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Abstract—Routing protocols in multi-hop cognitive radio net-
works (CRNs) can be classified into two main categories: local
and global routing. Local routing protocols aim at decreasing
the overhead of the routing process while exploring the route by
choosing, in a greedy manner, one of the direct neighbors. On
the contrary, global routing protocols choose the optimal route
by exploring the whole network to the destination paying the
flooding overhead cost. In this paper, we propose a primary user-
aware k-hop routing scheme where k is the discovery radius. This
scheme can be plugged into any CRN routing protocol to adapt,
in real time, to network dynamics like the number and activity
of primary users. The aim of this scheme is to cover the gap
between local and global routing protocols for CRNs. It is based
on balancing the routing overhead and the route optimality, in
terms of primary users avoidance, according to a user-defined
utility function. We analytically derive the optimal discovery
radius (k) that achieves this target. Evaluations on NS2 with
a side-by-side comparison with traditional CRNs protocols show
that our scheme can achieve the user-defined balance between
the route optimality, which in turn reflected on throughput and
packet delivery ratio, and the routing overhead in real time.

Keywords—Cognitive radio networks, Routing optimality-
scalability tradeoff, Routing protocols

I. INTRODUCTION

1Cognitive Radio Networks (CRNs) present a promising
solution for spectrum scarcity in wireless networks to cope
with the ever-increasing demand for higher bandwidth in
mobile communications [1], [2]. In CRNs, unlicensed sec-
ondary users (SUs) opportunistically utilize vacant portions of
the spectrum without interfering with licensed primary users
(PUs). This promises a large set of potential applications, given
the scarcity of the unlicensed wireless spectrum, including
distributed mobile applications for high-demand and highly-
crowded scenarios such as the Internet of Things, high-quality

1An earlier version of this paper appeared in the proceedings of IEEE Global
Communications Conference (GLOBECOM) 2015.

mobile video, and disaster or emergency response settings. One
example of these applications is the recent Spectrum Collab-
oration Challenge (SC2) proposed by DARPA in 2016 [3]. In
this challenge, “competitors will reimagine a new, more effi-
cient wireless paradigm in which radio networks autonomously
collaborate to dynamically determine how the spectrum should
be used moment to moment”. Despite this promise, one of
the main problems that impact the performance of multi-hop
CRNs is routing. Compared to traditional ad hoc networks,
routing in CRNs has to deal with the unique challenges of
dynamic spectrum availability (due to the stochastic behavior
of primary and secondary users) [4], resource heterogeneity
(resulting from the availability of different channels and radios
on the same node), and synchronization between nodes on
different channels, among others.

To tackle these routing challenges in CRNs, routing pro-
tocols have attracted the attention of a large number of
researchers [5], [6]. These protocols can be categorized into
two main classes: global and local routing protocols. Topology-
based (global) routing protocols, e.g. [7]–[11], discover all
possible routes to the destination by flooding the network with
control packets and select the optimal route based on a defined
routing metric. In general, there is a large number of ways
for defining optimality. One approach is to design a multi-
objective optimization function; this would be cumbersome
and could rather focus on one metric to address its impact from
different perspectives. Despite this optimality, these protocols
do not scale and are not able to quickly adapt to support
topological changes as a result of high mobility or variations
in network size. On the other hand, geographic (local) routing
protocols, e.g. [12]–[18], make localized greedy decisions
at each hop by selecting the best one-hop neighbor from
those geographically closer to the destination. Such greedy
approaches take local optimal decisions to rapidly adapt to
network dynamics without flooding the network with control
packets. However, they suffer from falling into local optima.
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Fig. 1: The tradeoff between local and global routing.

Consequently, an inevitable tradeoff exists between the
optimality of a chosen route and the routing overhead as shown
in Figure 1 which shows the spectrum of different routing
protocols in CRNs. The ultimate factor distinguishing such
solutions is the discovery radius k. We define the discovery
radius k as the number of hops to which the route requests are
broadcast before sending a route reply. Lower values of k, usu-
ally one, result in low overhead non-optimal solutions, which
is the typical case in geographic-based routing protocols. At
the other end of the spectrum, increasing k widens the route
discovery space, ultimately leading to optimal solutions (for
k = ∞) at the expense of high overhead. Figure 2 quantifies
the effect of changing k on throughput and routing overhead.
Figure 2a shows the change of throughput with the increase
of k. Throughput is defined by the number of bits per second
communicated successfully from the source to the destination.
This quantity increases with increasing k, as more information
about the network can be known to be taken into consideration
while choosing the best route. On the other hand, Figure 2b
draws the change of the routing overhead with increasing
k. The routing overhead ratio is defined by the ratio of
bits communicated as control packets to those communicated
as data packets. Generally, at low values of k, the routing
overhead is minimized but the discovered route is not optimal,
leading to a low throughput. On the other hand, getting an
optimal route (and hence maximizing the throughput) ends
up with being penalized by a higher overhead. Essentially, in
highly dynamic large-scale networks, none of these protocols
at both ends of the spectrum that use a fixed discovery radius
can gracefully adapt to changing network conditions.

We therefore propose PAK: a Primary User Aware k-hop
route discovery scheme that can explore the undiscovered
spectrum of protocols between geographic and topology-based
routing. PAK is not designed to act as yet another routing
protocol. Instead, it can be plugged into any routing protocol
with minimal changes. In particular, based on a user-defined
utility function that balances overhead and route optimality,
PAK can dynamically find the best discovery radius, k, in real
time for each node in the network.

