them-
selves to such site-specific simulation. We assess the performance
of this approach by comparing its predictions with measurements
in a specific static environment. The good agreement on path
loss, Ricean K-factor and RMS delay spread, over the set of
paths measured and simulated, suggests that a well-designed
radio simulator can be used reliably to predict system behavior.

Typically, wireless channel models obtained through this or
similar techniques do not capture the temporal variability in the
channel response due to people movement in the environment.
We treat the time-varying part of the channel response using
stochastic processes. Using channel sounding experiments for
several typical office scenarios, we show that autoregressive
processes can be used to model the time-varying tap gains for
several different motion scenarios.

Index Terms—Indoor wireless channels, radio channel sim-
ulators, ray tracing, RMS-delay spread, K-factor, path gain,
autoregressive processes, ARIMA.

I. INTRODUCTION

IN wireless communications, the underlying radio channel
properties strongly affect the performance of the system.

It is common practice in the design and evaluation studies
of such systems to use mathematical models for describing
the channel. One approach is stochastic modeling, in which
the key properties of the signal propagation (e.g., multipath
fading) are captured by probability distributions. These kinds
of models are favored when the propagation environment is
unknown except for some high-level attributes, e.g., urban vs.
suburban, flat vs. hilly, summer vs. winter, etc.

Stochastic models serve well when the study questions are
fairly generic, e.g., how does a particular cellular radio system
perform in an environment that is typically urban? However,
there are cases where the interest pertains to a specific environ-
ment, e.g., a wireless LAN in the corporate offices of a specific
company. In such cases, the study questions are ‘site-specific’
and so site-specific channel response information is needed.
One very effective approach in that case might be to measure
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channel responses for a very large population of transmit-
receive (T-R) paths and store them in a database that can be
accessed for system simulations. The number of such paths
that must be sampled, however, can be extremely large and
require measurement campaigns that are long, labor-intensive
and costly.

An alternative that is less precise in terms of channel
description but also far less costly is to use environment
simulators. These are computer programs that (1) emulate the
physical environment; and (2) use wave propagation physics
to predict the radio signal produced at any receive point from
any transmit point. When the physical layout is well-specified,
such as indoor areas where the layouts and materials of walls,
floors and ceilings are known, environment simulation can be
employed on a very large scale with very little effort. The
question is whether such simulation tools reliably capture the
radio channel behaviors in the specified environment.

Ray tracing-based methods are popular for predicting the
site-specific radio propagation characteristics [1], [2], [3], [4].
Although they are computationally intensive, they provide
more accurate results than statistical models [1] when the site
geometries are known.

It is axiomatic that no typical environment can be perfectly
emulated. Propagating radio signals are affected by countless
artifacts that are hard to capture and/or predict, i.e., moldings,
variations in material, furniture, etc. What can reasonably be
expected, however, is that a site-specific program predicts
channel responses throughout the area of interest that are
statistically similar to the actual ones. To this end, we can cite
three parameters of a radio path that largely typify its response
for both narrow and wide bandwidths. They are: (1) the path
loss, PL, which is the dB value of the transmit power divided
by the (locally averaged) received power; (2) the Ricean
K-factor, which, together with PL, dictates the narrowband
fading distribution; and (3) the RMS delay spread, τrms, which
is a measure of the frequency selectivity (or pulse dispersion)
of the channel. We assert that a site-specific program that
accurately predicts these three quantities throughout a known
environment can be relied upon to predict performance in that
environment.

In this paper, we consider a particular environment, namely,
the ORBIT Laboratory of Rutgers University’s WINLAB [5],
[6]; and we test a particular simulator, namely, the Wireless
Systems Engineering (WiSE) Tool, a ray-tracing program
developed by Bell Labs [7]. For a total of 18 chosen transmit-
receive (T-R) paths, we use a Vector Network Analyzer
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(VNA) to measure complex frequency responses over a wide
bandwidth, i.e., from 3 to 4 GHz; and we use WiSE to
predict the impulse response. From both, we can compute (and
make comparisons for) the path loss, K-factor and RMS delay
spread. Our findings underscore the importance of accurately
specifying the electrical properties of the surfaces (walls, etc.)
in addition to their layouts.

There is related published work in this area. For urban mi-
crocell environments [8] shows very good agreement between
the signal strength (or path loss) statistics of WiSE and those
from extensive measurements. For indoor channels, [2] shows
that the distributions of arrival times and angular spreads gen-
erated with WiSE agree very well with those of an empirical
model based on measurements. In [9], extensive measurements
in several office buildings are used to derive statistics for K
factor and path loss, which favorably compare with WiSE
predictions. All these results demonstrate the validity of using
a ray tracing tool. In this paper, we add to prior results on K-
factor and path loss; add new results for RMS delay spread;
and show that a certain amount of preliminary trial-and-error
(measurement, comparison and adjustment) can enhance the
accuracy of such a tool.

