
Make-Before-Break MAC Layer Handoff in 802.11
Wireless Networks

Kishore Ramachandran
WINLAB

Rutgers University, New Brunswick, NJ.
Email: kishore@winlab.rutgers.edu

Sampath Rangarajan John C. Lin
Center for Networking Research
Bell Laboratories, Holmdel, NJ.

Email: {sampath, lin}@research.bell-labs.com

Abstract— To support real-time applications such as Voice-over-
IP within a 802.11 Wireless LAN, efficient handoff mechanisms are
required when a mobile client moves from one Access Point to an-
other. In this paper, we present the design, implementationand
performance results of MAC layer (layer-2) handoff algorithms
which implement make-before-break mechanisms at the MAC layer
unlike current algorithms that are based onbreak-before-make. As
a baseline, we first present an algorithm that uses a single radio
card on the client (as is done traditionally), but optimizesMAC
layer handoff by periodically probing in the background for Ac-
cess Points on other channels even when it is already associated
with an Access Point and actively sending and receiving data. We
then present two novel algorithms that use two radio cards onthe
client so that when one card is involved in communicating data,
the other card can probe for neighboring Access Points. Of these
multiple radio algorithms, the first one uses dedicated dataand
control cards at the client thereby implementing asoft version of
make-before-break. The second algorithm uses two cards which
can both perform control and data forwarding functions thereby
implementing a strict version of make-before-break. Experimen-
tal results from a prototype implementation show that the make-
before-break algorithms lead to much decreased MAC layer hand-
off overhead; the algorithm for the strict version of the make-
before-break mechanism leads to sub 10 millisecond handoffla-
tency.

I. I NTRODUCTION

In a 802.11 Wireless LAN (WLAN) [1], mobile devices use
Access Points (AP) to connect to the wired network and com-
municate with other hosts. Given that the coverage area of an
AP indoors is limited to around 200 to 300 feet, multiple APs
are needed to cover a large area. When a mobile client moves
from the coverage area of one AP to another, it has to end its
association with theold AP and start communicating via the
newer one. Thishandoff could primarily occur at two layers of
the protocol stack. If the APs function as layer-2 bridges then
handoff is restricted to layer-2 as the old and new APs belong
to the same IP subnet. If the APs belong to different IP subnets
then layer-3 handoff would have to be performed as well.

A main design issue in the deployment of multiple 802.11
APs to build a WLAN that covers a large area is that of seamless
roaming support for mobiles within the network. Mobility has
to be supported without any service disruptions; this means,
transport and application level sessions should not be disrupted
during handoffs between APs. Moreover, real-time applications
such as VoIP have strict response time constraints and require
that layer-2, and (if necessary) layer-3 handoffs be performed

very quickly. For example, disruptions in a VoIP call would be
noticed if the “jitter” is above 50 msec.

Currently, layer-2 handoffs in 802.11 WLAN networks that
use off-the-shelf components use abreak-before-make ap-
proach. In this scheme, the radio card on the mobile client first
breaks its connection with the current AP, if the SNR on this
link goes below a certain threshold. It then probes for other
available neighboring APs to connect to. Once a “suitable”
AP is discovered, the mobile client authenticates with the AP
and then performs a layer-2 association. This whole process
could take upwards of hundreds of milliseconds depending on
the card that is being used, as shown in [2]. In addition, layer-
3 handoffs (if required) would add additional latencies on the
order of hundreds of milliseconds if standard schemes such as
mobile-IP or its variants were used [3]. The above discussion
illustrates the point that both layer-2 and layer-3 handoffla-
tencies need to be reduced substantially to support emerging
real-time applications on 802.11 WLANs.

