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CONTINUOUS PHASE MODULATION (CPM)

In order to further improve bandwidth efficiency, some of the mobile radio systems use
special kind of frequency modulation schemes called continuous phase modulation - CPM.
The schemes are particularly attractive because they have constant envelope and excellent
spectral characteristics resulting from phase changes in a continuous manner.

The complex envelope of any CPM signal can be represented as:
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where,
A is the amplitude,
kf is the peak frequency deviation,
hf(t) is the frequency shaping pulse,
{xn} where xn∈{±1, ±3, ..., ±(M-1)} is the source symbol sequence,
M is the symbol alphabet size, and
T is the symbol duration.

The phase term Φ(t) for the time interval kT ≤ t ≤ (k+1)T can be rewritten as,
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where the first term corresponds to accumulated phase and the second term to current phase
from the beginning of current symbol period up to time t. Sometimes, Φ(t) is called excess
phase. The phase is therefore continuous as long as the frequency shaping function hf(t) does
not contain impulses.
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The frequency shaping function can be arbitrarily chosen. However, for the purpose of our
analysis, we will divide it in two possible forms:
• full response,  when the duration of hf(t) is equal to symbol period T, and
• partial response , when the duration of hf(t) is greater than symbol period T, thus is

extended across several symbols.

The equation (2) represents the excess phase for the time interval kT ≤ t ≤ (k+1)T and
combining all such intervals we can write v(t) in the standard form:
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The first term in the exponent of equation (4) represents the accumulated excess phase,
while the second term is the excess phase trajectory for the current source symbol.

Two parameters characterize this type of modulation:
• Average frequency deviat ion:
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• Modulation index:
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By choosing different shaping pulses hft), modulation indices h and alphabet sizes M we can
generate an infinite variety of different classes of CPM signals. Here, we will describe four
important schemes:
• Continuous phase frequency shift keying (CPFSK)
• Minimum shift keying (MSK)
• Partial response CPM
• Gaussian minimum shift keying (GMSK)

Continuous Phase Frequency Shift Key ing (CPFSK)

For CPFSK,

hf(t) = uT(t) – frequency shaping function is rectangular function,
_
kf = kf – average frequency deviation is equal to peak frequency deviation,

h = 2kfT , and









<=
≤≤=

<
=

tThTk

TtThttk

t

t

f

f

,2

0,/2

0,0

)(

ππ
ππβ     (8)

Since β(t) is continuous function of time, the CPM signals cannot be represented as discrete
points in the signal space diagram. Therefore, the CPM signals are represented by sketching
the excess phase (9) for all possible symbol sequences {xk}. The plot is called a phase tree .

 ∑
−

−∞=
−+=Φ

1

)()()(
k

n
kn kttxxTt ββ     (9)

Note that since the shaping function is rectangular, the phase changes are linear. For
example, the binary phase tree is shown in Figure 1.
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Figure 1 : Phase tree of binary CPFSK with an arbitrary modulation index

Minimum Shift Keying (MSK)

MSK is a special case of binary CPFSK, with modulation index h=0.5. For MSK
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The carrier phase, Φi(t) = 2πfct + Φ(t), during interval kT ≤ t ≤ (k+1)T is
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Rearranging,
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Now, during time interval kT ≤ t ≤ (k+1)T, the MSK band-pass signal can be represented as,
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From the above, we can see that in time interval kT ≤ t ≤ (k+1)T MSK signal has one of two
possible frequencies,
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The difference between these frequencies is 
T

fff LU 2
1=−=∆ . This is the minimum

frequency separation required to insure orthogonality with coherent modulation, hence the
name minimum shift keying. The power spectral density of MSK signal is depicted in Figure 2.
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Figure 2:  Power density spectra of MSK
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Partial Response CPM

Partial response CPM signals are a broad class of signals characterized by a frequency
shaping pulse hf(t) of duration greater that symbol period T. If hf(t) has duration KT, then
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The advantage of using partial response CPM is an improvement in the spectral
characteristics of the modulated signal by providing both a narrower main lobe and faster roll-
off of side lobes. Combining (14) and (15), the frequency shaping function can be written as:
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Gaussian Minimum Shift Keying (GMSK)