For that, we specifically study analytically the effect of
varying the discovery radius, k, on the optimality and overhead
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Fig. 2: General effect of changing k on the network metrics
using NS2 simulations. The used topology consists of 100 SUs,
2 PUs and 10 active connections with a rate of 16 Kbps for
each one. Other parameters are listed in Table II.

metrics. This allows us to use k as an explicit controllable
parameter rather than a constant value as in traditional routing
protocols. We then evaluate PAK by integrating it with a sam-
ple routing protocol for CRNs [8] using NS2 simulations [19].
Our results demonstrate that, in typical CRN operation scenar-
ios, PAK adapts in real time to the changing network dynamics
and always achieves the user preferred balance between route
optimality and overhead regardless of the network topology.

Overall, our contributions in this paper are threefold:

1) We propose PAK: a Primary user-Aware k-hop route
discovery scheme that can be plugged on top of any
routing protocol for cognitive radio networks. The pro-
posed scheme covers the design space in CRN routing
protocols between local and global routing protocols.

2) We present a mathematical analysis for the best discov-
ery radius based on a user-defined utility function.

3) We integrate PAK with a traditional routing protocol for
CRNs and evaluate its performance.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related work. Section III presents our
system model, assumptions and the discovery scheme used by
PAK. We then provide a mathematical analysis of the optimum
k in Section IV. We evaluate the proposed system in Section V.
Finally, Section VI concludes the paper.

II. RELATED WORK

In traditional wired networks, the tradeoff problem between
global and local routing is studied extensively. For example, in
the scope of the Internet, the concept of Autonomous Systems
(Intra and Inter AS routing) is used to achieve this tradeoff.
Similarly, the tradeoff between route optimality and scalability
has been also studied in the context of wireless networks.
For example, [20] balances this tradeoff for opportunistic
routing protocols by presenting a graph partitioning method
to decompose a large-scale wireless network into small au-
tonomous sub-topologies using local information, where each
sub-topology could realize local optimal opportunistic routing
by itself. Likewise, in the context of mobile ad hoc networks,
different classes of routing protocols have been introduced
[21], [22] including greedy geographical, direction-restricted
flooding and hybrid approaches. For example, Terminodes
[23] proposes two modes of operation in which a greedy
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geographic approach is used for long distances and switches to
a topological global mode when it approaches the destination.
[24] uses virtual backbone routing to achieve the scalability
preserving the route optimality. It combines local proactive
and global reactive routing components over a variable-sized
zone hierarchy. However, it uses a fixed zone size for a par-
ticular environment. Therefore, it cannot adapt to the network
dynamic changes.

Current routing protocols in CRNs, however, are either static
geographic (local) approaches [12]–[18] or static topological
(global) approaches [7]–[11], [25], [26]. Local geographic
approaches discover one- or two-hop neighbors and pick the
best route according to the used routing metric. These metrics
include pure location-aided metrics (k= 1 or 2) [12], [15],
[16], where the nearest neighbor to the destination is used as
a next hop regardless of any other network metric. Another
class of local approaches uses PU-aware routing metrics in
addition to the location information where offline statistics are
leveraged to estimate the PU behavior [13], [14], [18]. Thus,
in this class of protocols, greedy decisions are taken but PUs
activities are also taken into consideration when calculating
the routing metric. In summary, local approaches suffer from
picking local optimal routes and may be trapped in local voids,
which can be resolved using perimeter routing [27]. Global
routing approaches, on the other hand, flood the network with
control packets (k= ∞), and hence; pick the optimal route.
However, these routing approaches do not scale to support
large, highly-loaded, and dynamic networks in which their
performance significantly degrades.

Despite this extensive routing research in CRNs, studying
the impact of varying the number of discovered hops (k), as
shown in Figure 1, on routing optimality and its overhead has
not been investigated before in the context of CRNs. Moreover,
current routing protocols in CRNs are static protocols that
cannot adapt to the network changes, e.g., dynamic changes in
the number of SUs and number of active connections. All of
these common issues are the subject of the proposed scheme.

III. SYSTEM MODEL

In this section, we present our system assumptions and then
provide a brief overview of the proposed discovery scheme.

A. System Assumptions

We consider an ad hoc cognitive radio network where PUs
hold the right to use the licensed spectrum while SUs can
access only the unoccupied portions of the spectrum, i.e. SUs
must evade the channels when PUs become active. PUs are
uniformly located in the deployment area. PUs’ activities are
modeled as an ON-OFF birth-death process, where the periods
of the ON and OFF periods follow two independent exponen-
tial distributions with birth parameter λ and death parameter β
depending on the traffic of the PUs [28]. These parameters can
be estimated using offline statistics, local sensing information,
or through implicit feedback in full-duplex communications.
All PUs are homogeneous in terms of their parameters and
transmission ranges. We assume that SUs and PUs channels
follow the unit disc model [29]. Also, we assume that PUs

are stationary. This is common in many CRN scenarios such
as TV white space-based CRNs. We also do not make any
specific assumption on the MAC or higher layer protocols for
the PUs’ system.

