Wireless Communications Technologies

Course No: 16:332:546

Homework 1

1. (a) The characteristic function of $X_{i, n}$ is
$M_{X_{i, n}}(u)=E\left[\exp \left(j u X_{i, n}\right)\right]=(1-\lambda / n)+\exp (j u) \lambda / n=1+\frac{\lambda}{n}[\exp (j u)-1]$
Therefore,
$M_{Y_{n}}(u)=\left\{1+\frac{\lambda}{n}[\exp (j u)-1]\right\}^{n}$
(b) $\lim _{n \rightarrow \infty} M_{Y_{n}}(u)=\exp (\lambda(\exp (j u)-1))$,
which implies $\lim _{n \rightarrow \infty} Y_{n}$ is a Poisson random variable with mean and variance λ. (This follows from the fact that the mapping from a characteristic function to a distribution is 1:1)
2. $E\left[Y_{t}\right]=\mu D$

By definition $\phi_{Y}(t, s)=E\left[\left(X_{t+D}-X_{t}\right)\left(X_{s+D}-X_{s}\right)\right]$. Therefore,
$\phi_{Y}(t, s)=\sigma^{2}[\min (t+D, s+D)-\min (t+D, s)-\min (t, s+D)+\min (t, s)]+\mu^{2}[(t+D)(s+$ $D)-(t+D) s-t(s+D)+t s]$
There are 2 cases:
Case 1: $|t-s| \leq D$
$\phi_{Y}(t, s)=\sigma^{2}[D-|t-s|]+\mu^{2} D^{2}$
Case 2: $|t-s|>D$
$\phi_{Y}(t, s)=\mu^{2} D^{2}$
From Case 1 and Case 2, it is clear that Y_{t} is wide-sense-stationary. Further, since Y_{t} is Gaussian, it is strictly stationary!
3. The analog signal is sampled at $f_{s}=8 \mathrm{Khz}$. Each sample is quantized with $L=64$ levels of representation. Therefore the number of bits R required to represent each sample is

$$
R=\log _{2} L=6 \text { bits }
$$

The total bit rate after sampling and quantization is $f_{s} \times R$ Kbps.
The minimum transmission bandwidth required W is given as $W=\frac{1}{2 T}$, where T is the symbol duration of the M-ary PAM system.
(a) $M=2$

For $M=2$ amplitude levels, each pulse can represent $\log _{2} M=\log _{2} 2=1$ bit. Therefore,

$$
T=\frac{1}{f_{s} R} \log _{2} M=\frac{1}{f_{s} R}
$$

$\Rightarrow W=f_{s} R / 2=48 / 2 K h z=24 K h z$
(b) $M=4$

For $M=4$ amplitude levels, each pulse can represent $\log _{2} M=\log _{2} 4=2$ bits.
Therefore,

$$
T=\frac{1}{f_{s} R} \log _{2} M=\frac{1}{f_{s} R} \times 2
$$

$\Rightarrow W=f_{s} R / 4=48 / 4 K h z=12 K h z$
4. A bit 1 is represented by a pulse of height A for a duration of 1 second and a bit 0 is represented by sending no pulse for a duration of 1 second. The signals are transmitted over a AWGN channel with zero mean and power spectral density $1 / 2$. Let y denote the output of the integrator in Figure 1.

Figure 1: Receiver for the PCM System with On-off Keying
(a) For equiprobable bit-transmission, $p_{0}=p_{1}=1 / 2$. To find the optimum threshold λ that minimizes the probability of error, we need to solve the following equation

$$
\begin{equation*}
\frac{p_{0}}{p_{1}}=1=\frac{f_{Y}\left(\lambda_{\text {opt }} \mid 1\right)}{f_{Y}\left(\lambda_{\text {opt }} \mid 0\right)} \tag{1}
\end{equation*}
$$

Let us first find the density functions $f_{Y}(y \mid 1)$ and $f_{Y}(y \mid 0)$
When a 1 is transmitted

$$
Y=A+\int_{0}^{1} w(t) d t
$$

It follows that y is a Gaussian random variable with $E[Y \mid 1]=A$, and variance

$$
\sigma_{Y \mid 1}^{2}=E\left[\int_{0}^{1} \int_{0}^{1} w(t) w(u) d t d u\right]=\int_{0}^{1} \int_{0}^{1} \frac{1}{2} \delta(t-u) d t d u=\frac{1}{2}
$$

Therefore

$$
\begin{equation*}
f_{Y}(y \mid 1)=\frac{1}{\sqrt{\pi}} \exp \left(-(y-A)^{2}\right) \tag{2}
\end{equation*}
$$

Similarly, when a 0 is transmitted

$$
Y=0+\int_{0}^{1} w(t) d t
$$

and it follows that y is a Gaussian random variable with $E[Y \mid 0]=0$, and variance

$$
\sigma_{Y \mid 0}^{2}=E\left[\int_{0}^{1} \int_{0}^{1} w(t) w(u) d t d u\right]=\int_{0}^{1} \int_{0}^{1} \frac{1}{2} \delta(t-u) d t d u=\frac{1}{2}
$$

