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Abstract

Systems supporting broadband mobile services over wireless channels suffer from dispersion along

time and frequency. Hence transmission by spreading information along both these dimensions leads to

diversity gain in each dimension. Motivated by this principle, we propose a generalized two dimensional

spreading scheme, in which a symbol is transmitted across several subcarriers with a total power

constraint and along each subcarrier it is spread with CDMA codewords. The information theoretic

bounds on capacity for this scheme are derived under different assumptions about the channel state

information (CSI) available at the transmitter. These are perfect CSI, partial CSI characterized by one

bit of channel information per subcarrier and no CSI. The receiver is assumed to have perfect CSI. The

optimal codeword and power allocation strategies to achieve these bounds are derived for the single

user point to point transmission. The solutions also apply to the cases of synchronous multi-user uplink

transmission, or when the receiver schedules transmissions of multiple users. For asynchronous uplink

communications, we show that the problem of optimal resource allocation is analytically intractable and

instead suggest a heuristic solution which can be implemented in a distributed manner.

I. INTRODUCTION

Wireless channels are dispersive due to multipath fading and this can be effectively combated

by transmission along multiple dimensions [1]. If the CSI is known at the transmitter, then

availability of multiple dimensions, allows it to transmit along the eigenmodes of the channel,

thus enhancing the achievable rates. Examples are waterfilling over parallel subcarriers in OFDM

and transmit beamforming in MIMO. If the CSI is not known at transmitter, then signaling along

multiple dimensions allows for diversity which improves error performance. In this paper we

focus on multicarrier systems and hence by multiple dimensions we refer to time and frequency



subcarriers. Systems like single carrier CDMA and MC-DS-CDMA system [11] achieve diversity

by time domain spreading of data along a frequency subcarrier. In contrast MC-CDMA systems

spread the same data along adjacent frequency subcarriers [15]. Recently multicarrier systems that

use both time and frequency spreading have been proposed. Prominent examples are Multicarrier

DS/CDMA [15] and VSF-OFCDM [6], which essentially spread a data symbol along time

by conventional CDMA codewords and also along frequency by replicating the symbol along

multiple subcarriers. This phenomenon is denoted by two dimensional spreading. Depending

upon the channel conditions, the spread factors SFTime (length of CDMA code in time) and

SFFreq (number of subcarriers on which the symbol is replicated) are adaptively controlled. Most

of the available literature about these schemes, pertain to simulation studies [6], [15]. In this

work we aim to study two dimensional spreading from an information-theoretic framework.

We propose a generalized two-dimensional spreading model in which a symbol is transmitted

across several subcarriers with a total power constraint and along each subcarrier it is spread

with CDMA codewords. Note that all the aforementioned spreading models are special cases of

this scheme. In the presence of channel state information at the transmitter, multiple subcarriers

are used to transmit along the optimal direction and in its absence they are used for diversity.

We study optimal power allocation policies along subcarriers and achievable rates using this

two-dimensional spreading scheme. Accordingly the rest of the paper is organized as follows:

in Section II the channel model is described. In Section III, the two dimensional spreading

system and the notations are described. Section IV discusses the single user case, the results of

which are applicable to synchronous multiuser communications. Section V similarly analyzes

the asynchronous multiuser case and we then conclude in Section VI.

II. THE CHANNEL MODEL

A block fading parallel channel model is assumed, i.e the subcarriers have i.i.d. channel gains,

and along a subcarrier the value of its channel gain stays constant for the duration of the CDMA

codeword. Such a model is an useful abstraction for a wide class of practical channels including

the next generation cellular data channels [6]. Also recent advances in orthogonal basis function

designs for wireless channels [5], promise to make even the most general doubly-dispersive

channel assume a block fading baseband representation.



Fig. 1. Transmitter Block Diagram

III. SYSTEM MODEL AND NOTATIONS

In the two-dimensional spreading scheme, each symbol is replicated over nf subcarriers, with

certain power and along each subcarrier they are spread by a unit norm CDMA code of length

nt chips. There is a total power constraint on the powers allocated in the nf subcarriers.