Published models, whether stochastic or environment-
specific, generally assume the channel response is non-varying
over time if both ends of the path are fixed. However, in
real environments channel response varies over time, e.g., due
to movement of people in the environment. A question that
has been open in the propagation community is whether this
variation is negligible, and how it can be modeled in cases
where the variation is not negligible. Here, we examine this
problem as well. We have measured the channel response in
an office building under different scenarios of environmental
dynamics (i.e., movement of people), and we have identified
stochastic processes to characterize them.

This paper combines and expands upon the results reported
in [10] and [11], and is organized as follows: In Section
II, we describe the measurement and ray-tracing simulation
methods used here. Sections III and IV describe, respectively,
K-factor estimations derived from channel response data and
the estimation of RMS delay spread. Section V compares
WISE predictions with VNA measurements in terms of path
gain, K-factor and RMS delay spread. Section VI turns to
time variations and defines four scenarios of motion in the
wireless environment. Section VII explains the use of random
processes to describe these time variations. Section VIII
demonstrates our methodology for identifying the appropriate
process for each motion scenario. Section IX summarizes our
main findings.

II. METHODOLOGY

A. Measurements with a Vector Network Analyzer (VNA)

In our experiments, we measured the complex channel
response with the vector network analyzer (VNA) Agilent
E5071B. Measurements were carried out at various locations
in the ORBIT room and office area of WINLAB, Rutgers
University. The ORBIT room is of size 20 m×25 m and it
is surrounded by offices and hallways. The office area of
WINLAB is as big as the ORBIT laboratory and contains
cubicles, small rooms and lots of furniture.

All antennae were omnidirectional, at the same height,
1.25 m, and all transmit powers were 10 dBm. The VNA
measured the complex frequency response at N equally
spaced frequencies over a given frequency range. We did M
trials at each specific location. The time duration between
the contiguous trials was two seconds. This corresponds to
the time spent for measuring the frequency response at N
points, and then processing and transferring the data over
the network. The impulse response in each trial was found
via the inverse Fourier transform of the complex frequency
response. The resulting time sequence, h(n), represents the
complex envelope of the response, sampled at 1-ns intervals
and referred to 3.5 GHz. Each term in the sequence can be
regarded as a ray.

B. Simulations with the WiSE Tool

We used WiSE [7] to simulate the static radio environment
of the ORBIT room where we conducted the VNA measure-
ments. Given a building plan and transmitter location, WiSE
simulates the impulse response for any path in the building
as a sum of rays. It accounts for the many rays that undergo
reflection and transmission, where the number of reflections
included per ray is a program input. It takes into account path
loss and the wall layer properties, such as dielectric coefficient,
width, conductivity, number of layers, etc. In WiSE, each wall
is defined by its geometric layout and by a parameter called
‘wall type’. An existing wall type can be redefined or a new
wall type can be defined by declaring dielectric coefficients,
width and conductivity for each layer of the wall.

III. K-FACTOR ESTIMATION METHODS

A. Prior Work on Ricean K-factor Estimation

The K-factor is the ratio of the power in the line-of-sight
(LOS) component to the total power of the non-LOS (NLOS)
components. It is a measure of the extent of fading on the
link, where lower K means deeper fading.

Various algorithms have been proposed to estimate the K-
factor. The moment method reported in [12] estimates the
K-factor from the second and fourth moments of the signal
fading variation over time, space or frequency. It is more
practical than many other proposed methods, as it requires
power samples only (no phase). The moment method can be
generalized to use with different moments, as in [13]. The
authors in [13] also propose a K-factor estimation method
using the in-phase and quadrature components, but this method
is applicable only to narrowband signals. The method of
maximum likelihood (ML) estimation of K-factor is proposed
in [14], wherein the parameters of the Ricean distribution
are chosen as those parameters which maximize the joint
probability density of the observed outcomes.

B. Estimation from Impulse Responses

The channel impulse response gives the rays received at
different delays. The ray that has the largest magnitude is
designated as the line-of-sight “LOS” component. The power
sum of the other remaining rays constitute the “scatter” power.
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The ratio of the LOS ray’s power to the scatter power gives
the K-factor.

Note that the physical LOS component is almost always the
one with the shortest delay. Thus, the power we use for the
K-factor numerator may or may not be the actual LOS power.
From the standpoint of estimating a K-factor that accurately
predicts the fading distribution, however, this is an intuitive
approach that (as we will show) leads to excellent results.

C. Estimation from Frequency Responses (Coherent Method)

The K-factor can be computed from the complex frequency
response coherently. Assume we know the complex channel
response H(f) at M different frequencies. Let V = |V |e−jφ

be the complex amplitude of the LOS component. It can be
estimated by minimizing the difference between the expected
and measured channel response. Thus,

V ∗ = argmin
V

Ef{|H(f) − |V |e−j(2πfτ+φ)|2} (1)

where τ is the delay at which the LOS component is received.
The solution V ∗ to this minimization problem is

V ∗ = Ef{H(f)ej2πfτ}, (2)

where τ is found as

τ∗ = argmax
τ

Ef{|H(f)ej2πfτ |}. (3)

This solution is equivalent to performing an inverse Fourier
transform on the frequency domain data and choosing the
largest component as the LOS component. Therefore, the
coherent method gives the same result as estimating the
numerator of the K-factor from the most powerful ray of the
impulse response.