In this paper, we focus on the reduction of layer-2 handoff
latency in 802.11 WLANs. We introduce the novel concept of
applyingmake-before-break mechanisms to 802.11 MAC layer
handoff algorithms. As a baseline, we first present an algorithm
that uses a single radio card on the client, but optimizes layer-
2 handoff by periodically probing in the background to gather
neighborhood information even when it is already connected
to an AP. We then present two algorithms that use extra hard-
ware to enable the independent execution of these operations.
In the first of these algorithms, a second radio card (referred to
as the “control” card) is exclusively used to probe for neighbor-
ing APs. Information obtained from this control card is then
used by the other card (referred to as the “data” card) during
handoff. Since the data card has to break its connection with
the old AP before performing anauthentication andassociation
with the new AP, this approach implements asoft version of the
make-before-break mechanism. In the second algorithm, con-
trol and data communication functions alternate between the
two cards and a single IP address is shared between them. In
this algorithm, when one card is actively sending and receiving
data (data card), the other card (control card) probes for APs in
the neighborhood. If quality of the channel to the current AP
deteriorates, the control card authenticates and associates with
another AP that it may have identified during the probing phase.
The data card then disconnects from the old AP and its IP ad-
dress is assigned to the control card (which becomes the new
data card). The old data card starts probing for neighborhood



APs and takes over the functionality of the control card.
The rest of the paper is organized as follows. The next sec-

tion describes the motivation for our work as well as related
work in this area. Section III describes our layer-2 handoff
algorithms and their tradeoffs. Section IV describes a proto-
type implementation of the different handoff algorithms. Sec-
tion V provides experimental results based on measurements
conducted on the prototype implementation. Section VI con-
cludes the paper.

II. M OTIVATION AND RELATED WORK

As mentioned in the previous section, low-latency handoff
schemes are important both from the perspective of layer-2
(MAC) and layer-3 (IP). At layer-3, a standard mechanism
for supporting mobility is mobile-IP [4]. But handoff latency
with Mobile-IP is quite high. Variants of Mobile-IP and other
micro-mobility protocols have been proposed to decrease layer-
3 handoff but we will not discuss them further in this paper, as
the focus here is on layer-2 handoff.

Initial works that identified the problem of layer-2 latency
overhead in 802.11 WLANs were [2] [5]. It was shown that ex-
isting layer-2 schemes lead to handoff latencies on the order of
hundreds of milliseconds. Further, it was shown that commer-
cially implemented mechanisms for layer-2 handoff are based
on a break-before-make paradigm where the client breaks its
existing connection to an Access Point once the signal strength
on that connection goes below a certain threshold before mak-
ing a connection to a new AP. The process of connecting to
a new AP was shown to consist of four steps namelyprob-
ing (also referred to asscanning), channel switching, authen-
tication andassociation. During the probing phase, the client
probes all the channels sequentially to find another AP with
a better signal strength to connect to. Once an AP is found,
the clientswitches its channel to that of the AP. It then tries
to authenticate with it. If the authentication is successful, the
client associates with the AP. The association step completes
the layer-2 handoff process. The probing phase was shown to
dictate the overall layer-2 handoff delay. If probing ispassive
where the client switches to a channel and waits for abeacon
to be received from an AP, in the worst case, the wait on each
channel could be on the order of 100 milliseconds (which is the
typical beacon interval). With a large number of channels tobe
scanned (11 channels in 802,.11b), the probing overhead could
be on the order of a second. An alternative to reduce this de-
lay is theactive probing approach in which, clients broadcast
“probe request” frames to force APs to respond immediately.
Even using such anactive probing scheme, it was shown [2]
that the probing delay could be in the range of 350 to 500 mil-
liseconds.

Normally, the channel switching delays are dictated by the
hardware and the authentication and association delays areless
than 10 milliseconds. Thus previous work on layer-2 handoff
has focussed on decreasing the probing delay. In a proposed so-
lution based on neighbor graphs [6], each client is made aware
of the neighboring Access Points and their channels so that the
client can probe a reduced set of channels thereby reducing the
probing delay. Similar schemes that require the client to ac-
quire wireless network topology information with respect to AP

placement have been proposed in [7] and [8]. These approaches
requirea) changes to the 802.11 protocol itself1, b) significant
changes to Access Point implementations andc) the active man-
agement of information which could be a problem in large-scale
deployments of these networks. Other related work includesthe
use of context caching [9] to reduce authentication delay, where
security state is cached and moved between APs. Recently, a
scheme referred to as SyncScan [10] has been proposed that
aims to eliminate handoff delay by performing passive probing
in the background. In this scheme, it is assumed that the clocks
on all the APs can be synchronized and that each AP broadcasts
its beacon based on a well-defined time schedule. By switching
to channels on a scheduled basis and looking for beacons, the
client can learn about the neighboring access points. However,
this scheme suffers due to several drawbacks such as, the re-
quirement for clock synchronization on all the APs, the possible
loss of frames during channel switching and the performance
degradation in congested networks – either the client will miss
the beacon or wait longer on the channel. The implementation
attempts to address some of these concerns but the requirement
for the calculation of ana priori channel switching schedule
based on an initial, one-time “hearing” phase assumes a static
environment with a relatively stable set of APs. This will be
infeasible in a dynamic environment with ana priori unknown
or frequently changing set of APs. This is also the drawback of
the scheme proposed in [11], where a reduced set of channels
are probed, based on a one-time “hearing” phase and adjacent
AP information from each probe is cached. Finally, all these
schemes are still break-before-make and address only the prob-
ing delay.

