
Wireless Communications Technologies

Course No: 16:332:546

Homework 1

1. (a) The characteristic function of Xi,n is

MXi,n
(u) = E[exp(juXi,n)] = (1 − λ/n) + exp(ju)λ/n = 1 + λ

n
[exp(ju) − 1]

Therefore,

MYn(u) = {1 + λ
n
[exp(ju) − 1]}n

(b) limn→∞ MYn(u) = exp(λ(exp(ju) − 1)),

which implies limn→∞ Yn is a Poisson random variable with mean and variance λ. (This
follows from the fact that the mapping from a characteristic function to a distribution is
1:1)

2. E[Yt] = µD

By definition φY (t, s) = E[(Xt+D − Xt)(Xs+D − Xs)]. Therefore,

φY (t, s) = σ2[min(t+D, s+D)−min(t+D, s)−min(t, s+D)+min(t, s)]+µ2[(t+D)(s+
D) − (t + D)s − t(s + D) + ts]

There are 2 cases:

Case 1: | t − s |≤ D

φY (t, s) = σ2[D− | t − s |] + µ2D2

Case 2: | t − s |> D

φY (t, s) = µ2D2

From Case 1 and Case 2, it is clear that Yt is wide-sense-stationary. Further, since Yt is
Gaussian, it is strictly stationary!

3. The analog signal is sampled at fs = 8 Khz. Each sample is quantized with L = 64 levels
of representation. Therefore the number of bits R required to represent each sample is

R = log2 L = 6 bits

The total bit rate after sampling and quantization is fs × R Kbps.

The minimum transmission bandwidth required W is given as W = 1
2T

, where T is the
symbol duration of the M-ary PAM system.

(a) M = 2

For M = 2 amplitude levels, each pulse can represent log2 M = log2 2 = 1 bit.
Therefore,

T =
1

fsR
log2 M =

1

fsR
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⇒ W = fsR/2 = 48/2 Khz = 24 Khz

(b) M = 4

For M = 4 amplitude levels, each pulse can represent log2 M = log2 4 = 2 bits.
Therefore,

T =
1

fsR
log2 M =

1

fsR
× 2

⇒ W = fsR/4 = 48/4 Khz = 12 Khz

4. A bit 1 is represented by a pulse of height A for a duration of 1 second and a bit 0 is
represented by sending no pulse for a duration of 1 second. The signals are transmitted
over a AWGN channel with zero mean and power spectral density 1/2. Let y denote the
output of the integrator in Figure 1.

decide 0 or 1>
< l

Signal

Noise

0

1

dt

Figure 1: Receiver for the PCM System with On-off Keying

(a) For equiprobable bit-transmission, p0 = p1 = 1/2. To find the optimum threshold λ
that minimizes the probability of error, we need to solve the following equation

p0

p1
= 1 =

fY (λopt|1)

fY (λopt|0)
(1)

Let us first find the density functions fY (y|1) and fY (y|0)

When a 1 is transmitted

Y = A +
∫ 1

0
w(t)dt

It follows that y is a Gaussian random variable with E[Y |1] = A, and variance

σ2
Y |1 = E[

∫ 1

0

∫ 1

0
w(t)w(u)dtdu] =

∫ 1

0

∫ 1

0

1

2
δ(t − u)dtdu =

1

2

Therefore

fY (y|1) =
1√
π

exp(−(y − A)2) (2)

Similarly, when a 0 is transmitted

Y = 0 +
∫ 1

0
w(t)dt,
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and it follows that y is a Gaussian random variable with E[Y |0] = 0, and variance

σ2
Y |0 = E[

∫ 1

0

∫ 1

0
w(t)w(u)dtdu] =

∫ 1

0

∫ 1

0

1

2
δ(t − u)dtdu =

1

2

Therefore

fY (y|0) =
1√
π

exp(−y2) (3)

Using equations (2) and (3) in equation (1), we get

1 =
fY (λopt|1)

fY (λopt|0)
=

exp(−(λopt − A)2)

exp(−λ2
opt)

Taking log on both sides and rearranging, we get

λ2
opt = (λopt − A)2

⇒ λopt = A/2.

I guess you could have guessed this answer knowing that either A or 0 was being
transmitted with equal probability in AWGN of zero mean!

(b) Using the threshold in part (a), i.e., λ = A/2, we can evaluate the average probability
of error for this receiver in terms of the the complementary error function erfc(x) as
follows :

Consider a zero being transmitted, then the conditional probability of making an error
is

Pe0 = P (y >
A

2
|0) =

∫ ∞

A/2

1√
π

exp(−y2) =
1

2
erfc(

A

2
)

By symmetry it follows that Pe1 = Pe0 ⇒

Pe = Pe1 = Pe0 =
1

2
erfc(

A

2
)

5. The channel bandwidth is given to be B = 60 KHz and the bit rate is Rb = 100 Kbps.
The bit duration is therefore given as Tb = 1/Rb = 10 µsec.