D. Estimation from Frequency Responses (Moment Method)

The moment method proposed in [12] assumed a temporal
variation of the received signal. It uses the second and fourth
moments of the magnitude variation over some long interval
for the K-factor estimation. This method needs only the
absolute values of the received signal samples. It is also
applicable to frequency domain data, assuming a very wide
bandwidth. Thus, the K-factor can be computed by computing
second and fourth moments from the samples of |H(f)|.

This method loses precision at very low K-factors, i.e., K ≤
1. At the same time, the fading distribution does not change
much over that range of K , so that imprecision in estimating
K is not impactful.

IV. RMS DELAY SPREAD

The RMS delay spread is a measure of the frequency
selectivity (or pulse dispersion) of a link. Pulse dispersion
arises as a result of the signals taking different times to cross
the channel through different propagation paths. The RMS
delay spread is defined as the second central moment of the
power delay profile:

τrms =
√

τ̄2 − τ̄2, (4)

where

τ̄ =
∑N

n=1 Pntn∑N
n=1 Pn

; τ̄2 =
∑N

n=1 Pnt2n∑N
n=1 Pn

; (5)

N is the number of received rays; and Pn and tn are,
respectively, the power and arrival time of the nth ray 1.

τrms =
1∑N

n=1 Pn

√√√√ N∑
n=1

N∑
m=n+1

PnPm(tn − tm)2. (6)

We can rewrite (6) as

τrms =

√√√√ N∑
n=1

N∑
m=n+1

ρnρm(tn − tm)2 (7)

where ρx is the normalized power of xth ray,

ρx =
Px∑N

n=1 Pn

. (8)

Clearly, 0 ≤ ρx ≤ 1. From (7) it is obvious that RMS delay
spread depends only on delay differences, and does not depend
on where we set the origin, τ = 0. It also does not depend on
the transmit power, but solely on the power ratios of the rays.

V. COMPARING VNA DATA AND WISE PREDICTIONS

A. Transmitter-Receiver Paths Measured

We report here on VNA-WiSE comparisons for 18 different
transmitter-receiver paths in the ORBIT lab. We repeated such
experiments for various other paths and found similar results.
Specifically, we measured the complex frequency response
at 1601 points between 3.0 and 4.0 GHz. We repeated this
VNA experiment 50 times for each path. Since the differences
among the experiments were small, we show the results for
only one of each path measurement. We chose the frequency
range as 3-4 GHz to avoid interference from the widely used
2.4 and 5 GHz bands. Fig. 1 shows the 18 transmitter-receiver
paths T → R, A → B and from T 1 → C to T 16 → C. T
and R are 3.6 m apart; and A and B are 5.9 m apart. The
transmitter locations T 1 to T 16 are located on a square of size
12.2 m x 12.2 m, where neighboring transmitter locations are
about 3 m apart. The receiver location C is at the center of
this square.

B. Wall Properties

The walls in the ORBIT lab are made of multiple layers of
different materials used for isolation and shielding. Moreover,
not every wall has the same layers; and we do not have
exact information on the properties of these layers. Therefore,
modeling of the walls is not straightforward. We considered,
for each wall, various predefined wall types in WiSE. We have
chosen those wall types for which preliminary experiments and
comparisons between VNA and WiSE results showed the best
agreement. For the ceiling and floor we chose a concrete wall

1We can regard Pn as the squared magnitude of the nth ray in the impulse
response, as described in Section II-A for the VNA data and in Section II-B
for WISE. Also, N is not necessarily the same for the VNA-derived and
WISE-derived impulse responses.
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Fig. 1. Transmitter-receiver locations within ORBIT lab: T → R, A → B
and T1 → C to T16 → C.

type; for the other walls, we chose metallic and sheetrock wall
types.

The pillars on the radio path cause diffraction, reflection and
transmission, which affect the received power significantly.
Therefore, accurate modeling of the pillars is necessary. We
modeled the pillar walls using a sheetrock wall type. We know
that each pillar is built with a metallic block inside. Therefore,
we added a second layer of walls made of metal inside the
pillars. During our search for the best wall type combinations,
we learned how critical the electrical properties of the walls
are in addition to their geometric layout. We conclude that
a certain amount of preliminary trial-and-error (measurement,
comparison and adjustment) is needed for the prediction tool
to be confidently applied.

C. Path Gain, K-factor and Fade CDFs

The cumulative distribution function (CDF) of the path gain
(power ratio) can be obtained directly by sorting the measured
or simulated frequency response samples. We call this the
empirical CDF. A good fit to this curve is found in every
case to be the theoretical Ricean CDF, parameterized only by
the K-factor and average power gain.