In our approach, by adopting make-before-break semantics,
we aim to eliminateall sources of layer-2 handoff delay. Fur-
ther, we aim to present robust techniques with applicability to
static as well as dynamic environments. Given that 802.11 ra-
dio cards are a commodity and their costs are decreasing, we
believe it feasible to implement our schemes by incorporating
two radio cards on the client. An alternative to this dual-card
approach would be a single-card, dual-radio approach. How-
ever, even though such cards [12] exist in today’s market, none
of them offer independent control of the radios. Use of multi-
ple radios to enhance mobility management has been mentioned
as a possible application in [13] but no implementation is pre-
sented to validate this concept. Our contribution in this paper
is the detailed design, implementation and experimentation of
layer-2 make-before-break algorithms using two radio cards on
mobile clients.

III. L AYER-2 HANDOFF ALGORITHMS

As a baseline to compare our algorithms based on two radio
cards, we first present a handoff algorithm that uses a single
radio card but optimizes on the channel probing phase by per-
forming this task periodically in the background. We refer to
this as theone-card periodic probe approach. We then present

1It should be noted that extensions to the 802.11 protocol such as 802.11k to
perform radio resource management and dissemination of thelist of neighbor-
hood APs to the clients, and 802.11r to perform fast basic service set transition
(by authenticating a priori at a new AP) are under consideration



two dual-radio algorithms which implement the make-before-
break mechanism in varying degrees. We refer to these two
algorithms as thetwo-card static approach and thetwo-card dy-
namic approach, respectively.

A. One-card periodic probe algorithm

In this algorithm, we use a background probing approach
similar to the one proposed in [10] except that we do not require
the APs to send beacons at fixed time periods. When the card is
actively associated with an AP, we periodically let it switch and
performactive probing on all other channels (then switch back
to the original channel to send and receive data).

This ensures pro-active maintenance of up-to-date informa-
tion about the neighboring APs but it also suffers from packet
loss and increased jitter when probing is performed (the Sync-
Scan solution [10] has the same problem but to a lesser extent
as a) the client knows exactly when to expect a beacon and
b) it scans one channel at a time as opposed to our solution
that probes all channels in oneprobing phase.) In addition, the
probing delay component of the layer-2 handoff latency is elim-
inated only if the handoff event does not coincide with a peri-
odic probing event. This approach serves as a baseline in our
experiments.

B. Two-card static algorithm

In this algorithm, each mobile client uses a second radio card
exclusively to gather information about nearby APs. In other
words, one card is dedicated forcontrol and the other fordata.
The data card is associated with the current AP and is responsi-
ble for typical data communication functions. The control card
actively probes for APs in the vicinity. The exact algorithmis
as follows:

On control card {
every x intervals of time {

probe all 802.11 channels;
/* (channel, SNR, ESSID) */
store info. on neighborhood APs;

}
}
On data card {
every y intervals of time {

/* To current AP */
monitor channel quality;
if (channel quality degrades) {
/* Based on stored info */
choose ‘‘best’’ AP;
disassociate with current AP;
change channels;
authenticate with new AP;
associate with new AP;

}
}

} /* x -> large enough to reduce
overhead & small enough to maintain
up-to-date info. y << x for fast
response to channel degradation. */

Fig. 1. Two-card dynamic algorithm

In the probing phase, information about discovered APs such
as its extended service set (ESSID), channel number and SNR
are locally stored and constantly updated. When the channel
quality of the link to the current AP starts degrading, the stored
information is consulted to determine which is the current
“best” AP. Based on this information, the data cardswitches
channels, authenticates andassociates with that AP. Thus, us-
ing the two-card static algorithm, the probing delay can be com-
pletely eliminated, but the channel switching, authentication
and association delays still remain.