We further assume that SUs are located uniformly2 in the
two-dimensional Cartesian space and each SU knows its own
location and the location of its direct neighbors. A node can
estimate its location using any of the current localization
systems, including GPS [30] or mobile-based systems [31].
Moreover, a sender can obtain the location information of the
ultimate destination via out of band services that map node
addresses to locations, or have it disseminated through the
network. Assuming knowing only the location of the desti-
nation is a typical and valid assumption in many applications
including military and sensor networks where reporting nodes
know the locations of the sink nodes. Although having the
locations of all nodes of the network may lead to better
and more robust routes, we do not assume having nodes’
locations except for the sink and the neighboring nodes; we
believe that disseminating the nodes’ locations information to
the whole network and keeping it up-to-date requires a huge
overhead, which degrades our system performance. Without
loss of generality, exchanging routing control packets can be
done through a Common Control Channel (CCC). Moreover,
our model does not assume any specific frequency band.

B. Discovery Scheme Overview

Figure 3 shows how PAK operates in a 2-hop neighborhood
discovery scenario (i.e. k = 2), where Node E (Src) tries to
reach Node N (Dst). Node E starts the discovery process by
broadcasting a route request (RREQ) packet for Node N on
the CCC and waits for the replies (Figure 3a).

The RREQ packet will be rebroadcast by receiving nodes
until it reaches the destination or a k-hop neighbor (2-hop
neighbors in this case) from Node E as shown in Figure
3b. The destination location information is used to take the
decision of whether to send a RREP packet or not (Figure 3c).
Specifically, RREQ packets that reach k-hop neighbors that are
further away from the destination than the source are discarded
and no RREP is sent.

If the RREQ packet reaches a k-hop neighbor (we call it a
mega-hop neighbor) or the destination, then this neighbor
replies with the routing metric based on the used routing
protocol in a RREP packet. Each node in the reverse route
will combine its local computed metric with the accumulated
route metric in the RREP packet based on the routing protocol
metric. Finally, the source will choose the route to the selected
mega-hop neighbor corresponding to the best metric based
on the replies that reach the source within a pre-specified
period. The packet is then forwarded to this neighbor, which
starts the same k-hop discovery process until the destination is
reached. It is quite important to note that if k 6= ∞, the routing
protocol acts similar to any location-based routing which can
fall in local optimal. This problem is addressed through routing
around the local minimum area, as in [27].

2We do some experiments with SUs locations that follow Gaussian distri-
bution in Section V.
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Fig. 3: A 2-hop neighborhood scenario. Note that all communications occur on the CCC, which is independent of the PUs
activity. All nodes inform the source about the PUs activity near them. The source node selects the optimal route based on a
user-defined utility function. Circles represent SUs and the traingle represents the PU.

IV. ANALYTICAL MODEL

In this section, we define a utility function that reflects
the user preference by balancing the route optimality and the
routing overhead as a function of k. We show analytically how
network metrics change depending on the value k and find the
optimal value of k that achieves the user-defined target.

A. Notations

Table I summarizes the notations used in the paper. We
model a CRN as a graph G = (VSUs;VPUs;E), where VSUs

represents the set of SU nodes and two vertices are connected
by an edge e ∈ E if they are within the transmission range,
Tr, of each other. VPUs is the set of PU nodes and E is the
set of edges in the SU network (i.e., connections among SUs).
The network size, nsu = |VSUs|, represents the number of SUs
in the network and npu = |VPUs| describes the number of PUs
in the network. Therefore, the node density, µ = nsu

l2
, assuming

a square deployment area with a side length l. Let k be the
discovery radius. Therefore, the area of k-hop neighborhood
can be approximated as a circle with a radius r = kTr.

B. Problem Formulation

We propose a utility function U that describes the relation
between two weighted metrics:

1) Optimality Metric (Opt(k)): This metric quantifies the
advantage of using higher k for discovery, resulting in
gaining more information about PUs and leading to
better routes. In this paper, we consider the optimal
route as the one which has the least interference on
the surrounding PUs. Formally, least interference means
the least probability of PUs activity in the region

TABLE I: Mathematical Notations

Symbol Description

k Discovery radius

Tr SUs’ transmission range

Trpu
PUs’ transmission range

l The side length of the square deployment area

nsu The total number of SUs

npu The total number of PUs

npuk
The number of PUs within k-hops

d The average SU degree

dsd The distance between the source and the
destination

µ SUs’ density

α The user-defined weight of optimality metric
in the utility function.

τ The period within which PU activity is ob-
served

λ Activity rate of each PU

ppu The probability to get affected by any given
PU

pnot The probability of not being affected by any
PU

of transmission. Although primary receivers (not the
transmitters) are those which need to be protected from
SUs interference, in our model, we consider protecting
primary users in general, as a PU can work as a
transmitter or a receiver at any time. The interference
of the PUs on the SUs is also implicitly captured in
our model. If an SU exists in a PU transmission range,
the former’s capacity decreases. Thus, improving this
metric decreases the probability of affecting the PUs
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and increasing the SUs capacity as well.
2) Overhead Metric (Over(k)): This metric quantifies the

overhead of discovering larger k in terms of control
packets that flood the network to discover the route to
the destination. Moreover, this metric implicitly cap-
tures the energy consumed in discovering the route as
the consumed energy increases with increasing the SUs’
transmission. Thus, getting the number of transmissions
done by SUs to discover the route can quantify the
energy consumed by them for route discovery.

Our model evaluates the interference as follows: In general,
the level of the interference at a PU depends on the received
power from the SUs. There is no interference at the PU if the
received SU signal power is lower than the noise threshold.
This happens when the PU is outside of the SU transmission
range. If the PU is inside the SU’s transmission range, the
former may suffer from interference from the SU’s signal. In
this case, the SINR is lower (than the first case) and the rate,
that the SU can achieve, is lower too. If the SU interference
power becomes more significant, the two signals (PU signal
and SU interfering signal) are said to have collided and the
node’s radio drops both of them.