Fig. 2 compares the path gain CDF’s for the path T → R.
We see that the theoretical curves (obtained for K-factors
estimated using either the moment method or the impulse
response method) are very good matches to the empirical
CDF’s. Also, the WiSE-based and VNA-based CDF’s of path
gain are very close to each other. We obtained similarly good
matches also for the other 17 links.

Table I summarizes the average path gains and the variation
of the K-factors for the 18 paths considered. The measured
and predicted values are seen to be in good agreement.
Additionally, our results show that, in indoor environments,
the K-factor is very low due to the transmissions through and

−80 −75 −70 −65 −60 −55 −50 −45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Path Gain [dB]

 

 

VNA Data
WISE Predictions
K=1.422 (Coherent Method)
K=1.3471 (Moment Method)
K=1.261 (WISE)

VNA

WISE

Fig. 2. Comparison of CDF’s of path gain (T → R). The curves shown
with K-factor are the Ricean CDFs. The VNA-derived, and WISE-predicted
CDFs look like one another and like the Ricean CDFs.

TABLE I
COMPARISION WISE AND VNA DATA

Av. Path Gain [dB] K RMS d. s. [ns]
VNA WiSE VNA WiSE VNA WiSE

T→R -53.01 -52.04 1.42 1.26 41 34
A→B -56.29 -55.18 0.58 0.82 58 48
T1→C -56.07 -57.05 0.19 0.46 67 52
T2→C -54.38 -56.52 0.20 0.82 62 51
T3→C -56.86 -55.27 0.16 0.73 73 56
T4→C -54.21 -55.97 0.28 0.66 60 53
T5→C -55.55 -56.40 0.22 0.38 68 57
T6→C -53.63 -55.44 0.24 0.54 61 61
T7→C -53.18 -55.08 1.13 0.68 58 56
T8→C -53.60 -55.76 0.30 0.61 60 56
T9→C -54.21 -56.15 0.31 0.35 61 55
T10→C -53.42 -55.51 0.53 0.56 65 58
T11→C -56.96 -56.13 0.36 0.32 74 56
T12→C -55.04 -55.99 0.30 0.67 71 57
T13→C -57.74 -55.83 0.10 0.52 68 58
T14→C -55.99 -55.69 0.13 0.59 66 52
T15→C -55.13 -55.14 0.29 0.69 64 55
T16→C -55.63 -55.23 0.08 0.50 64 54

reflections from the walls and objects in the surrounding. The
maximum K-factor we saw was 1.42.

D. RMS Delay Spread

The RMS delay spread, τrms, depends solely on the delay
differences among the rays and on their relative powers,
(7). Because the delay spread is based on moments of a
function, impulse response rays at the larger delays can have
an important impact on the calculated result, even if their
powers are very low. The VNA-derived impulse response,
being an inverse Fourier transform of measured frequency
response samples, has rays out to a maximum delay dictated
by the measurement bandwidth (1 GHz) and the number of
samples (1601), i.e., out to 1.6 μs. This is much larger than
the actual maximum delay in an indoor environment. The
additional ’rays’ in the VNA-derived impulse response are the
result of measurement noise and other measurement artifacts.
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To fairly compare the VNA-derived τrms with the value
predicted using WiSE, we should use a maximum delay, tη,
that is common to both calculations. We chose the delay at
which the WiSE ray powers drops permanently below -30 dB
relative to the strongest ray in the impulse response. Thus,
from both the VNA-derived and WiSE-predicted impulse
responses, we calculate RMS delay spread using rays from
relative delay 0 to relative delay tη .

The RMS delay spreads for 18 links are shown in Table 1.
They differ in most cases by 20 percent or less, with the VNA-
derived estimates always being higher. In just a few cases, the
VNA-derived value is as much as 30 percent higher.

The consistent increase of VNA-derived values over WiSE
predictions may be due to imperfect calibration of the VNA
data. The VNA-derived delay spread can be shown to be
sensitive to calibration errors, and in a way that would increase
its estimated value (c.f., [15]). Correcting for this impairment
would improve the comparisons shown. This bears further
study.

VI. TIME VARIATIONS IN DIFFERENT ENVIRONMENTS

A. Motivation and Goal

If there is considerable motion of people in an otherwise
fixed wireless environment, there will be temporal changes
in the response along a transmit-receive path, i.e., the static
responses predicted using WiSE will not suffice to fully
characterize the channel. We can envision the full response
on a given path as being the sum of a static one (e.g., one
predicted using site-specific ray tracing) plus a zero-mean
time-varying one, based on some type of empirical model.
More specifically, the time-varying part can be thought of as
a set of time-varying processes added to the rays of the static
part.

Some questions that arise are: Which rays (or taps of the
effective impulse response) will be time-varying? What will
be the relative strengths, e.g., the mean power of the time-
varying part relative to the power of the static part? How will
this ratio vary across taps? Can the time variations of the tap
gains be modeled as random processes and, if so, what kind?
How will the answers to these questions depend on the channel
bandwidth, the specific site, the specific path, and the type of
surrounding motion?