A. Notation

Throughout this paper we use uppercase boldface letters to denote matrices, lowercase boldface

letters to denote vectors and lowercase letters to denote scalars. In particular we adapt the

following notations: the subscript i denotes parameters of user i, the subscript j denotes the

index of the jth subcarrier and the subscript k denotes the time slot index along a subcarrier.

Each time slot is occupied by a CDMA chip.

The symbol bi denotes the ith user’s data symbol. We use Mi = {mijk} , 1 ≤ j ≤ nf , 1 ≤
k ≤ nt to denote the nf × nt spreading code matrix for the ith user and mij to denote the ith

user’s spreading code along the jth subcarrier. The matrices Pi and Hi are the nf ×nf diagonal

matrices of powers and channel gains respectively for user i, i.e. Pi = diag{pi}, where pi =
[

pi1, pi2, · · · , pinf

]

and Hi = diag{hi}, where hi =
[

hi1, hi2, · · · , hinf

]

. If x = [x1, · · · , xn],

then x
1

2 denotes the vector [
√
x1, · · · ,

√
xn] and a similar notation is valid for diagonal matrices.

IV. SINGLE USER/MULTIUSER SYNCHRONOUS TRANSMISSION

We consider the case of a single transmitter using two dimensional spreading to communicate

to a receiver. Though a simplified system, single user transmission gives important analytical



insights about the nature of two dimensional spreading. Also this models two important multi-

user scenarios – firstly the multiuser MAC channel, when each transmitter has a set of orthogonal

CDMA codes and synchronous reception at the receiver is assumed. The second scenario occurs

when is when the central receiver schedules the transmission of various users and hence at a

time only one user is active.

For the single user analysis, we drop the user index i for notational simplicity. The received

signal matrix Y is given by,

Y = H
1

2P
1

2Mb + Z. (1)

Given a particular fading distribution, we try to evaluate the optimal power allocation and

codeword assignment policies to maximize the achievable rates.

A. Perfect CSI at Transmitter

In this section we assume that transmitter and receiver are both equipped with instantaneous

values of CSI, for a block of nfnt transmitted symbols. If the channel realization changes from

block to block, the ergodic capacity is defined as the average of the achievable rates for each

channel realization [12]. For the single subcarrier case with no spreading, Caire et al [2] gave

an expression for ergodic capacity and a fixed rate coding scheme to achieve this capacity.

Assuming that the CDMA codes along each subcarrier are orthonormal, the ergodic capacity

maximization problem can be formulated along the lines of [2] as,

CPCSI = max
p(h)

∫

· · ·
∫

R (h) f (h) dh (2)

s.t.
nf
∑

j=1

∫

· · ·
∫

pj (h) f (h) dh = P , pj (h) ≥ 0, (3)

where

R (h) =
1

2
log

(

1 +
1

σ2

nf
∑

j=1

hjpj(h)

)

, (4)

is termed as the maximum mutual information (MMI) for a given CSI h. For every block, when

the CSI is revealed to the transmitter and receiver, the optimal solution to (2) is to transmit

only in that subcarrier which has the highest channel gain (henceforth referred to as the best

subcarrier), i.e. in subcarrier i∗ = arg maxi{hi}. We denote the random variable hi∗ by h∗n,

where n is the number of random variables over which the maximization operation has been



performed. In this case n = nf , the number of subcarriers. The power, p (h∗n) allocated to the

best subcarrier is obtained by waterfilling over the distribution of h∗n, as

p (h∗n) =

(

1

λ
− σ2

h∗n

)+

, (5)

where λ, is found by substituting for p (h∗n) in Equation (3), as
∫
(

1

λ
− σ2

γ

)+

fh∗n
(γ) dγ = P . (6)

The water-filling level is given by 1/λ. Similar results were reported in [4], where the problem

was to maximize sum capacity for multiuser scalar MAC channel. The solution was to let only

the user with the highest channel gain transmit. The transmitted powers were obtained by water-

filling over the distribution of the channel gain of this user. We obtain similar results here for a

different physical situation, as both have similar the signal space models.