In this model, the optimality metric is related to the trans-
mitted data on the data channel, while the overhead metric
is related to the transmitted control packets on the CCC. The
latter is typically a scarce shared resource with a low data rate
compared to the data transfer channel. Thus, we target mini-
mizing the communicated data on it according to the overhead
metric. Yet, the data channel is less scarce so that more data
can be communicated through it. However, it suffers from the
presence of PUs (that should be protected). Therefore, we use
the optimality metric to capture this requirement (protecting
the PUs from SUs’ interference). We do not guarantee the
full protection of PUs but we try to maximize the probability
of protecting them. Finally, it is important to note that if the
model is changed to consider only one channel to communicate
both control and data messages (in-band CCC), the PUs’
activities should be taken into consideration while calculating
the overhead. We believe that our model can accommodate this
with minimal changes.

We note that both the optimality and overhead metrics in-
crease with k. Therefore, we use the following utility function
to combine them:

U(k) = αNOpt(k)− (1− α)Over(k) (1)

where α is a weighting parameter that determines the user
preference and N is a normalization constant accounting for
the unit differences between overhead and optimality metrics
which we discuss in Section IV-G. Higher values of α, e.g.
α = 1, favor the optimality metric (leading to higher values
for k), while lower values for α favor reducing the routing
overhead, leading to lower values for k. Although both metrics
in the equation could have different ranges, α and N capture
this difference.

Let Src be some node that has data to be forwarded towards
some destination Dst. The Src node will discover only k∗ hops,
where k∗ is the optimal number of hops in terms of the routing

utility function:
k∗ = argmax

k

U(k) (2)

Therefore, our goal now is to develop mathematical formulas
for the two functions Over(k) and Opt(k), that can be used to
find the optimal k.

C. Control Overhead Analysis

In this section, we study the relation between k and the
routing overhead, i.e., the total number of transmitted control
packets to discover k hops. In order to find this relation, we
first derive the average number of nodes within k hops from
the sender. Then, we quantify the control overhead in terms of
the transmitted RREQ and RREP packets.

1) Average number of neighbors within k hops: Let nk be a
discrete random variable representing the number of SU nodes
within k hops from the source. Then, the average number of
nodes that are within k hops from the sender:

E(nk) = nsupk

where pk is the probability for a node to be within k hops
from the sender. Given the assumption of uniform distribution
of SU nodes in the deployment area, pk is given by [32]:

pk =
πr2

l2
=
πk2T 2

r

l2

where r = kTr is the radius of the area of the k-hop neigh-
borhood and l2 is the deployment area. This probability can

further be simplified using the average node degree d ,
nsuπT

2

r

l2

[33] as

pk =
dk2

nsu

Then, we have
E(nk) = dk2 (3)

2) Overall control overhead: The routing overhead includes
the number of times that the route request (RREQ) packet is
rebroadcast and the number of route replies (RREP) unicast.

Let MRREQ be the average number of the RREQ messages
broadcast within k hops from the sender of the RREQ. Each
node (within k-hop) will rebroadcast the RREQ message just
once for a certain source-destination pair during a specified
time. Then, MRREQ is the number of non-leaf nodes in a
breadth-first tree of the graph rooted at the route requester
node.

MRREQ = 1 +

k−1
∑

i=1

ai (4)

where ai is the number of nodes that are, on average, i hops
from the requester node which, from Equation (3), is given by:

ai = E(ni)− E(ni−1) = di2 − d(i− 1)2 = d(2i− 1)

Then, Equation (4) can be simplified into the following ex-
pression:

MRREQ = 1 +
2d(k − 1)2

2
= 1 + d(k − 1)2
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where the destination node is D. Points A and C are on the
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away from D. Nodes E and F are the potential next mega-hops
since they are in the allowed forwarding area of S.

On the other hand, an RREP message will be unicast
k times (from k-hop neighbors) until it reaches the route
requester. Only the mega-hop(s) that has smaller distance to
the destination (Dst) than the distance between the source (Src)
and the destination will reply to the route request. Given that
the number of neighbors that are, on average, k-hop from the
source node is ak = d(2k − 1), the average number of RREP
messages, MRREP is given by the following expression:

MRREP =
areaABCS

πk2T 2
r

dk(2k − 1) (5)

where areaABCS (Figure 4) is the area that contains the nodes
whose distances to destination are shorter than that from source
to destination, i.e., the responding nodes:

areaABCS = T 2
r k

2

(

θ − sin 2θ

2

)

+ d2sd

(

π − 2θ − sin 4θ

2

)

(6)

What follows is to calculate the value of θ. Given that SD =
AD = dsd, then ∠SAD = θ, leading to:

cos θ =
kTr

2dsd
(7)

Substituting in Equation (6), areaABCS can be written as:

areaABCS = T 2
r k

2

(

θ − sin 2θ

2
+

sec2 θ

4

(

π − 2θ − sin 4θ

2

))

Therefore, from Equation (5), MRREP is given by:

MRREP =
dk(2k − 1)

π

(

θ − sin 2θ

2

+
sec2 θ

4

(

π − 2θ − sin 4θ

2

)) (8)

and the total number of control packets sent to discover k-hop
neighbors is:

Tr

T
r p

u

area1

area2

Src 1
st
 hop

A

B

Fig. 5: Area of intersection between circles formed by nodes
of the chosen route. The radius of the circles is Trpu

since any
PU within this range will affect the nodes.