Therefore

$$
\begin{equation*}
f_{Y}(y \mid 0)=\frac{1}{\sqrt{\pi}} \exp \left(-y^{2}\right) \tag{3}
\end{equation*}
$$

Using equations (2) and (3) in equation (1), we get

$$
1=\frac{f_{Y}\left(\lambda_{\text {opt }} \mid 1\right)}{f_{Y}\left(\lambda_{o p t} \mid 0\right)}=\frac{\exp \left(-\left(\lambda_{\text {opt }}-A\right)^{2}\right)}{\exp \left(-\lambda_{o p t}^{2}\right)}
$$

Taking \log on both sides and rearranging, we get

$$
\lambda_{o p t}^{2}=\left(\lambda_{o p t}-A\right)^{2}
$$

$\Rightarrow \lambda_{\text {opt }}=A / 2$.
I guess you could have guessed this answer knowing that either A or 0 was being transmitted with equal probability in AWGN of zero mean!
(b) Using the threshold in part (a), i.e., $\lambda=A / 2$, we can evaluate the average probability of error for this receiver in terms of the the complementary error function $\operatorname{erfc}(\mathrm{x})$ as follows :
Consider a zero being transmitted, then the conditional probability of making an error is

$$
P_{e 0}=P\left(\left.y>\frac{A}{2} \right\rvert\, 0\right)=\int_{A / 2}^{\infty} \frac{1}{\sqrt{\pi}} \exp \left(-y^{2}\right)=\frac{1}{2} \operatorname{erfc}\left(\frac{\mathrm{~A}}{2}\right)
$$

By symmetry it follows that $P_{e 1}=P_{e 0} \Rightarrow$

$$
P_{e}=P_{e 1}=P_{e 0}=\frac{1}{2} \operatorname{erfc}\left(\frac{\mathrm{~A}}{2}\right)
$$

5. The channel bandwidth is given to be $B=60 \mathrm{KHz}$ and the bit rate is $R_{b}=100 \mathrm{Kbps}$. The bit duration is therefore given as $T_{b}=1 / R_{b}=10 \mu s e c$.
The signal bandwidth can be found as $W=\frac{1}{2 T_{b}}=50 \mathrm{kHz}$
Therefore, the raised cosine pulse should be designed such that its rolloff factor α satisfies

$$
B=W(1+\alpha)
$$

$\Rightarrow \alpha=0.2$
6. Consider a set of orthonormal basis functions $\left\{\phi_{j}(t)\right\}_{j=1}^{N}$. Let $w(t)$ be an AWGN process of zero mean and p.s.d. $\frac{N_{0}}{2}$.

We need to show that the sequence $\left\{w_{j}\right\}_{j=1}^{N}$ are i.i.d. Gaussian random variables, where

$$
w_{j}=\int_{0}^{T} w(t) \phi_{j}(t) d t, \quad j=1, \cdots, N
$$

Since $w(t)$ is a Gaussian process, it follows that w_{j} is a Gaussian random variable. Further, $E\left[w_{j}\right]=0$, since $w(t)$ is zero mean.
Consider the covariance function

$$
\operatorname{Cov}\left(w_{j} w_{k}\right)=E\left[w_{j} w_{k}\right]=E\left[\int_{0}^{T} w(t) \phi_{j}(t) d t \int_{0}^{T} w(t) \phi_{k}(t) d t\right]
$$

Rearranging the integrals \Rightarrow

$$
\operatorname{Cov}\left(w_{j} w_{k}\right)=E\left[\int_{0}^{T} \int_{0}^{T} w(t) \phi_{j}(t) w(u) \phi_{k}(u) d t d u\right]
$$

Taking the expectation inside the integral \Rightarrow

$$
\operatorname{Cov}\left(w_{j} w_{k}\right)=\int_{0}^{T} \int_{0}^{T} \phi_{j}(t) \phi_{k}(u) E[w(t) w(u)] d t d u
$$

But $E[w(t) w(u)]=\frac{N_{0}}{2} \delta(t-u) \Rightarrow$

$$
\operatorname{Cov}\left(w_{j} w_{k}\right)=\frac{N_{0}}{2} \int_{0}^{T} \phi_{j}(t) \phi_{k}(t) d t=0
$$