GMSK is a special case of partial response CPM that uses a low-pass pre-modulation filter
with transfer function:
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where B is the bandwidth of the filter. Since H(f) is the bell-shaped about f=0, the modulation
scheme has been named Gaussian MSK. The frequency shaping pulse is usually described
with BT – normalized filter bandwidth. Note that when BT decreases, the pulse has duration
greater than one symbol period T, thus introducing ISI. For this reason, systems using GMSK
(like GSM) must have strong equalizer. The relation between MSK and GMSK is illustrated
using power spectral densities with GMSK BT product equal BT=0.3 sketched in Figure 3.
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Figure 3:  Comparison between MSK and GMSK PSDs
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Most of the material presented above is based on information provided during class lectures.
Deeper description of some features is taken from
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Boston, 1996, and
[2] ‘Digital Communications’, John G. Proakis, McGraw-Hill, third edition

DETECTION THEORY

The purpose of this part is to revisit some of the basic concepts of detection of signals in
noise, as well as the way to calculate the probability of error for various modulation schemes.

Let us recall the basic principles of any general communication system. The transmitter
transmits a sequence of messages from a given alphabet {m1, m2, ... ,mM} of size M. The
messages are represented as signal waveforms s1(t), s2(t),..., sM(t), respectively, for the
purpose of transmission. Each of the waveforms has a duration T called the symbol period.
One waveform is transmitted every T seconds. The transmitted waveform depends on the
random sequence that is the actual information encoded for transmission. Recall that if the
input sequence were known in advance, no transmission would be necessary. Therefore,
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when the input message m equals mi i=0,1,...,M-1, the transmitted signal is si(t). Thus the
correspondence,

m = mi  ⇔  s(t) = si(t)   (18)

The a priori probabilities {P(mi)} of the occurrence of each of the input messages specify the
input source. A convenient way to synthesize and represent the transmitting signal waveforms
is to use orthonormal signal set defined for the whole transmitting signal set {si(t)}. Then each
and every signal from the given set {si(t)} will be represented as the linear combination of
orthonormal waveforms as:
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where the number N is dimension of the signal space. Note that N ≤ M.

Therefore, we can see that the signal si(t) is completely determined by coefficients sij in
equation (19) and therefore can be represented as a vector of these coefficients:

si = [si1, si2, ... ,sim]T, i = 0,1,...,M-1

where
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Usually, the signals are visualized in N-dimensional space, named signal space, where the
set {φi(t)} of orthonormal functions represent the axes. Thus, {sik} are projections of the signal
si(t) onto each of the axes. The axes are, of course, mutually perpendicular.

Recall that using such a representation, the white Gaussian noise has infinite dimensionality.
Fortunately, using the theorem of irrelevance, the only noise detectable and relevant for the
detection of signals {si(t)} is the one represented by its projections onto defined orthonormal
set, also called basis. Therefore, the relevant additive white Gaussian noise can also be
represented as a vector of same dimension N.
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Thus, the received signal vector can be represented as

x = si + w

where w is the additive white Gaussian noise (AWGN) vector. It can also be shown that if the
Gaussian noise process is of zero mean and variance N0/2, also the projections will be a set
of statistically independent set of Gaussian random variables with zero mean and same
variance N0/2. This property will significantly reduce the computational effort required for the
communication system probability of false detection analysis.

Having all this in mind, the design goal is to derive the rule for the detector that by observing
the received vector x would assign the transmitted message to it with minimum probability of
false decision. Ones such a detector is designed, it is called optimum detector. Note that the
optimality criterion is minimization of the probability of false detection.

Stating the problem more formally,

Given x, we form the set of a posterior probabilities defined as P{signal sj was transmitted | x}
for all signals from a given alphabet. The decision is then based on selecting the signal
corresponding to maximum a posteriori probability. Such a criterion is called MAP (maximum
a posteriori probability).