The optimization of codewords amounted to selecting any set of unit norm, orthogonal code-

words. The CDMA spreading along subcarriers had no effect on the ergodic capacity as given

by Equations (2) and (4). This is consistent with the observation that CDMA doesn’t increase

capacity for single user transmission [13]. Also in the multi-user case, CDMA capacity is upper

bounded by the capacity of the unspread transmission [14].

1) Numerical Results for Rayleigh Fading: Each subcarrier undergoes independent Rayleigh

Fading so the distribution of the his are exponential. The mean of the fading coefficient is

assumed to be unity. Equation (6) relates λ to P and has to be solved numerically. Figure (2)

gives the results of this numerical computation. The following observations are readily made:

• For same n, a decrease in total power P , leads to an increase in λ, which increases the

threshold (λσ2) above which transmission takes place. This implies that when P is less then

the transmitter has to wait for a really good channel to transmit reliably. This suggests that

the fraction of time the transmitter is turned on is less.

• For the same total power, P , increasing n increases λ, which raises the threshold. This is

because having more subcarriers raises the probability of encountering a higher channel

gain h∗n.

2) Numerical Results for Uniform Fading: We first consider that the uniform fading chan-

nel [2] i.e. hi’s are uniformly distributed in [0, 1]. Figure 3 plots the variations in the MMI
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Fig. 3. Uniform fading: MMI variations with time for SNR = 1 dB

sequence for SNR = 1 dB, by increasing n ≡ nf , number of subcarriers . The term SNR is used

to denote P/σ2, where P is defined in Equation (3). We make the following observations:

• The MMI (and hence the ergodic capacity) increases for more subcarriers as the higher

values of h∗n becomes more probable.

• The fluctuations in MMI decrease for more subcarriers, as variance of h∗n decreases.

• In the regime of large n, the channel gain tends to unity with probability one and hence

the MMI tends to a constant.

Hence we conclude that two-dimension spreading, led to higher achievable rates as the

transmitter had the freedom to transmit along better channels.



B. Imperfect CSI at Transmitter

In most practical systems CSI at transmitter is due to receiver feedback, which can be

erroneous [1]. In this section, we thus assume that perfect CSI is not available at the transmitter

and investigate its effects upon ergodic channel capacity. The receiver is still assumed to possess

perfect CSI. Quantitatively, let the true channel state be h and the CSI at the transmitter be

u. The optimal solution depends on the correlation between u and h as characterized by the

conditional density f (h|u) [2]. The ergodic capacity optimization problem can be written as

max
p(u)

∫

· · ·
∫

R(h,u)f (h|u) dh (7)

s.t.
nf
∑

j=1

∫

· · ·
∫

pj (u) f (u) du = P , pj (u) ≥ 0, (8)

where R(h,u), the MMI is given by,

R(h,u) =
1

2
log

(

1 +
1

σ2

nf
∑

j=1

hjpj (u)

)

. (9)

Note that the transmit powers are a function of u. The Lagrangian for the optimization problem

is,

J =

∫

· · ·
∫

R(h,u)f (h|u) f (u) dh du

−λ
nf
∑

j=1

∫

· · ·
∫

pj (u) f (u) du.

(10)

Differentiating with respect to pj (u) we obtain

∂J

∂pj(u)
= sj(u)− λ, (11)

where,

sj(u) =
1

2

∫

· · ·
∫
(

hj

σ2 +
∑nf

k=1 hkpk (u)

)

f (h|u) dh. (12)

The Kuhn-Tucker conditions state ∂J/∂pj(u) = 0 if pj(u) 6= 0 and ∂J/∂pj(u) ≤ 0 if pj(u) = 0

for all j.