C. Two-card dynamic algorithm

In this algorithm, the two cards on the mobile client alternate
between the functionalities of the data card and control card, as
shown in figure 1. Initially, the mobile client is using card C1 as
the data card to associate with AP1; the IP address of the mobile
client (IP1), is associated with card C1. At this time, card C2
serves as the control card and actively probes for other APs
in the vicinity. Assume that the SNR on the channel through
which C1 is connected to AP1 goes below a threshold. At this
time, C2 identifies AP2 as the “best” AP and initiates layer-2
authentication and association. Note that during this time, C1 is
still sending and receiving data through AP1. Once the layer-2
association completes (which means layer-2 handoff has been
completed), IP1 is now associated with C2. This is when C1
ceases to be the data card and C2 becomes the new data card.
Once card C2 is assigned IP1, the routing table on the client is
correspondingly changed to reflect the new mapping between
IP1 and interface C2. A gratuitous ARP is also sent to the router
behind AP2 to update its ARP cache and preserve the reverse
path to the client. Data will now be sent and received by C2
through AP2. From this point onwards, C1 will take over as the
control card. The exact algorithm is as follows:

/* Initialization */
curr_data = card1; curr_control = card2;
On curr_control {

every x intervals of time {
probe all 802.11 channels;
/* (channel, SNR, ESSID) */
store info. on neighborhood APs;

}
}



On curr_data {
every y intervals of time {

/* To current AP */
monitor channel quality;
if (channel quality degrades) {
/* Based on stored info */
choose ‘‘best’’ AP;
On curr_control {

change channels;
authenticate with new AP;
associate with new AP;
Assign current IP;
Change routing table;

}
disassociate with current AP;
swap(curr_control,curr_data);

}
}

} // x and y constraints remain same.

Note that in this algorithm, the probing, channel switching, au-
thentication and association delays have all been eliminated.
The only delay components that are incurred area) the delay
to associate the IP address with the new data card,b) the delay
to change the routing table at the client andc) delay to send a
gratuitous ARP; these delays add up to only a few milliseconds
as shown in Section V.

IV. I MPLEMENTATION

We have implemented prototype versions of all three hand-
off algorithms on Linux kernel v2.4.26 using wireless 802.11b
NICs based on Intersil’s Prism chipsets (using the HostAP
driver v0.3.7 [14]). We chose this driver as it provides a feature
(iwpriv wlan0 host roaming 2) to disable firmware-
based as well as driver-based roaming and enable user-space
implementation of these functions.

We were able to fully implement all three algorithms in user-
space. This was largely due to the extensive set of lower-level
details exposed by the HostAP driver. Our main motivation
for choosing user-space over kernel-space was ease of imple-
mentation. We did, however, need to make a minor wireless
device driver modification – specifically to send out associa-
tion requests and authentication frames on the “current” chan-
nel (set usingiwconfig or the equivalent ioctl) rather than
channel 12. Note that it is possible to use these user-space im-
plementations with other wireless device drivers as well pro-
vided they support the ability to:1) disable in-built “scan-and-
associate” algorithms,2) export control and status monitoring
of these functions to user-space (via ioctls or other interfaces),
and3) support two cards on the same host.

All algorithms were implemented using an application, writ-
ten in C that consists of two threads – one to perform the con-
trol card functionality (referred to as the control thread)and the

2The driver, in its unmodified form, sends out association requests and au-
thentication frames on channel 1 unless it knows about the APa priori using
driver-level data structures. Given our user-space implementation, these data
structures were never updated. Since all we required was theability to asso-
ciate with APs on different channels, we modified the driver such that if the AP
is unrecognized, frames are sent out on the channel that is explicitly set rather
than on channel 1.

other to perform the passive monitoring of the link to the cur-
rent AP as well as implementing functions to complete layer-2
handoff (referred to as the data thread). The functionalityis
split in this manner to enable a common implementation frame-
work for both the one-card and the two-card algorithms. In the
presence of a second wireless card, each thread can utilize a
seperate card. Channel conditions are measured using the sig-
nal strength reported by the card in dBm. Also, to avoid a ping
pong effect, the client performs handoff to a new AP only if
its signal strength is greater than the current one by a certain
margin (empirically determined to be 5dBm in our setup). Sig-
nal strength for new APs is available from theprobe response
frames received. Periodic measurement of signal strength,pe-
riodic active probing and forcing associations to specific APs
as well as terminating them are achieved usingioctl functions
provided by hostap or the Linux wireless tools package [15].
We now proceed to describe how the implementation differs
for each of these algorithms.