A full set of answers to these questions would lead to a
highly useful model for the time-varying part of the wireless
channel response. At the same time, acquiring these answers
would take an extremely comprehensive measurement pro-
gram spanning many environments, paths, motion scenarios
and bandwidths. We have made numerous measurements, as
we will report here, but not nearly enough to satisfy such
requirements. Our less ambitious goal is to show, for some typ-
ical motion scenarios, that (1) only a few impulse response tap
gains show significant variations; and (2) a well-known family
of Gaussian random processes (the autoregressive processes, to
be described later) can be used to characterize the time-varying
nature of the tap gains. Since these findings apply across all
the cases studied, we regard them as providing a highly useful
starting point for time-variation modeling of indoor channels
with fixed transmitter and receiver.

We defined four different kinds of motion scenarios-the
static one (no motion) and three others-and we conducted a
set of temporal measurements for each. The specific motion
categories and the associated experiments are described next.

B. Measured Environments

Static Environment: We placed the antennae in the ORBIT
room 3.65 m apart and measured the channel response at N =
1601 frequencies between 3.0 and 4.0 GHz. We repeated the
measurement M = 100 times, at 2-second intervals. During
the experiment, no one was present in the room.

Quasi-Static Environment: We placed the antennae in the
ORBIT room 7.9 m apart and measured the channel response
at N = 1601 frequencies between 3.0 and 3.1 GHz. We
repeated the measurement M = 600 times, at 2-second
intervals. During the experiment, 10-15 people were sitting
around a table placed between the antennae and were eating
lunch. Though they were sitting most of the time, people were
also coming or leaving from time to time, as in a typical
conference room scenario.

Random Movement: We placed the antennae in the ORBIT
room 11.5 m apart and measured the channel response at
N = 401 frequencies between 2.5 and 2.7 GHz. We repeated
the measurement M = 450 times, at 2-second intervals.
During the experiment, only one person was walking, running
randomly between and around the antennae. There were no
other people present in the room.

Office Space: This experiment was conducted in the office
area of WINLAB. The receiver was placed near the door and
the transmitter was placed at 10 m distance at a corner across.
We measured the channel between 3.0 and 3.1 GHz at N =
1601 equidistant frequencies. We repeated the measurement
M = 750 times, at 2-second intervals. During the experiment,
10-15 people were sitting in their cubicles and walking in and
out from time to time.

These experiments were conducted at different times as part
of different projects at our laboratory. For that reason, the
combination of N, M and bandwidth, W, was different for
each of the four above scenarios. The point we make here is
that, despite differences in (N,M,W), the time variations of the
tap gains for each category of people motion lend themselves
to characterization by well-known random processes.

To study the four motion scenarios we defined and com-
puted several quantities as follows: The total power gain (sum
of squared magnitude of all impulse response components)
is denoted by Ptrial and is computed for each measurement
(trial). The average of Ptrial over the M measurements is
denoted by Pavr . Departures of the set of Ptrial values from
Pavr reflect the temporal fluctuations of the ray (or tap)
gains. The mean-square fluctuation of the nth tap’s squared
magnitude about its average value is denoted by σtap(n) or
just σtap.

C. Results

1) Static Environment: In the static environment the chan-
nel response is nearly constant. Ptrial deviates at most 1%
from Pavr . The variations of the individual tap power gains
are also negligible. σtap at the most variable tap corresponds
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to only 0.3% of Pavr. Since the variations among the trials
are insignificant, the channel response measured for one trial
suffices to describe the environment. This was the case for the
experiments that produce Table I.

2) Quasi Static Environment: Fig. 3 shows the ratio of
Ptrial to Pavr in the quasi-static environment. Ptrial deviates
up to 40% from Pavr. Fig. 4 shows σtap normalized by Pavr.
Only four taps have σtap/Pavr greater than 2%. This 2%
threshold is used here for comparing different environments,
not for modeling purposes.

3) Random Movement: In this environment, Ptrial deviates
up to 20% from Pavr. The variation shows homogeneity,
i.e., there are no trends or huge variations. Not all of the
individual rays contribute to this variation in the same way.
We plotted σtap, normalized by Pavr and saw that two taps
contribute most to the variation of Pavr . For all other taps in
this environment, σtap is less than 2% of Pavr .

The reasons that some of the tap gains show significant

variation can be explained as follows. A moving object (e.g.,
a person or a clustered group of people) corresponds to one
(or possible two) delay bins of the impulse response. The tap
gain for each such delay bin will vary with time. For delays
corresponding to non-moving objects, the tap gain will be
essentially constant. The sets of time samples taken for the
highly variable tap gains showed, in most cases, a reasonable
conformity to a complex Gaussian distribution. This is likely
due to the many returns from numerous scatterers (people),
and the central limit theorem.