Then, our estimate m̂=mi would be wrong with probability

Pe (mi , x) = P(mi is not sent | x)   (20)
=1 – P(mi is sent | x)   (21)

Therefore, we have to maximize the probability term in equation (21) or equivalently to
minimize the equation (20). Hence, the decision rule is
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Using Bayes rule, the a posterior probabilities can be expressed as:
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In the above equation, it is evident that the denominator does not depend on transmitted
message and can therefore be neglected during detection process. A receiver that

determines m̂ by maximizing fx(x|mj) is called ML (maximum likelihood) receiver. Such a
receiver is often used when the a priori set of probabilities is not known. Note that when all
the transmitted messages are equally likely, the ML and MAP receivers yield the same result.
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When the noise is AWGN and the source sequence and noise are statistically independent,
we have that:
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is maximum for i=k. Note that maximizing this expression is equivalent to finding the i that
minimizes

|x – mi|
2 - 2σ2 ln P[mi]   (22)

This function is visualized geometrically in a signal space. Note that the first term represents
the square of the Euclidean distance in such a space. Whenever the input messages are
equally likely, the optimum decision rule is defined as finding the closest vector to the
received one in a defined signal space.

Using the above reasoning, we can divide the whole signal space into a set of regions Zi

covering the whole space and each corresponding to the message/transmitted signal vector
to which each point of the region is closer than to all other points.

When the input messages are not equally likely, the region boundaries, also called decision
boundaries, are appropriately modified in a way that at the boundary between two of the
signal vectors, the probability of decision mistake is equal.

Before giving the actual structure of optimum receiver, we will first rearrange square term of
the equation (22):
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Since the |x|2 term is independent of i the decision rule is equivalent to maximizing the
expression:
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(x.m i) + ci

where
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and is usually called the bias term. Note that |si|
2 is the signal energy.

From the above, there are at least two possible realizations of the optimum receiver:
• correlat ion receiver, and
• matched filter receiver

The structure of the correlation receiver is depicted in Figure 4, while matched filter receiver is
given in Figure 5.

Note that the correlation receiver first projects the received signal x(t) onto the orthonormal
set, thus forming the received signal vector x, and then performs the ‘dot-product’ operation
for all signal vectors si. Finally, the bias term is added to account for different signal a priori
probabilities and energies, and the largest result yields the minimum probability of error
estimate of the transmitted message.

Another version of the same receiver type avoids using multiplication. Instead, it makes use of
the filters matched to the orthonormal functions. By matched, we mean time reversed version
of the desired signal:

φφ1(T-t) is matched to φφ1(t) where T is symbol period
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By sampling the matched filter output at t=T, we receive the same result as with correlation
receiver. The rest of the detection procedure is the same.

Namely, the filter response would be:
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Another way of showing that these filters yield optimum decision with respect to error
probability is showing that they also yield the maximum signal to noise ratio (SNR) reception.
The formal proof is based on the Schwarz inequality and will not be given here.

Understanding all this, our final goal is to calculate the average probability of error. Recall that
in general case, the error will occur if a symbol mi is transmitted, and the received vector x
does not lie in a region Zi. Average probability of error is
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Assuming all the messages are equally likely, the above equation can be written as:
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where the second term corresponds to average probability of a correct decision. In a general
case, the above integral is very difficult to solve, sometimes computationally intractable. In
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such cases we can try to estimate the bound of the performance. One of the bound is called
union bound.

Recall from the probability theory that:
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with equality when all the events Ak are mutually exclusive. Taking this concept into our
detection problem, we can denote Aik as event that the observation vector x is closer to sk
than to si when mi was sent. Then, the conditional probability of error given that mi was sent is
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where P(Aik) is the probability that the vector x is closer to sk than to si. This will occur when
the projection of the noise onto a line that joins sk and si is greater than half the distance,
assuming that the messages are equally likely. Recall that the projection of the AWGN yields
the set of statistically independent random variables with equal mean and variance.
Therefore, we are only interested in the noise component that lies on that line. Developing
this, we have
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where dik is the distance between vectors sk and si, and erfc() is a standard complementary
error function. Using the union bound:
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Then, using the symmetry and assuming equally likely input messages, the total average
probability of error can be expressed as:



15

∑ ∑
≠
=

≠
=

=≤
M

ik
k

M

ik
k

ikik
e N

d
Q

N

d
erfcP

1 1 00

)
2

()
2

(
2
1

We shall now derive the average probability of error for some generally used modulation
schemes.