Over(k, θ)

=MRREQ +MRREP

= 1 + d(k − 1)2

+
1

π

(

θ − sin 2θ

2
+

sec2 θ

4

(

π − 2θ − sin 4θ

2

))

dk(2k − 1)

(9)
D. Optimality Metric Analysis

Since PAK is designed to work in CRNs, we propose an
optimality metric that quantifies the robustness of the chosen
route in terms of the effect of PUs on this route. Specifically,
the best (optimal) route is the one that experiences the least
PUs effect/activity. The probability of a PU activity during a
given period τ is given by:

ppu = 1− e−τλ

Then the probability of not being affected by any PU
(from those within the discovery range from the source to the
destination) is given by:

pnot = (1− ppu)
npuk

where npuk
is the number of PUs within the discovery area:

npuk
=
npu × discovered area from source to a mega-hop dest.

l2

Without loss of generality, let the SU transmit range (Tr) be
≤ the PUs transmit range (Trpu

), then from Figure 5, the total
discovered area within which the whole link is protected from
the PUs effect is given by:

Discovered Area = Area of circle + k × area1

= πT 2
rpu

+ k × (πT 2
rpu

− area2).

where the area of the intersection between the two circles
(area2) is given by:

area2 = 2

(

T 2
rpu

cos−1

( 1
2Tr

Trpu

)

−
(

1

2
Tr

)

√

T 2
rpu

−
(

1

2
Tr

)2
)

.

We finally set the optimality metric as the information
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gained by knowing the activity probability of the PUs affecting
a certain route as:

Opt(k) = − log2 pnot = −npuk
log2(1− ppu) (10)

E. Optimal Discovery Radius

In this section, we solve the utility expression to find the
optimal k. Noting that, from Equation (2), the overhead metric
depends on both k and θ, we start by deriving the distribution
of θ. Then, we get an expression for the average utility
function. Finally, we find the expression for the optimal k∗.

1) Finding θ distribution: From Equation (7), we can note
that θ has one-to-one mapping with dsd given that k and
Tr will be constant for a given network deployment. So, by
knowing the distribution of dsd, we can get θ distribution
directly. However, dsd is the distance between the source and
the destination which are located uniformly in the deployment
area. So, dsd can be considered as the distance between two
points that are randomly located in a square of side length l.
According to [34], the probability density function of dsd is
given by:

f(dsd) =
4dsd
l4

φ(dsd) (11)

where φ(dsd) is given by:

φ(dsd) =



















π
2 l

2 − 2ldsd +
d2

sd

2 0 ≤ dsd < l

l2
[

sin−1( l
dsd

)− cos−1( l
dsd

)
]

− l2 − d2

sd

2

+2l
√

d2sd − l2 l ≤ dsd ≤
√
2l.

Then, we can write the distribution of θ as follows:

g(θ) =
f(dsd)

| ∂θ
∂dsd

|
(12)

which can be reduced to (Appendix A):

g(θ) =
k2T 2

r

l4(1− T )
sec2(θ) tan(θ)ψ(θ) (13)

where

ψ(θ) =











































π
2 l

2 − lkTr sec(θ) +
1
8k

2T 2
r sec2(θ)

0 ≤ θ < cos−1
(

kTr

2l

)

l2
[

sin−1
(

2l cos(θ)
kTr

)

− cos−1
(

2l cos(θ)
kTr

)

]

− l2

− 1
8k

2T 2
r sec2(θ) + 2l

√

1
4k

2T 2
r sec2(θ)− l2

cos−1(kTr

2l ) ≤ θ ≤ cos−1
(

kTr

2
√
2l

)

.

and

T =
k2T 2

r (3k
2T 2

r − 32kTrl + 24πl2)

96l4

for the typical case when kTr

2 ≤ l (Appendix A). Figure 6
shows the obtained θ distribution.

2) Average utility function: To obtain a closed-form expres-
sion for k, we experimented with different approximations for
the θ distribution (Appendices B and C). We found that the
different approximations lead to the same optimal value as the
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Fig. 6: θ distribution as drawn from the analytical formula and
histogram of simulation data at k=2.
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Fig. 7: Effect of changing k on the utility function for different
values of α drawn for different representations for U(k).

exact distribution (as we show in Section IV-F). Therefore, we
use the approximation that leads to the simplest computations.
Specifically, assuming that θ follows a uniform distribution,
and its values range from 0 to π

2 ; the average utility function
U(k) can be simplified as:

U(k) = −αNnpuk
log2(1− ppu)− (1− α)(1 + d(k − 1)2

+ 11.29dk(k − 1))
(14)

3) Finding k∗: Solving for k∗ leads to:

k∗ =

⌈

13.29d(1− α)− αN
npu

l2
(πT 2

rpu
− area2) log2(1− ppu)

47.16d(1− α)

⌉

(15)

F. Comparison Between Different Functions of U(k)

In this section, we compare the different approximation
functions of U(k): Assuming θ follows a uniform distribution
(used in the previous section), different uniform distributions
based on the value of k (Appendix B), as well as assuming
that the destination is far away from the source, i.e. at least
two mega-hops separate the source and destination (Appendix
C). Figure 7 shows the value of U(k) obtained using the
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exact θ distribution and the three approximations for different
values of α. The figure shows that the four functions have
the same behavior in terms of choosing the optimal k (which
corresponds to the maximum value of U(k)). This finding
gives us some key points about the effect of θ distribution.
First, θ has only a slight effect on the value of U(k) since
it affects only the overhead metric without affecting the
optimality one. Also, discretizing the value of k∗ hides the
effect of θ on it as k∗ value changes slightly with the value of
θ. Therefore, for simplicity and mathematical tractability, we
rely on the uniform approximation to get the optimal value for
k as described in the previous subsection. Moreover, Appendix
D validates this finding via simulations.