4) Office Space: In this environment, Ptrial deviates up
to 50% from Pavr. The variation has multiple means and
slopes. We plotted the standard deviations of the tap power
gains, σtap, normalized by Pavr , and saw that seven taps have
normalized standard deviations greater than 2%.

VII. TIME VARIATION MODELING

A. Prior Work on Autoregressive Processes

Autoregressive processes have been used for spectrum
estimation purposes [16] and for modeling the variation of
the channel response across frequencies [17]. In [17], the
authors showed that a second-order AR process is sufficient to
model the channel response across frequencies in a wideband
indoor environment. Later, this approach was used in the ultra-
wideband (UWB) channel modeling of indoor environments,
[18]-[19]. A second-order AR process is proposed in [18]
to capture the main characteristics of the UWB channel. In
these studies, the frequency response is assumed to show
insignificant change across time. To the best of our knowledge,
autoregressive processes have not been used to characterize
temporal variations of channel responses between fixed termi-
nals.

B. Autoregressive Integrated Moving Average (ARIMA) Mod-
els of the Variations

We measure the complex channel response at N equally
spaced frequency bins within a frequency range; we repeat this
experiment M times within a time interval; and we define a
matrix H, where the entry in row i and column j corresponds
to the complex channel response value at frequency fi and
trial tj :

H(fi, tj) = H(fi) + δH(fi, tj) i = 1 . . .N j = 1 . . .M.

H(fi) is the mean of a the channel response over M time
instants at frequency fi; δH(f, t) is the time varying part;
and we model δH(f, t) through AR processes.

Specifically, we transform δH(f, t) into the time domain
and obtain δh(n, t). The (complex) variation of δh(n, t) at
tap n across trials t constitutes a time series. We denote this
time series as x, and we model it using ARIMA processes. We
use the Box-Jenkins methodology, described in the Appendix,
which also classifies the different members of the ARIMA
family of processes.

VIII. ARIMA MODELING AND RESULTS

We now describe the modeling of x at a single tap in
each environment. Models for the other significant taps can be
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Fig. 5. Mean and standard deviation (quasi-static environment).

found in a similar way. We will demonstrate the Box-Jenkins
methodology step by step as we find an appropriate model for
the time variation in quasi-static environments. For the other
environments, we will merely summarize the results.

A. Quasi-Static Case

Figure 4 shows that tap #4 is the most time-varying one in
this case. We now model the discrete time series x for this
tap.

1) Identification:
a) Mean and Variance: A stationary time series has the

window mean and standard deviation agreeing with the overall
data mean and variance to a great extent. We compute local
means and variances of the absolute tap gain shown in Fig. 5
using sliding windows of size 50. 50% of the window mean
samples deviate from the data mean by at most 15% and
90% of the window mean samples are within 30% of the data
mean. Also, 90% of the window standard deviation samples
are within 30% of the data standard deviation. This data can
be classified as statistically stationary.

b) Auto Correlation Function (ACF): For an MA process
of order q the ACF is zero after the lag q. For an AR process
it decays to zero exponentially or as a mixture of damped
sine waves. Figure 6 shows the ACF of x. The horizontal line
at |ρk| = 0.0982 (starting at lag 34) shows the zero threshold
computed using the Barlett approximation (Eq.(2.1.13) in [20])
which gives the variance of the estimated autocorrelation
values ρk at lags beyond which the theoretical ACF may be
deemed to have died out. The ACF decays exponentially and
is effectively 0 after the lag 33.

c) Partial Correlation Function (PCF): For a stationary
process X , the partial autocorrelation at the kth lag is the
correlation coefficient between X1 and Xk+1 after eliminating
the effect of X2, . . . , Xk. For an AR process of order p, the
PCF is zero after the lag p. Fig. 7 shows the PCF of x. The
standard error σ of the estimated PCF values is approximately
1/

√
n, where n is the number of samples. The horizontal

2σ lines are used as zero thresholds. The PCF is below the
threshold after the third lag.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag k

A
ut

oc
or

re
la

tio
n 

|ρ
k|

Fig. 6. Auto Correlation Function (quasi-static environment).
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Fig. 7. Partial Correlation Function (quasi-static environment).

d) Choosing the possible models: Since the PCF is
effectively zero after the third lag and the ACF tails off
exponentially, we conclude that an AR(3) model is suitable.
The value of PCF at the second lag is very small; therefore,
the AR(2) model is also worth considering.

2) Estimating Parameters: We have estimated AR coef-
ficients for the AR(2) and AR(3). The coefficients for the
AR(2) model are a2(1) = 1.0000, a2(2) = −0.5346+0.0249i,
a2(3) = −0.1833 − 0.0235i. The coefficients for the AR(3)
model are a3(1) = 1.0000, a3(2) = −0.5175 + 0.0221i,
a3(3) = −0.1332− 0.0228i, a3(4) = −0.0934 + 0.0032i.