The signal bandwidth can be found as W = 1
2Tb

= 50 kHz

Therefore, the raised cosine pulse should be designed such that its rolloff factor α satisfies

B = W (1 + α)

⇒ α = 0.2

6. Consider a set of orthonormal basis functions {φj(t)}N
j=1. Let w(t) be an AWGN process

of zero mean and p.s.d. N0

2
.
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We need to show that the sequence {wj}N
j=1 are i.i.d. Gaussian random variables, where

wj =
∫ T

0
w(t)φj(t)dt, j = 1, · · · , N.

Since w(t) is a Gaussian process, it follows that wj is a Gaussian random variable. Further,
E[wj] = 0, since w(t) is zero mean.

Consider the covariance function

Cov(wj wk) = E[wj wk] = E[
∫ T

0
w(t)φj(t)dt

∫ T

0
w(t)φk(t)dt]

Rearranging the integrals ⇒

Cov(wj wk) = E[
∫ T

0

∫ T

0
w(t)φj(t)w(u)φk(u)dtdu]

Taking the expectation inside the integral ⇒

Cov(wj wk) =
∫ T

0

∫ T

0
φj(t)φk(u)E[w(t)w(u)]dtdu

But E[w(t)w(u)] = N0

2
δ(t − u) ⇒

Cov(wj wk) =
N0

2

∫ T

0
φj(t)φk(t)dt = 0

⇒ wj and wk are uncorrelated.

When j = k, Cov(wj wj) = V ar(wj) = N0

2
⇒ the random variables wj have the same

variance as well.

Therefore, the sequence {wj}N
j=1 are uncorrelated and identically distributed. Since they

are Gaussian, it follows that they are also independent.

7. We first observe that the signals {si(t)} i = 1, 2, 3 are linearly independent.

The energy of signal s1(t) is given as

E1 =
∫ T

0
s2
1(t)dt = 4,

where T = 3. Therefore, the first basis function is

φ1(t) =
s1(t)√

E1

=

{
1, 0 ≤ t ≤ 1
0, otherwise

Based on the definition of the coefficients as

sij =
∫ T

0
si(t)φj(t)dt, (4)
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we can find that s21 = −4.

Based on definition of the function gi(t) as

gi(t) = si(t) −
i−1∑
j=1

sijφj(t), (5)

we can evaluate g2(t) as

g2(t) =

{ −4, 1 ≤ t ≤ 2
0, otherwise

The second basis function is now given as

φ2(t) =
g2(t)√∫ T

0 g2
2(t)dt

=

{ −1, 1 ≤ t ≤ 2
0, otherwise

Using equation (4), we can now compute

s31 = 3, s32 = −3

Using the above coefficients in (5), we get

g3(t) =

{
3, 2 ≤ t ≤ 3
0, otherwise

Hence, the third basis function is given as

φ3(t) =
g3(t)√∫ T

0 g2
3(t)dt

=

{
1, 2 ≤ t ≤ 3
0, otherwise

We can write the signals in terms of the basis functions as

s1(t) = 2φ1(t)

s2(t) = −4φ1(t) + 4φ2(t)

s3(t) = 3φ1(t) − 3φ2(t) + 3φ3(t)

8. Consider the set of signals {si(t)}i=4
i=1, where the signal si(t) is of the form

si(t) =

{ √
2E
T

cos(2π t
T

+ iπ
4
), 0 ≤ t ≤ T

0, otherwise

Observe that using the cosine formula cos(a + b) = cos(a) cos(b) − sin(a) sin(b), we can
write each of the above signals as
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si(t) =

{ √
2E
T

[cos(2π t
T
) cos(iπ

4
) − sin(2π t

T
) sin(iπ

4
)], 0 ≤ t ≤ T

0, otherwise

Therefore each signal can be written as a weighted sum of the two functions cos(2π t
T
) and

sin(2π t
T
). Do these two functions make an orthonormal basis ?

They do if we choose φ1(t) =
√

2
T

cos(2π t
T
) and φ2(t) =

√
2
T

sin(2π t
T
), since we can easily

verify that ∫ T

0
φi(t)φj(t)dt =

{
1, ifi = j
0, ifi �= j

Therefore, each of the signals can now be written as

si(t) =

{ √
E cos(iπ

4
) φ1(t) − √

E sin(iπ
4
) φ2(t), 0 ≤ t ≤ T

0, otherwise

Therefore the coefficients in the expansion are

s11 =
√

E cos(
π

4
) =

√
E/2, s12 = −

√
E sin(

π

4
) = −

√
E/2

s21 =
√

E cos(
2π

4
) = 0, s22 = −

√
E sin(

2π

4
) = −

√
E

s31 =
√

E cos(
3π

4
) = −

√
E/2, s32 = −

√
E sin(

3π

4
) = −

√
E/2

s41 =
√

E cos(
4π

4
) = −

√
E, s42 = −

√
E sin(

4π

4
) = 0

6