G. Practical Notes

In this section, we discuss some practical considerations
and apply them to the obtained equation of k∗. In particular,
we note that the range of values for the overhead metric is
different from that of the optimality metric. Therefore, we add
a normalization constant N to make the ranges comparable as
follows:

k∗ =

⌈

13.29d(1− α)− αNC log2(1− ppu)

47.16d(1− α)

⌉

(16)

where C is constant and is given by:

C =
npu

l2
(πT 2

rpu
− area2)

To obtain the value of N , we can use the condition on the
value of k∗ as follows:

kmin ≤ k∗ ≤ kmax

where, kmin and kmax are the lower and the upper bound of
the allowed values of k. Typically, the value of kmin is 1. On
the other hand, the maximum possible value of k is when
the source and the destination are on the two diagonals of the
deployment area (on the network diagonal) so that the distance
between them is

√
2l. In this case, the value of k∗ should

be limited by kmax = ⌈
√
2l

Tr
⌉. So, this leads to the following

condition on the value of k∗:

1 ≤ k∗ ≤
⌈√

2l

Tr

⌉

Consequently, the values of N can be given by:

N ≥ 33.87d(1− α)

−αC log2(1− ppu)

and

N ≤
d(1− α)

(

47.16
√
2 l
Tr

− 13.29

)

−αC log2(1− ppu)

Along the same line, to get the best value of N (which
allows α to reflect the actual weight of both overhead and

optimality metrics), we normalize both metrics and hide this
normalization factor in N (Appendix E). In such case, N is
given by:

N =
dT 2

r + 14dl2 − 8
√
2Trdl

−3T 2
r npu log2(1− ppu)

(17)

Note that Equation (16) already captures the special cases
when α = 0(k = 1) and α = 1(k = ∞).

H. Discussion

In this section, we discuss some assumptions and choices
we have made in our model. First, we do not allow for the
concurrent transmission of SUs and PUs as the main goal is
to protect the PUs from the SUs interference. For example,
choosing a high-latency route that guarantees not interfering
with PUs is better than a low-latency one that may interfere
with the PUs. Thus, we believe that other SUs-centric metrics,
like delay and throughput, have a lower priority than protecting
PUs from the SUs’ interference. Based on that, we consider
the number of PUs in the k-hop discovery and their activities.

Moreover, it is quite important to note that having geograph-
ical information is essential if k 6= ∞ as, in this case, data
should be delivered to an intermediate node before reaching
the destination (as in any location-aided routing protocol).
However, if k = ∞, the protocol can work properly without
the location information. But even in this case, we believe that
having the geographical information reduces the complexity of
exploring the route.

Finally, some assumptions were made for mathematical
tractability, which can be relaxed in a future work. These
assumptions include the uniformity of SUs locations in the de-
ployment area, stationary SUs assumption, the unit disc model
for all nodes channels, PUs homogeneity assumption, and the
interference model of the SUs on the PUs. However, it is
important to mention that we relax some of these assumptions
in simulations as discussed in Section V.

V. PERFORMANCE EVALUATION

In this section, we evaluate PAK via NS2 simulations. We
first describe our simulation setup, parameters, and metrics
used. Then we discuss the simulation results.

A. Simulation Setup

We used a multi-channel version of NS2 [35] for our
simulations as well as a modified version of CAODV [8] as the
underlying routing protocol on which we plug PAK. CAODV
is an extension of the AODV protocol of ad hoc networks [36]
that enables multiple channels and PUs awareness in CRNs.
Our modified version works similar to the default CAODV but
uses the optimality metric defined in the previous section as
its route selection metric. SUs are deployed uniformly in the
deployment area and the source and the destination in each
experiment are selected randomly. We assume that PUs are
independent from each other. This means that each of them
can send or receive data independently from the other PUs.
Following our system model, we assume that all PUs are
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TABLE II: Experiments parameters.

Parameter Value range Nominal
Value

Number of SUs nsu 10-200 100
Number of PUs npu 2-10 2
Number of active connections 1-20 10
SU transmission range Tr (m) 125 125
PU transmission range Trpu (m) 140 140

Channel erasure probability 0.1 0.1
Maximum location error (m) 0 - 20 0
SUs speed (m/s) 0 - 20 0
Packet size (Byte) 512 512
Data rate per source (Kbps) 4 - 80 16
Network capacity (Mbps) 1.5 1.5
Square deployment area side len. l (m) 1000 1000
User utility parameter α 0.1-0.9 0.5
Activity period τ (sec.) 1 1
PUs activity parameter λ 0.5-8 0.5

homogenous; this includes the ON and OFF times parameters
and their transmission ranges, as described in Section III.
Finally, we use the IEEE 802.11 as the MAC protocol and the
constant bit rate (CBR) traffic model for the generated traffic
from the SUs. Each simulation experiment spans 200 seconds.
All of the reported results are derived via simulations.

B. Experimental Parameters and Metrics

Table II summarizes the experimental parameters. PUs are
uniformly located over the available channels in the area of
interest. We also evaluate PAK using four metrics:

1) Throughput: number of bits transmitted correctly from
source to destination per second. This is calculated by
averaging the throughput of all sources over the whole
simulation period.