The maximum value of sj(u) occur when pj (u) = 0 for all j. Let’s denote this maximum

value by s∗j(u). Thus

s∗j(u) =
1

2σ2

∫

· · ·
∫

hjf (h|u) dh =
1

2σ2
E [hj|uj] . (13)



Note that transmission takes place in the j th subcarrier only if s∗j(u) > λ. Hence s∗j(u) gives

the threshold for transmission. Note that λ depends on P , the total average power and thus

these threshold inequalities can also be expressed in terms of P . Let us apply these results for

an example system in which uk is the one bit quantized information about the channel state at

subcarrier k [2], i.e.

uk =











0 hk < hTh,

1 hk ≥ hTh.
(14)

Two cases arise from this feedback structure:

1) Atleast one subcarrier receives u = 1: Let m subcarriers receive unity feedback, where

1 ≤ m ≤ nf . Since the conditional densities f (hj|uj) are same for all these m subcarriers, the

optimal solution is a symmetric policy that allocates equal power to all these m subcarriers. Let

us denote this power by π(m). It can be further shown that the no power should be transmitted

in the remaining nf − m subcarriers, (ref. Appendix I). The value of π(m) is determined by

solving any one of the m equations, ∂J/∂pj(u) = 0, s.t. uj = 1. Thus,

1

2

∫

· · ·
∫
(

h1

σ2 + π(m)
∑m

k=1 hk

)

f (h|u) dh = λ, (15)

where u has m ones. From Equation (13) the value π(m) is non-zero if

1

2σ2
E [h|u = 1] =

1

2σ2

∫

hf (h|u = 1) dh ≥ λ, (16)

where h and u are random variables i.i.d. with the gains and feedback random variables at the

subcarriers respectively. We also denote the last integral by s∗j(u = 1), the transmission threshold

for this feedback. This value is same for all m ∈ [1, · · · , nf ].

2) All nf subcarriers receive u = 0: The solution, obtained along lines of the previous case,

is to let all users transmit at the same power π(0) which is given by,

1

2

∫

· · ·
∫
(

hj

σ2 + π(0)
∑nf

k=1 hk

)

f (h|u) dh = λ, (17)

where all components of u are 0.The power, π(0) is non-zero if

1

2σ2
E [h|u = 0] =

1

2σ2

∫

hf (h|u = 0) dh ≥ λ. (18)

The last integral, which gives the threshold, is denoted by s∗j(u = 0). It can be shown that

s∗j(u = 1) > s∗j(u = 0). This is because in this case clearly all subcarriers have an inferior value

of conditional channel gains.
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Note that similar results were reported in [7], for the related problem of multi-user, single

carrier transmission.

Let us consider nf = 2 and plot the powers π(0), π(1) and π(2) vs the total power P , in

Figure 4. We consider rayleigh fading and the threshold hTh of Equation (14) is 0.5. It is seen

that for low P no power is allocated to the all zero feedback case. Another observation is that

π(1) ∼ 2π(2). An intuitive explanation is that the same power gets allocated to one subcarrier,

as π(1) and is divided into two subcarriers as π(2) in each. Assuming π(1) = 2π(2), we plot the

average achievable rate r2 corresponding to power π(2) and rate r1 for power π(1) in Figure 5.

The upper bound to these rates, rup is also plotted. It is seen that there r2 is slightly higher than

r1, which can be attributed to the diversity gain in transmitting in two subcarriers.



We now consider the case when transmitter has no CSI. It can be shown that [9] the capacity

maximizing policy is constant power allocation across all subcarriers i.e. pj (u) = P/nf . Thus

the upper bound to achievable rates is,

CNCSI = Eh

[

1

2
log

(

1 +
1

σ2

nf
∑

j=1

hj

(

P

nf

)

)]

(19)

≤ 1

2
log

(

1 +
hP

σ2

)

, (20)

by Jensens Inequality. This bound is achievable by assigning uniform power to each subcarrier.

This can be seen by examining the MMI expression for pj (u) = P/nf , which is

RNCSI =
1

2
log

(

1 +
1

σ2

1

nf

nf
∑

j=1

hjP

)

(21)

−→ 1

2
log

(

1 +
hP

σ2

)

, (22)

with equality holding for large nf by the law of large numbers Note that for a single subcarrier

the corresponding expression for MMI with uniform power allocation is log
(

1 + hP/σ2
)

/2,

and there is no way to actually achieve this bound. This can be looked upon as the diversity

advantage offered by multiple subcarriers

Note that in the two cases of imperfect CSI considered, two-dimensional spreading was useful

as it lead to diversity gains. Finally Figure 6 plots the MMI variations with time for all the three

types of CSI discussed till now. We observe that for nf = 2, the achievable rates with 1 bit per

subcarrier feedback is close to the perfect CSI case. This suggests that the 1 bit per subcarrier

scheme is a good practical scheme for transmitter feedback. In some time instants the MMI

achieved for the perfect CSI is lower, because the perfect CSI solution waits for the occurance

of a good channel state to allocate power.