3) Diagnostic Check: The AR(2) model and the AR(3)
model in Fig. 8 show variations similar to those of the data.
Choosing either one of them would not make much difference.
For the cases where it is not so obvious which model is
better, it is useful to have a criterion which indicates the
appropriate model. We used the Akaike Information Criterion
(AIC) to compare the models [21]. The AIC was derived by
minimizing an information theoretic function, and it includes
a penalty term for extra AR coefficients. The model which has
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Fig. 9. Comparison of autocorrelation function of the data and AR(3) process
(quasi-static environment).

the lowest AIC metric is chosen. In this case, the AIC was
nearly the same for both models: For the AR(2) model, it was
−15.68, and for the AR(3) model, it was −15.69.

The comparison of autocorrelation functions the data x and
of the AR(3) process is shown in Fig. 9. The autocorrelation
function of the AR process has a similar decay as the data.

B. Random-Movement Case

Here, we modeled x at the third most varying tap. For this
tap, 90% of the window mean samples deviate from the data
mean by at most 18%; and 90% of the window standard
deviations are within 17% of the data standard deviation.
Thus, the window mean and standard deviation agree to a
great extent with the data mean and standard deviation, so the
process is deemed to be stationary. The ACF in this case tails
off as a mixture of exponential decays and damped sine waves.
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Fig. 10. AR(14) process compared with data (random movement).
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Fig. 11. ARIMA(15,1,0) model compared with data (office space).

The PCF is zero after the first tap. Fig. 10 shows an AR(14)
process which has variations similar to measured data.

C. Office Space

Here, we modeled x at the most varying tap. The mean
function in this case is not constant. Moreover, the all-
pole model has poles outside the unit circle. Therefore, the
process is not stationary. We applied a difference operator and
investigated stationarity again.

To begin, we compared the window means and standard
deviations with those for the first order difference ∇x. The
local standard deviations were found to be close to those for
the data. The all-pole model now has all of the poles inside the
unit circle. The window mean is close to zero, which is also
the data mean. Therefore, the first order difference process ∇x
is deemed to be stationary.
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Next, we find an ARMA model for ∇x. The ACF of ∇x
initially decays exponentially and then tails off as damped
sine waves. The PCF has an exponential-dominated decay. It
is effectively zero after lag 11. We choose an ARIMA(15,1,0)
process here, as shown in Fig. 11.

IX. CONCLUSION

The comparisons in Table I for the 18 paths we studied
show that, the parameters predicted using WiSE agree well
with measurements. This suggests that a well-designed ray-
tracing program such as WiSE can be used with confidence
for studying systems in indoor wireless environments.

In the course of our investigation, we identified two con-
ditions that can compromise prediction accuracy of critical
path properties: (1) Paths where diffraction is the primary
propagation mechanism; and (2) environments for which the
material properties of the walls, floor and ceiling are not
well-specified. The first condition is relatively rare in indoor
environments; the second condition can be avoided by using
a small number of preliminary measurements, augmented by
comparisons with predictions and corresponding adjustments
of the assumed material properties.

Further work in this area should include, primarily, its
extension to other paths and to other indoor environments.
In addition, a limited amount of system studies would help to
test the conjecture that the parameters studied here (path gain,
K-factor and RMS delay spread) comprise a sufficient set for
capturing the properties of a channel response.

We have shown that the time variations of the channel re-
sponse in an indoor environment are not negligible in common
scenarios such as people sitting around a table or working
in an office. We stochastically modeled the time variation
of the channel response about the mean using members of
the ARIMA family of processes and showed that this can
lead to an accurate representation. Our key finding is that
ARIMA processes are capable of describing the time variation
of the impulse response terms in these environments. We
obtained excellent agreement using such processes for each
of the categories identified and measured. Thus, one can
choose to model the static indoor channel response through
environment simulators and the fluctuation about it through
ARIMA processes.
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APPENDIX

A. The Autoregressive (All-Poles) Processes, AR

The AR model pertains to an all-pole transfer function. A
wide sense stationary AR process of order p is generated by
passing a white noise sequence through an all-pole filter with
a transfer function

H(z) =
1

1 +
∑p

k=1 ap(k)z−k
, (A-1)

where ap(k) is the kth AR coefficient of the pth-order filter.

The Yule Walker equations [16] provide a relationship
between the filter coefficients and the autocorrelation se-
quence. The AR coefficients are determined by solving these
equations.

B. The Moving Average (All-Zeroes) Processes, MA

The MA process refers to an all-zero transfer function.
This process is generated by passing a white noise sequence
through a finite impulse response (FIR) filter having a transfer
function

H(z) = 1 +
q∑

k=1

bq(k)z−k. (A-2)

The Yule Walker equations for MA process are nonlinear in
the model coefficients, bq . To avoid solving non-linear equa-
tions, the coefficients can be determined from the coefficients
of a higher-order all-pole filter[16].