2) Average end-to-end delay: average time taken by all
packets to reach the destination from the source. This
is calculated by averaging the delay of all packets
transmitted from all sources over the whole simulation
period.

3) Packet delivery ratio3: percentage of packets that reach
the destination from all sent packets.

4) Routing overhead ratio: the ratio of the number of trans-
mitted control packets to the total number of transmitted
data packets.

Although the optimality metric we chose is the interference
on the PUs, we measure the overall optimality of our protocol
using general network performance metrics like throughput
and the packet delivery ratio. In general, the network through-
put is related to the interference level as [37]:

R = B log(1 + SINR), (18)

where R is the maximum user data rate (the available capac-
ity), B is the available bandwidth, and SINR is the signal-to–

3In our system model, we assume the disc channel model in which no
transmission errors exist; this is for mathematical tractability. However, in
simulations, we release this assumption by assuming a fading channel in which
wireless transmission errors may occur. Therefore, the packet delivery ratio
has a meaning in this case.
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Fig. 8: Effect of changing α on k∗ for different cases of
network topology (different ratios of nsu to npu). Increasing
α leads to favoring larger discovery radius (k) representing
better route with higher overhead.

interference-noise-ratio. Although we calculate throughput by
getting the actual number of bits reached the destination, Equa-
tion 18 draws the relation between network throughput (used
for evaluation) and the interference (used in the mathematical
derivation). By avoiding PUs, SUs can reduce the effect of PUs
interference at SUs and, at the same time, SUs can protect the
PUs from the interference caused by SUs’ transmission, i.e.,
protecting PUs results in interference reduction at both the PUs
and the SUs.

C. Experimental Results

We first study the effect of the user utility parameter (α)
on performance. Then, we compare PAK with one protocol
from each main category of routing approaches, the global
and the local approaches, which are CAODV and LAUNCH,
respectively. Finally, we show the effect of mismatching k on
performance.

1) The effect of user utility parameter (α): Figure 8 shows
the effect of α on k∗. The figure is drawn for different network
setups in terms of the number of secondary and primary users.
Setting α to a low value favors smaller k, which maps to the
traditional local routing. On the other hand, choosing a high
value for α leads to a high value for k, leading to the global
routing approach in the extreme case. More importantly, the
figure shows that the optimal value of k changes significantly
based on the user utility, which can be achieved by PAK, as
compared to traditional routing protocols for CRNs.

2) Capturing the spectrum gap between local and global
routing: In Figure 9, we show a comparison between PAK,
with different values of α, and two other protocols which are
CAODV [8] and LAUNCH [18]. CAODV is a global routing
protocol (corresponding to α = 1), and LAUNCH is an example
of local routing protocols (corresponding to PAK with α = 0).
We can see that using PAK with choosing different values for
α can efficiently span the spectrum between the two extreme
approaches of routing. Thus, a user can use PAK as a local
routing protocol (by setting α = 0) or as a global one (by
setting α = 1).
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Fig. 9: Comparing PAK with CAODV and LAUNCH and
studying the effect of changing packets generation rate on the
required metrics. Note that setting α to 0.1 corresponds to
setting k to 1 which is the typical value of discovery radius
in local routing protocols. On the other hand, setting α to 0.9
corresponds to having k = ∞ which is the case of global
routing protocols. This note can be also applied to all figures
in this section.

Moreover, Figure 9 shows the impact of increasing the rate
of generated packets on different performance metrics. Increas-
ing the offered load leads to increased throughput and reduced
routing overhead at the expense of increasing the end-to-end
delay and decreasing the packet delivery ratio. Nonetheless,
Figure 9 also shows that using a fixed k makes the user stuck
at one of these extremes (for example, using CAODV will get
the optimal route but with a high overhead). However, using
PAK, each user can independently select his desired utility
function and hence can achieve different performance metrics
fitting his own criteria.

3) The effect of changing SUs density: Figure 10 shows the
effect of changing the SUs density on performance. The effect
is similar to the effect of the increasing the packet generation
rate with the exception that increasing SUs leads to increasing
the routing overhead, due to the extra route discovery overhead
with new users, as compared to just increasing the offered
load without increasing the number of users. This figure also
includes bounds on both throughput and end-to-end delay
(Figures 10a and 10b)4. These bounds define the maximum
throughput and the minimum delay we can achieve in such
network configurations. The maximum throughput is obtained
through applying a global routing approach (i.e., k = ∞) with
the absence of PUs. On the other hand, we get the minimum
end-to-end delay through applying a shortest path algorithm
in a similar network without PUs too. We believe that these
values constitute the bounds on our protocol performance in
such networks.

4The same applies to the next two figures (Figures 11 and 12).
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Fig. 10: Effect of changing the number of SUs (while fixing
the percentage of sources to the total number of nodes to 10%).
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Fig. 11: Effect of changing the number of PUs (as an example
of changing network dynamics) with time on different metrics.
We can see that PAK (at α = 0.5) adapts well with the
topological change to give better performance than the routing
protocols that use a fixed value for k.