V. MULTIUSER ASYNCHRONOUS TRANSMISSION

In this section, we consider asynchronous transmissions, due to which users do not orthogo-

nalize at the receiver. Such a situation might also arise if there are more users than orthogonal

CDMA codewords. We assume that there are N users in the system. The multi-user transmission

given by,

Y =
N
∑

i=1

H
1

2

i P
1

2

i Mibi + Z. (23)
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The problem of maximizing the ergodic sum capacity E [I(Y;b)], where b = [b1, · · · , bN ] over

choice of power and spreading matrices Pi and Mi is not analytically tractable. So we shall

consider special cases of the most general problem. In all the cases we assume that the transmitter

and receiver are aware of CSI.

A. Only Time Domain Spreading

In this case nf = 1. The matrix channel of Equation (23) with output matrix Y reduces to a

vector channel, with vector output y. The transmission model thus becomes

y =
N
∑

i=1

√

hipimibi + z. (24)

This problem has been solved in [3]. The optimal policy is to allow only those users whose

normalized channel gains are above a threshold to transmit in orthogonal channels. The number

of such users can’t exceed either nt, the length of the spreading code in time or N , the total

number of users in the system. The problem then reduces to independent single user transmissions

of [12] for which the optimal solution for each user is to waterfill over the channel fading

distribution.

B. Only Frequency Domain Spreading

In this case there is no CDMA spreading (nt = 1) and the users transmit their information

along the nf subcarriers. The matrix channel of Equation (23) with output matrix Y again



reduces to a vector channel, with vector output y and the transmission model becomes

y =
N
∑

i=1

H
1

2

i p
1

2

i bi + z, (25)

where p
1

2

i =
[√

pi1,
√
pi2, · · · ,√pinf

]

, the power vector of the ith user. The corresponding

maximum mutual information (MMI), for given channel state matrices for all the users, can be

expressed as

R(h1, · · · ,hN) = log

∣

∣

∣

∣

∣

I +
N
∑

i=1

H
1

2

i p
1

2

i (hi)p
1

2

i (hi)
T (H

1

2

i )T

∣

∣

∣

∣

∣

, (26)

where log |X| implies log (det X).

For subsequent rate analysis we do not consider ergodic capacity maximization. This is

because we observed in the single user case that ergodic capacity maximization policies involves

averaging over the distribution of channel states, which leads to long delays. We expect higher

delays in the multi-user case. To avoid long delays, we fix power P , to be allocated over the

subcarriers for each channel state realization hi for all the i users. Thus the optimization of

MMI for a given channel realization can be stated as,

RSUM-CSI = max
p1,··· ,pN

R(h1, · · · ,hN) (27)

p
1

2

i (hi)
Tp

1

2

i (hi) = P for all i, (28)

pij (hi) ≥ 0, 1 ≤ i ≤ N, 1 ≤ j ≤ nf . (29)

However this problem is non-convex in the power vectors pi(hi) for all i and a algorithmic

solution doesn’t exist, unlike other multi-user vector transmission problems in which the rate

objective is a convex function of the transmit covariance matrices [16]. This non-convex problem

is stated in a slightly different form in [10] where the authors claim the same. The reason is

that transmitted signal xi =
√

pibi lies in an one-dimensional space (rank(E[xix
T
i ]) = 1) and

it can’t water-fill over all the other dimensions, which is the solution for the convex problems

of [16].