A. One-card periodic probe algorithm

In this algorithm,a single interface (wlan0) is shared be-
tween all applications running on the client and hence, between
the two threads of this application. Given the multiplexingof
control thread with all other applications on the common card
and the high cost of probing [2], two factors that could ad-
versely impact the performance of all applications on the client
are:1) the amount of time spent in one probe cycle, and2) how
often this application initiates these probe cycles. The amount
of time spent in one probe cycle is determined by a number
of factors including the hardware and the number of channels
probed. For an active probe of all 802.11b channels, this num-
ber has been empirically determined to be on the order of hun-
dreds of milliseconds [2]. The interval between two consecutive
probe cycles can be set and depends on the client environment.
More specifically, it is a function of how fast the “active set”
of APs near the client changes. An ideal interval value is one
that keeps up-to-date information without adversely impacting
active applications. In all our experiments, we set this value
to 1 second in order to measure the performance under highly
dynamic environments.

B. Two-card static algorithm

In this algorithm, one wireless interface (wlan1) is dedicated
for the control thread and the other (wlan0) is multiplexed be-
tween other applications on the client and the data thread. If
there is a process utilizing the data card while the channel
switching and association procedure is taking place, it could
potentially result in packet loss, increased delay or reduced
throughput. That being said, we still expect this algorithmto
outperform the one-card periodic probe algorithm.

C. Two-card dynamic algorithm

For this algorithm, we maintain one DHCP assigned IP ad-
dress per client and a dummy IP address. The dummy IP ad-
dress is associated with the control card (say wlan1) and the
DHCP assigned IP is associated with the data card (say wlan0).



During handoff, the assignment of these IP addresses to the re-
spective interfaces is swapped and the kernel routing tableis
modified appropriately. Both the swapping of IP addresses and
the modification of the routing table are achieved usingioctl
function calls.

V. RESULTS

In this section, we analyze the performance of the three hand-
off algorithms by simulating a real-time streaming application
using ICMP ping requests. Ping packets are generated period-
ically at 10ms intervals – a rate far more aggressive than that
used in actual interactive applications. We installed a modified
version of theping program on the mobile to generate peri-
odic probe packets to a local destination. Because each ping
(ICMP echo) request carries a sequence number, a lostping
packet can be easily checked. For each receivedping reply,
the program records the arrival time, the sequence number, the
round-trip time, the signal quality, and the AP used, all in RAM
to minimize the overhead caused by the added data collecting
code. When theping program terminates, the data is dumped
from RAM to a file on disk for off-line analysis.

Each experimental run consists of a mobile client commu-
nicating with a fixed wired node while handing off between
two Access Points (AP). All runs were carried out in a corridor
of our lab at walking speeds and the two APs were operating
at 802.11b channels 1 and 6. The mobile client was an IBM
Thinkpad T20 running Linux kernel v2.4.26, using Microsoft
802.11b PCMCIA cards, based on Intersil’s Prism chipset. The
client was either carried by a person or placed on a cart along
with a “sniffer” laptop (an IBM Thinkpad T40p running tcp-
dump). Both APs were Dell PCs running Linux 2.4.26 kernel.
The APs are configured to belong to the same IP subnet and
thus act as bridges. This implies that when the mobile moves
from one AP to another it moves within the same IP subnet and
thus there is only layer-2 handoffs are performed. Thus, we
eliminate the effect of layer-3 handoffs on the measured param-
eters and focus only on the layer-2 mechanisms described in
the paper. Twenty experimental runs were performed for each
of the handoff algorithms. The metrics we use to evaluate the
three schemes areinter-arrival time (IAT), packet loss andtotal
handoff latency (THL).