Coherent Binary Phase Shift Key ing (CBPSK)

With M = 2, the mapping of source symbols mi to the transmitting waveforms si(t), i = 1, 2 is
given by
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where fc is the carrier frequency, much greater than 1/Tb, and Eb is energy per transmitted bit.
The signal space looks like in Figure 6.
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Figure 6:  The signal space with decision regions for CBPSK

The basis function is: tf
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The appropriate decision rule for equally likely messages is: Choose m1 when x is greater
than 0 (in Z1), otherwise choose m2.
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Then,
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Assuming equally likely messages, that is also the total average probability of error for
CBPSK system.

Coherent Quadrature Phase Shift Key ing (CQPSK)

Transmitting signal is given by:
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where fc is the carrier frequency, much greater than 1/T, T is symbol period, and E is energy
per transmitted symbol. The signal space looks like in Figure 7.
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Figure 7:  The signal space with decision regions for CQPSK
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The basis functions are:
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The appropriate decision rule for equally likely messages is: Choose mi when x is lies in Zi,
where the regions are limited by axes.

Then,
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Then, the received vector x is:
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To calculate the average probability of error, note that QPSK system is equivalent to two
coherent BPSK systems that modulate two orthogonal carriers at the same frequency fc. Note
that E is the symbol energy and that each symbol represents two bits.

Therefore, the average probability of a symbol error for CQPSK system is:
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Then, expressing the probability of correct decision as Pc=(1-Pe)
2 we can calculate the total

average symbol error probability as:
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For large SNR, this can be approximated as:
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When the Gray encoding is used, as usually is, then one symbol error results most often in
only one bit error. Therefore, the bit error probability for CQPSK system will approximately be
half the symbol error:

Pe ≈ 0.5 Pse

Knowing that there are two bits per symbol and that the Es is symbol energy = 2*Eb, we can
express total average bit error probability for CQPSK system as:
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Note that for the same SNR, CBPSK and CQPSK systems have the same probability of error,
but with CQPSK we can transmit two times more data than with CBPSK.

M – ary Phase Shift Keying (M -PSK)

Transmitting signal is given by:
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where fc is the carrier frequency, much greater than 1/Ts, Ts is symbol period, and Es is
energy per transmitted symbol.

Note that Es = Eb log2M, Ts=Tblog2M

Using the union bound, the average bit error probability is given as:
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Note that as M increases, the distances among signal vectors decrease, thus the
performance deteriorates.

Coherent Binary Frequency Shift Key ing (CBFSK)

For coherent binary frequency shift keying, we have transmitting signals:
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The transmitted signal vectors can then be represented as:
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The signal space representation is shown in Figure 8.
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Figure 8:  Signal space representation for CBFSK

The decision rule is: Choose m1 when x1>x2, otherwise choose m2.

The probability of error is given as:
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The comparison among several M-PSK modulation schemes with respect to bandwidth
efficiency and power efficiency for the required BER of 10-6 is given in the following table.

M 2 4 8 16 32 64
ηp = Eb/N0 10.5 10.5 14 18.5 23.4 28.5
ηb=Rb/B 0.5 1 1.5 2 2.5 3
Table 1:  The performance comparison among M-PSK modulation schemes for the required

BER of 10-6

Minimum Shift Keying (MSK)

Recall that the MSK signal can be represented as:





 −+





 += ∑

−

−∞=
n

k

n
n

k
c xxt

T

x
fAts

222
2cos)(

1 ππππ

If we consider interval 0 ≤ t ≤ Tb and denote 
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where the phase term depends on the accumulated excess phase. Using phase trellis and
e.g. Viterbi decoding scheme, it can be shown that for high SNR, the average bit error
probability for MSK can be approximated as:
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