C. Proposed Heuristic Solution

Since the optimal scheme is unknown, we propose a heuristic solution, which is inspired from

the iterative water-filling algorithm of [16]. In this heuristic, each user treats the signal of all

other user’s as noise and chooses the optimal power vectors, in an iterative way. This is still a



non-convex problem but we show that it can be solved. For simplified analysis we consider the

problem of only frequency domain spreading as in Section V-B. The proposed heuristic is thus,

1) Initialize pj(hj) = p0, j 6= i

2) Repeat

for i = 1 to N , j 6= i,

Szzi = I +
∑

j H
1

2

j p
1

2

j (hj)p
1

2

j (hj)
T (H

1

2

j )T ,

pi(hi) = max log
∣

∣

∣
Szzi + H

1

2

i p
1

2 (hi)p
1

2 (hi)
T (H

1

2

i )T

∣

∣

∣
,

end

until the MMI converges.

It can be shown that the maximization problem of the above algorithm, can be reduced to the

following,

max
p

1

2 (h)

p
1

2 (h)T (H
1

2 )TSzz
−1H

1

2p
1

2 (h) (30)

s.t. p
1

2 (h)Tp
1

2 (h) = P , p(h) > 0, (31)

where the user index i has been dropped for simplicity. The solution is outlined in Appendix II. It

is shown that the optimal x lies in the space of the eigenvectors of all the principal sub-matrices

of A, with zeros padded to these eigenvectors to produce the vector x of length n.

Such a solution can be easily implemented in a distributed fashion. The receiver, who has ac-

cess to all the received signals, can broadcast the total spectrum S
(tot)
zz = I+

∑

H
1

2

j p
1

2

j (hj)p
1

2

j (hj)
T (H

1

2

j )T

where the summation is over all the users and user i, can subtract his own spectrum from S
(tot)
zz

to obtain Szzi of the iterative algorithm. Such methods have been discussed in [10]

VI. CONCLUSION

This paper defines spreading along time and frequency in a generalized form and provides a

comprehensive information theoretic analysis for the same. It develops the transmission model

for single user, and studies optimal power allocation and transmission schemes, under three

different cases of channel state knowledge at the transmitter. For perfect CSI at transmitter the

optimal single user policy is to transmit in the best subcarrier and the transmit power is obtained

by waterfilling over the distribution of the best subcarrier. For no CSI the optimal policy is

equal power allocation in all subcarriers. For one bit per subcarrier feedback the optimal policy



turned out to be to transmit in all the subcarriers that are above the threshold. The work also

investigated the asynchronous multi-user transmission and showed that most problems are still

open and hence proposed a heuristic solution, which is implementable in a distributed way.

There are several directions of future research. The outage behavior and delay aspects of the

proposed model have to be carefully investigated. On a more practical note, since the transmission

spans both time and frequency dimensions, scheduling between various transmissions has to be

studied, in order to implement the best subcarrier policies for any CSI. In conclusion we note that

the multi-user asynchronous problem, can also be addressed by starting with a different objective

other than sum capacity. There has been recent works [8], where the multi-user scenario has

been modeled as a non cooperative power control game, with the competitive optimality of the

users being the objective. These approaches may lead to meaningful models for the physical

situation which are at the same time are analytically tractable.

APPENDIX I

TRANSMISSION POLICY FOR 1 BIT QUANTIZED CSIT

Consider the case when nf = 2. The proof can be easily generalized for higher nf . Now

f (h|u) =
∏2

i=1 f (hi|ui) from assumptions about the channel and the CSIT. It can be shown

that,

∂J

∂p1(u)
=

1

2

∫ ∫

h1g (h1, h2, u1, u2) dh1 dh2 − λ, (32)

∂J

∂p2(u)
=

1

2

∫ ∫

h2g (h1, h2, u1, u2) dh1 dh2 − λ, (33)

where the function g (h1, h2, u1, u2) is

f(h1|u1)f(h2|u2)

σ2 + h1p1(u) + h2p2(u)
, (34)

and is same for both the partials. Now consider u1 = 1, u2 = 0. Then

∂J

∂p1(u)
=

1

2

∫ ∞

hTh

∫ hTh

0

h1g (h1, h2, u1, u2) dh2 dh1 − λ (35)