$\Rightarrow w_{j}$ and w_{k} are uncorrelated.
When $j=k, \operatorname{Cov}\left(w_{j} w_{j}\right)=\operatorname{Var}\left(w_{j}\right)=\frac{N_{0}}{2} \Rightarrow$ the random variables w_{j} have the same variance as well.
Therefore, the sequence $\left\{w_{j}\right\}_{j=1}^{N}$ are uncorrelated and identically distributed. Since they are Gaussian, it follows that they are also independent.
7. We first observe that the signals $\left\{s_{i}(t)\right\} i=1,2,3$ are linearly independent. The energy of signal $s_{1}(t)$ is given as

$$
E_{1}=\int_{0}^{T} s_{1}^{2}(t) d t=4
$$

where $T=3$. Therefore, the first basis function is

$$
\phi_{1}(t)=\frac{s_{1}(t)}{\sqrt{E_{1}}}= \begin{cases}1, & 0 \leq t \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Based on the definition of the coefficients as

$$
\begin{equation*}
s_{i j}=\int_{0}^{T} s_{i}(t) \phi_{j}(t) d t \tag{4}
\end{equation*}
$$

we can find that $s_{21}=-4$.
Based on definition of the function $g_{i}(t)$ as

$$
\begin{equation*}
g_{i}(t)=s_{i}(t)-\sum_{j=1}^{i-1} s_{i j} \phi_{j}(t) \tag{5}
\end{equation*}
$$

we can evaluate $g_{2}(t)$ as

$$
g_{2}(t)= \begin{cases}-4, & 1 \leq t \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

The second basis function is now given as

$$
\phi_{2}(t)=\frac{g_{2}(t)}{\sqrt{\int_{0}^{T} g_{2}^{2}(t) d t}}= \begin{cases}-1, & 1 \leq t \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

Using equation (4), we can now compute

$$
s_{31}=3, s_{32}=-3
$$

Using the above coefficients in (5), we get

$$
g_{3}(t)= \begin{cases}3, & 2 \leq t \leq 3 \\ 0, & \text { otherwise }\end{cases}
$$

Hence, the third basis function is given as

$$
\phi_{3}(t)=\frac{g_{3}(t)}{\sqrt{\int_{0}^{T} g_{3}^{2}(t) d t}}= \begin{cases}1, & 2 \leq t \leq 3 \\ 0, & \text { otherwise }\end{cases}
$$

We can write the signals in terms of the basis functions as

$$
\begin{gathered}
s_{1}(t)=2 \phi_{1}(t) \\
s_{2}(t)=-4 \phi_{1}(t)+4 \phi_{2}(t) \\
s_{3}(t)=3 \phi_{1}(t)-3 \phi_{2}(t)+3 \phi_{3}(t)
\end{gathered}
$$

8. Consider the set of signals $\left\{s_{i}(t)\right\}_{i=1}^{i=4}$, where the signal $s_{i}(t)$ is of the form

$$
s_{i}(t)= \begin{cases}\sqrt{\frac{2 E}{T}} \cos \left(2 \pi \frac{t}{T}+i \frac{\pi}{4}\right), & 0 \leq t \leq T \\ 0, & \text { otherwise }\end{cases}
$$

Observe that using the cosine formula $\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)$, we can write each of the above signals as

$$
s_{i}(t)= \begin{cases}\sqrt{\frac{2 E}{T}}\left[\cos \left(2 \pi \frac{t}{T}\right) \cos \left(i \frac{\pi}{4}\right)-\sin \left(2 \pi \frac{t}{T}\right) \sin \left(i \frac{\pi}{4}\right)\right], & 0 \leq t \leq T \\ 0, & \text { otherwise }\end{cases}
$$

Therefore each signal can be written as a weighted sum of the two functions $\cos \left(2 \pi \frac{t}{T}\right)$ and $\sin \left(2 \pi \frac{t}{T}\right)$. Do these two functions make an orthonormal basis ?
They do if we choose $\phi_{1}(t)=\sqrt{\frac{2}{T}} \cos \left(2 \pi \frac{t}{T}\right)$ and $\phi_{2}(t)=\sqrt{\frac{2}{T}} \sin \left(2 \pi \frac{t}{T}\right)$, since we can easily verify that

$$
\int_{0}^{T} \phi_{i}(t) \phi_{j}(t) d t= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

Therefore, each of the signals can now be written as

$$
s_{i}(t)= \begin{cases}\sqrt{E} \cos \left(i \frac{\pi}{4}\right) \phi_{1}(t)-\sqrt{E} \sin \left(i \frac{\pi}{4}\right) \phi_{2}(t), & 0 \leq t \leq T \\ 0, & \text { otherwise }\end{cases}
$$

Therefore the coefficients in the expansion are

$$
\begin{gathered}
s_{11}=\sqrt{E} \cos \left(\frac{\pi}{4}\right)=\sqrt{E / 2}, \quad s_{12}=-\sqrt{E} \sin \left(\frac{\pi}{4}\right)=-\sqrt{E / 2} \\
s_{21}=\sqrt{E} \cos \left(\frac{2 \pi}{4}\right)=0, \quad s_{22}=-\sqrt{E} \sin \left(\frac{2 \pi}{4}\right)=-\sqrt{E} \\
s_{31}=\sqrt{E} \cos \left(\frac{3 \pi}{4}\right)=-\sqrt{E / 2}, \quad s_{32}=-\sqrt{E} \sin \left(\frac{3 \pi}{4}\right)=-\sqrt{E / 2} \\
s_{41}=\sqrt{E} \cos \left(\frac{4 \pi}{4}\right)=-\sqrt{E}, \quad s_{42}=-\sqrt{E} \sin \left(\frac{4 \pi}{4}\right)=0
\end{gathered}
$$