4) The effect of changing network dynamics with time: In
Figure 11, we show how PAK adapts to dynamic changes with
time. As an instance of changing the network dynamics, we
choose to change the number of PUs. Based on that, in this
figure, we show how PAK adapts to changing the number of
PUs over time to preserve the user-defined balance between
both the optimality and the overhead metrics. We can see that
PAK can select an appropriate value for k as the network
topology changes whereas fixing k to a certain value (as in
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Fig. 12: Effect of changing the PUs activity on the performance
metrics.

the global or local approach) gives an overall bad performance.
Figure 11a and 11c show that the local approach performance
degrades significantly when the number of PUs increases.
This happens since the local routing does not account for the
expected activities of PUs along an extended path. However,
setting α to 0.5 allows PAK to choose an appropriate value
for k to keep the good performance. The same applies for
Figure 11b and 11d where the overhead increases significantly
when the number of PUs increases at some time in the case
of global routing (fixing k = ∞).

5) The effect of changing the PUs activities: Figure 12
shows the effect of changing the PUs activities on the perfor-
mance metrics. Generally, increasing the PUs activities leads to
worse performance in terms of throughput and packet delivery
ratio. However, using a higher value for α leads to better and
more robust routes as more PUs are discovered. Choosing a
route that interferes with a highly-active PUs may lead to being
idle (SU that cannot transmit) for a long time; this affects the
performance greatly.

6) The effect of changing the SUs speed: Figure 13 shows
the effect of changing the SUs speed on the performance
of PAK. Although we assume that SUs are stationary, for
the mathematical tractability, we experiment, in this figure,
with SUs which are moving5 according to the Random Way
Point model [38]. Generally, the performance, in terms of
throughput and packet delivery ratio, decreases with increasing
the nodes’ speed where the overhead increases at the same
time. This is due to the instability of the found routes when
the nodes are moving, especially at high speeds. At this point,
the performance of PAK, while using different values of α,
converges to be nearly the same. However, we can still see
that the routing overhead is higher when using a higher value
of α. Thus, the user can still control the overhead using the

5Source and destination nodes are moving too in the same way like other
SUs.
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Fig. 13: Effect of changing the SUs speed on the performance
metrics.
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Fig. 14: Effect of changing the packets generation rate while
distributing SUs’ locations according to the Gaussian distribu-
tion.

offered parameter α.

7) The effect of changing the SUs’ locations distribution:
Figure 14 shows the effect of changing rate when SUs are
distributed according to the Gaussian distribution. In our
analysis, we assume that SUs are distributed uniformly in the
deployment area. This assumption is motivated by the fact that
we address adhoc networks, in which nodes do not have a
known specific shape or distribution. However, in this figure,
we evaluate the performance of PAK when SUs are distributed
according to the Gaussian distribution. Most of the nodes are
located near the center of the deployment area (mean is the
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Fig. 15: The effect of changing k on the performance metrics
when SUs are deployed randomly according to two different
distributions, namely the Uniform and the Gaussian distribu-
tions.
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Fig. 16: Energy consumed by the whole network, due to the
control packets transmissions, while changing the discovery
radius (k).

center of the deployment area) with a variance equal to 100m.
PAK has similar performance, with different values for α, to
the already-discussed figures. Setting a higher value for α leads
to a higher throughput and overhead as well while setting a
smaller one to α decreases the route optimality and the routing
overhead.
Along the same line, Figure 15 shows the effect of changing
k on the performance metrics in case of deploying SUs
according to two different distributions: Uniform and Gaussian
distributions. It shows that changing k has the same effect on
performance metrics for both distributions. Based on that, k∗

would not change with changing the distribution from Uniform
to Gaussian.

8) Evaluating the energy consumption: Figure 16 shows the
energy consumed in the whole network due to the control
packets transmissions6. For the energy consumption model, we
use the same transmission and reception model and parameters
proposed by [39]. We can see that the energy consumed
increases with increasing the discovery radius (k) as more
transmissions are required. Thus, global protocols (which use
larger radii) consume more energy than local ones. Moreover,
increasing k above some threshold (k = 10 here) will not
consume more energy as this radius is larger than the network
diameter; in this case, PAK performs like the global protocols

6Energy consumed due to the data transmissions can be extracted too from
Figure 16 and the routing overhead ratio figures.
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Fig. 17: Effect of different errors in estimating nodes’ locations
on the performance metrics.

(in which α = 1 and k = ∞).
9) The effect of location uncertainty: In our system model,

we assume that we have no errors in estimating the nodes’
locations. Figure 17 shows the effect of having some error
in estimating the nodes’ locations on PAK’s performance. In
this figure, we show that having a bounded (small) error in
estimating the location does not affect the system performance.
As the accuracy of the modern localization systems is a
few meters, we test the effect of (up to) 20 meters error in
estimating the nodes’ locations. We can see that this error in
nodes’ localization does not, generally, affect the performance.
This happens as the location information is used for guiding
the routing process towards the destination location. Thus, few
meters error will not have significant effect on the system
performance.

VI. CONCLUSION

We propose a new scheme for adaptive routing discovery
in CRNs where the number of hops to be discovered can be
adapted with the network topology based on a user-defined
utility function. We study the tradeoff between the route opti-
mality and the routing overhead as a function of the number
of discovered hops both analytically and through simulations.
Results show the advantages of the proposed scheme and how
it can adapt to different user requirements. This work can
be expanded in several directions. First, we can apply our
discovery scheme over different classes of routing protocols in
CRNs. Another future direction is to investigate new and more
complex mathematical approaches for deriving the optimal
k. Furthermore, experimenting our approach while having
multiple channels and a channel selection scheme would be
a good direction for future research. Finally, we are planning
to extend our protocol by explicitly considering other functions
for the optimality metric.
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