>
hTh

2

∫ ∞

hTh

∫ hTh

0

g (h1, h2, u1, u2) dh2 dh1 − λ. (36)

Similarly, it can be shown that

∂J

∂p2(u)
<

hTh

2

∫ ∞

hTh

∫ hTh

0

g (h1, h2, u1, u2) dh2 dh1 − λ. (37)



Hence,

∂J/∂p1(u) > ∂J/∂p2(u). (38)

But from the Kuhn-Tucker conditions

∂J

∂pk(u)
= 0 when pk(u) > 0 (39)

∂J

∂pk(u)
≤ 0 when pk(u) = 0, (40)

It can be stated that p1(u) > 0 and p2(u) = 0.

APPENDIX II

MAXIMIZATION OF xTAx WITH xTx = 1 AND x ≥ 0

The optimization problem, we seek to solve is

max
xT x=1
x≥0

xTAx, (41)

where A ∈ Rn×n and x ∈ Rn. To solve the problem for any arbitrary A, we write its Lagrangian

as,

L = xTAx + λxTx + µ
Tx, (42)

µ ≥ 0 λ is unconstrained, (43)

where λ is a scalar and µ ∈ Rn. Taking the partial derivative w.r.t. x yields,

∂L
∂x

= 2Ax + 2λx + µ = 0, (44)

µixi = 0, 1 ≤ i ≤ n, (45)

xTx = 1, x ≥ 0,µ ≥ 0. (46)

The number of zero components of the optimal x can be from 0 to n − 1. Let all vectors

having k zeros be said to belong to the kth class. To solve, we consider all the classes one by

one and for each class, we solve Equation (44) for x. We retain the vectors those satisfy the

original constraints and call them feasible. Ultimately we check which feasible x maximizes the

objective. These are explained in detail below,



1) Class 1: x has no zero element: In this case the constraints are:

xi > 0, 1 ≤ i ≤ n (47)

µi = 0, 1 ≤ i ≤ n, from Equation (45) (48)

For these constraints, Equation (44) yields,

Ax = −λx. (49)

Hence the stationary points of the Lagrangian are given by the unit norm eigenvectors of the

original matrix A. The feasible vectors are those, for which constraints in Equation (47) are

satisfied.

2) Class 2: x has one zero element: The zero element can occur in any of the n places. We

consider all these sub-classes one by one. Let us begin with x1 = 0. The constraints become

xi > 0, 2 ≤ i ≤ n, (50)

µ1 > 0, (51)

x1 = 0 and µi = 0, 2 ≤ i ≤ n. (52)

For this parameters the Equation (44) can be expressed as,

Ax + λx = −1

2
µ. (53)

This can be rewritten into an eigenvalue problem and a linear equation as follows,

aT
1 x1 = −1

2
µ1, (54)

A1x1 = −λx1, (55)

where,

a1 = [a12, a13, · · · , a1n] , (56)

x1 = [x2, x3, · · · , xn] , (57)

A1 =











a22 · · · a2n

...
...

an2 · · · ann











. (58)

Now solve Equation (55) and calculate the unit-norm eigenvectors x1 of A1. Then check if,



1) All elements of x1 are positive. [ref. Equation (50)]

2) µ1 calculated from Equation (54) is positive. [ref. Equation (51)]

If x1 satisfies both then form feasible x = [0,x1].

Now consider xk = 0, k 6= 1. Flip the first and the kth rows of A and first and the kth

elements of both x and µ. The resulting system of equations has the same structure as the

x1 = 0 case, and can be solved.

3) Cases 3−n: x has k zero elements, 2 ≤ k ≤ n: The procedure outlined in Section II-.2 can

be easily generalized to consider all the remaining cases. We omit a complete proof for sake of

brevity. It can be shown that For any k, there are
(

n

k

)

ways in the k zeros can be distributed. in

x and for each sub-class solving Equation (44) reduces to an eigenvalue problem of the matrix

Ak ∈ R(n−k)×(n−k) and a system of k linear equations.

Note that this method solves the optimization problem for any arbitrary matrix A. However

the complexity of the algorithm increases exponentially with n.
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