A. Inter-Arrival Time at the receiver

To measure the IAT at the receiver (fixed wired node), we
used the Click Modular Router software package (v1.4.3) [16]
to print out the timestamp and sequence number of each in-
coming ICMP request. Figure 2 shows the mean and standard
deviation curves for the IAT for the three schemes in every run.
From this figure, all three average curves appear to be quite
close to the “ideal” 10ms IAT line, with the two-card algorithms
expectedly outperforming the one-card approach. However,we
can also see that the one-card periodic scan algorithm has a very
high variance In order to investigate this high variance, wean-
alyzed the IAT curves from a single run for all three algorithms
(figure omitted due to space considerations). In these curves,
we observed periodic bursts with very large IAT values (around

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40

45

50

55

60

65

Experiment Number

T
im

e 
(m

s)

Mean IAT (ms) − Dynamic 2−card
Mean IAT (ms) − Static 2−card 
Mean IAT (ms) − 1−card periodic scan
Ideal 10ms IAT
Std. Dev. in IAT (ms) − Dynamic 2−card
Std. Dev. in IAT (ms) − Static 2−card
Std. Dev. in IAT (ms) − 1−card periodic scan

Fig. 2. Average and std. dev. of inter-arrival times (IAT), measured at the
receiver, for the three schemes. The ideal 10ms IAT line is also plotted.

700ms) for the single card approach. Given their periodic na-
ture and magnitude, we believe that the periodic active scan-
ning of all channels and the subsequent buffering of packetsto
be the primary cause for these bursts as well as the subsequent
high IAT variance.

B. Packet loss measured at the sender

Packet losses are measured at the sender as the number of
ping replies that are missed by the mobile during handoff using
sequence number analysis.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Experiment Number

N
um

be
r 

of
 p

ac
ke

t l
os

se
s

Dynamic 2−card
Static 2−card
1−card periodic scan

Fig. 3. Packet loss plotted for all three schemes.

Figure 3 represents the packet loss measured for each scheme
at the sender. Note that this includes losses in the forward and
reverse paths and provides us with an approximation of “worst-
case” performance. The two-card dynamic algorithm has zero
packet losses in all experimental runs. The two-card statical-
gorithm surprisingly shows a few packet losses in spite of its
maintaining an active set of APs and the usage of extra hard-
ware. We hypothesize that the primary reason for this packet
loss is the channel switching delay of around 20 milliseconds
associated with these cards [10]. Furthermore, we observedthis
delay being present even when the two APs were on the same



channel leading to our hypothesis that both the firmware and
driver lack sanity checks to obviate the delay in this special
case. The packet loss curve for the one-card approach shows
high variance and we hypothesize that the reason behind it is
the periodic nature of scanning in our implementation and the
random nature of when handoff actually takes place. If the card
starts scanning just prior to handoff and the buffer overflows ei-
ther at the client or the AP, it results in packet loss. However,
if the scanning does not take place around the time when the
client initiates handoff, client and AP buffers mask any packet
losses that would occur. These same buffers also result in the
high variance in the IAT curves seen earlier.

C. Total Handoff Latency (THL)

The total handoff latency is defined as the time it takes for
the client to transition from one AP to the next. Given the
differences in the design and implementation, the total hand-
off latency for the two-card dynamic algorithm was measured
differently from the other two algorithms. For the one-cardpe-
riodic scan algorithm and the two-card static algorithm, THL
was measured from the tcpdump trace as the time difference
between the de-authentication and association request frames,
sent out by the client. We observed that whenever the client
switches from one AP to the other, it first sends out a de-
authentication frame to the older AP before sending out the as-
sociation and authentication frames to the newer AP. For the
two-card dynamic algorithm, THL was measured as the time it
takes to switch IP addresses on the interfaces, to setup the IP
routing table (usinggettimeofday system call) and to send out a
gratuitous ARP.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40

45

50

55

60

Experiment Number

H
an

do
ff 

la
te

nc
y 

(m
s)

Dynamic 2−card
Static 2−card
1−card periodic scan

Fig. 4. Handoff latency in ms, plotted for all three schemes.