C. The Autoregressive Moving Average Proceses, ARMA

The ARMA process refers to the general case of a transfer
function with both poles and zeros. A wide sense stationary
ARMA (p,q) autoregressive process can be generated by
passing a white noise sequence through a filter having p poles
and q zeros:

H(z) =
1 +

∑q
k=1 bq(k)z−k

1 +
∑p

k=1 ap(k)z−k
(A-3)

An AR process is a special case of ARMA with q = 0; and
an MA process is a special case of ARMA with p = 0. The
filter coefficients aq and bq can be estimated solving Modified
Yule Walker Equations (MYWE) [16].

D. ARIMA

A desired property in applying a time series model is
statistical stationarity. Usually stationary time series can be
described by their fixed mean, fixed variance and autocorrela-
tion function. Many empirical series do not have a fixed mean
even though they exhibit homogeneity apart from local level
or trend. To make these time series stationary, the difference
operator ∇ is applied d times until the data become stationary.
The difference operator is defined as ∇x(n) = x(n)−x(n−1).
Assume that, for a series of the dth order difference, a
stationary ARMA(p,q) model is obtained. The model for
the nonstationary series can then be found by integrating
this ARMA(p,q) process d times. Such processes are called
Autoregressive Integrated Moving Average (ARIMA) (p,d,q).
It is easy to see that ARIMA is the most general class, with
ARMA being the subset of ARIMA for which d = 0.

The entire family of models called ARIMA was proposed
by Box and Jenkins [20] and is applicable to a wide variety
of situations. The Box-Jenkins technique is a methodology
for constructing an ARIMA process to characterize a given
time series. It involves a three-step procedure, consisting of
identification, model estimation and diagnostics. Identification
techniques are used to find out what particular kind of process
is appropriate. They make use of the autocorrelation and
partial autocorrelation functions. In the model estimation step,
the parameters for each process are estimated. To find out if the
fitted process adequately represent the data, diagnostic checks
are done. If the fit is not good, the steps are repeated again.



10 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 8, AUGUST 2009

E. The Autoregressive (All-Poles) Processes, AR

The AR model pertains to an all-pole transfer function. A
wide sense stationary AR process of order p is generated by
passing a white noise sequence through an all-pole filter with
a transfer function

H(z) =
1

1 +
∑p

k=1 ap(k)z−k
, (A-1)

where ap(k) is the kth AR coefficient of the pth-order filter.
The Yule Walker equations [16] provide a relationship

between the filter coefficients and the autocorrelation se-
quence. The AR coefficients are determined by solving these
equations.

F. The Moving Average (All-Zeroes) Processes, MA

The MA process refers to an all-zero transfer function.
This process is generated by passing a white noise sequence
through a finite impulse response (FIR) filter having a transfer
function

H(z) = 1 +
q∑

k=1

bq(k)z−k. (A-2)

The Yule Walker equations for MA process are nonlinear in
the model coefficients, bq. To avoid solving non-linear equa-
tions, the coefficients can be determined from the coefficients
of a higher-order all-pole filter[16].

G. The Autoregressive Moving Average Proceses, ARMA

The ARMA process refers to the general case of a transfer
function with both poles and zeros. A wide sense stationary
ARMA (p,q) autoregressive process can be generated by
passing a white noise sequence through a filter having p poles
and q zeros:

H(z) =
1 +

∑q
k=1 bq(k)z−k

1 +
∑p

k=1 ap(k)z−k
(A-3)

An AR process is a special case of ARMA with q = 0; and
an MA process is a special case of ARMA with p = 0. The
filter coefficients aq and bq can be estimated solving Modified
Yule Walker Equations (MYWE) [16].

H. ARIMA

A desired property in applying a time series model is
statistical stationarity. Usually stationary time series can be
described by their fixed mean, fixed variance and autocorrela-
tion function. Many empirical series do not have a fixed mean
even though they exhibit homogeneity apart from local level
or trend. To make these time series stationary, the difference
operator ∇ is applied d times until the data become stationary.
The difference operator is defined as ∇x(n) = x(n)−x(n−1).
Assume that, for a series of the dth order difference, a
stationary ARMA(p,q) model is obtained. The model for
the nonstationary series can then be found by integrating
this ARMA(p,q) process d times. Such processes are called
Autoregressive Integrated Moving Average (ARIMA) (p,d,q).
It is easy to see that ARIMA is the most general class, with
ARMA being the subset of ARIMA for which d = 0.

The entire family of models called ARIMA was proposed
by Box and Jenkins [20] and is applicable to a wide variety
of situations. The Box-Jenkins technique is a methodology
for constructing an ARIMA process to characterize a given
time series. It involves a three-step procedure, consisting of
identification, model estimation and diagnostics. Identification
techniques are used to find out what particular kind of process
is appropriate. They make use of the autocorrelation and
partial autocorrelation functions. In the model estimation step,
the parameters for each process are estimated. To find out if the
fitted process adequately represent the data, diagnostic checks
are done. If the fit is not good, the steps are repeated again.
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