Figure 4 shows the THL for all three algorithms in all runs.
Each point on each curve represents the time it took for the
solitary handoff to complete in that experimental run. As ex-
pected, the dynamic two-card algorithm outperforms the other
schemes by about 200% and provides sub 10 millisecond layer-
2 handoff performance. However, the graphs show that both
the two-card static algorithm and the one-card periodic scan-
ning algorithm have similar THL numbers. One reason for this
is that the one-card periodic scanning algorithm scans for other

channels periodically and this may not coincide with an hand-
off event in which case the handoff latency is not influenced
by the active scanning latency (probing delay on the order of
hundreds of milliseconds). Also, the use of the appearance of a
de-authentication frame as an indication of handoff ignores any
active scanning latency (if present) prior to this event. Thus,
our technique underestimates THL for the one-card algorithm
and should be improved to detect and account for the active
scanning latency as well.

VI. CONCLUSIONS

We presented the design, implementation and experimental
measurements for soft-handoff algorithms in a 802.11 WLAN.
As a baseline case, we first presented a periodic, background
probing approach using a single radio card on the client. We
then presented two soft-handoff algorithms that implement
make-before-break semantics; of these, the two-card static al-
gorithm uses a dedicated control card to probe for APs in the
vicinity while the data card is sending and receiving data. The
two-card dynamic algorithm switches the two cards between
the control and data modes of operation. The first algorithm
eliminates the probing delay but the authentication, association
and channel switching delays still remain. The second algo-
rithm eliminates all the components that make up the layer-2
handoff latency in a traditional implementation. Experimental
results show that sub 10 millisecond handoff latencies can be
achieved with the two-card dynamic algorithm.

REFERENCES

[1] IEEE. ANSI/IEEE Std 802.11, 1999 Edition. 1999.
[2] A. Mishra, M. Shin, and W. Arbaugh. An empirical analysisof the IEEE

802.11 MAC layer handoff process.ACM Computer Communication Re-
view, 33(2):93–102, April 2003.

[3] S. Sharma, N. Zhu, and T-C. Chiueh. Low-Latency Mobile IPHandoff for
Infrastructure-Mode Wireless LANs.IEEE JSAC, 22(4):643–652, May
2004.

[4] C. Perkins. IP Mobility Support for IPv4.RFC-3344, IETF, Aug 2002.
[5] F.K. Al-Bin-Ali, P. Boddupalli, and N. Davies. An Inter-Access Point

Handoff Mechanism for Wireless Network Management: The Sabino
System.Proceedings of ICWN, 2003.

[6] M. Shin, A. Mishra, and W.A. Arbaugh. Improving the Latency of 802.11
Hand-offs using Neighbor Graphs.Proceedings of ACM MobiSys, June
2004.

[7] H. Velayos and G. Karlsson. Techniques to Reduce IEEE 802.11b MAC
Layer Handover Time, Kung Tekniska Hogskolen, Stockholm, Sweden,
Technical Report TRITA IMIT LCN R 03:02. April 2003.

[8] S. Pack and Y. Choi. Fast Inter-AP Handoff Using Predictive Authentica-
tion Scheme in a Public Wireless LAN.IEEE Networks, August 2002.

[9] M. Shin, A. Mishra, and W.A. Arbaugh. Context Caching using Neighbor
Graphs for Fast Handoffs in a Wireless Network.Proceedings of IEEE
INFOCOM, March 2004.

[10] I. Ramani and S. Savage. SyncScan: Practical Fast Handoff for 802.11
Infrastructure Networks.Proceedings of IEEE INFOCOM, March 2005.

[11] S. Shin, A. G. Forte, A. S. Rawat, and H. Schulzrinne. Reducing MAC
layer handoff latency in IEEE 802.11 wireless LANs. pages 19–26, NY,
USA, 2004.

[12] Cisco aironet 802.11 a/b/g cardbus wireless lan clientadapter.
http://www.cisco.com/en/US/products/hw/wireless/ps4555/
productsdatasheet09186a00801ebc29.html.

[13] P. Bahl, A. Adya, J. Padhye, and A. Wolman. Reconsidering Wireless
Systems with Multiple Radios.CCR, 34(5), October 2004.

[14] J. Malinen. Host ap driver for intersil prism2/2.5/3 chipset-based cards.
http://hostap.epitest.fi.

[15] Wireless tools for linux. http://www.hpl.hp.com/personal/
JeanTourrilhes/Linux/Tools.html.

[16] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The click modular router.ACM Trans. Comput. Syst.,
18(3):263–297, 2000.


