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Abstract— We consider a system where one service provider
(SP) allocates spectrum to users subscribed to his network. The
SP charges a two part tariff [10] from the users comprising of
a fixed subscription price and price per unit spectrum used. We
formulate the spectrum allocation problem from the SP profit
maximization framework and calculate the resulting expressions
for prices and spectrum allocated for different user utilities and
SP power allocation strategies.

I. INTRODUCTION

We consider the downlink of a wireless system where a
Service Provider (SP) sets up a base station to transmit to
a group of users. There is a spectrum band assigned for the
underlying application by a Government agency like the FCC
in USA. The SP allocates this spectrum to the users who are
located in the same geographical region and could potentially
interfere if assigned overlapping spectrum. Such a situation
models the upcoming 802.22 networks which would operate
in the VHF and UHF TV bands. Spectrum allocation between
different users is important for ensuring QoS. Traditional
approaches like FDMA assigned fixed frequency channels to
users. However spectrum usage is dynamic depending upon
spatial and temporal factors and fixed spectrum allocation
leads to underutilization [8].

This can be remedied by allowing all users to share the
spectrum. But the resulting interference affects QoS and may
not be suitable for applications with high rate or stringent
delay/latency requirements as noted in [4].

Thus to simultaneously minimize spectrum underutilization
and maximize application objectives like rate or minimum
latency, dynamic spectrum allocation is necessary. By dy-
namic spectrum allocation we refer to a system where the
allocated spectrum depends on the end application and the
allocation is for short time scales (typically of the order of
a session duration like a file transfer or voice call). Such a
system necessitates the need for some form of coordination
amongst users and/or central control. A popular model for
such dynamic spectrum allocation is based on the concept of
a central entity (which has been called the Spectrum Policy
Server (SPS) in [7]) that regulates spectrum usage amongst
multiple SPs on a need-only basis. The SPs then allocate this
spectrum to the users subscribed to their respective networks.
Such a multi-tier spectrum allocation model has been analyzed
in [2], [5]. The authors in [3] explore the network architecture
design issues of this model.

A. Pricing for Spectrum Allocation

Dynamic spectrum allocation can be implemented by sev-
eral mechanisms like centralized decision making by the SP
or SPS, auctions [11] etc. Another important mechanism is
pricing where the SP sets a price for spectrum and the users
decide how much spectrum to buy based on the price and
the utility which the purchased spectrum would yield. The
SPs then obtain exactly the same amount of spectrum which
they have to allocate to the users thus eliminating spectrum
wastage. Pricing for spectrum allocation has been considered
in [2], [5], [11].

B. Our Contribution and Related Work

In our previous work [2], we analyze the spectrum allocation
problem from a user sum utility maximization framework
and show that the spectrum price is set such that the entire
spectrum is utilized. However for many networks of practical
interest the objective of the SP is to maximize its own revenue
because it would have and investments in purchasing the
right to offer services in the spectrum and in setting up the
equipment to do so (hereafter referred to as the SP cost).
SP profit maximizing pricing strategies may not necessarily
maximize sum utility of the users. In this work we consider a
single SP who sets a spectrum price to maximize his profits
and users decide how much spectrum to purchase. The SP
subsequently provides services to the users over their allocated
spectrum. SP profits resulting from pricing are also dealt in [5]
and [12]. The authors in [5] consider 2 SPs who offer fixed
prices and rates and study the resulting SP revenues based
on the probabilities that the users accept their services. The
authors in [12] vary the prices for SP revenue maximization
based on fixed rates and frame success probabilities of the
received packets. In their model, users pay more for a better
frame success probability which corresponds to more allocated
spectrum. However the relationship between the spectrum
price charged from users to the SP cost is not completely
explored. In this paper we adopt a microeconomic approach
to derive the optimal value of spectrum price as a joint function
of SP costs and what the users are willing to pay. Our notion
of utility is the achievable rate between the SP and the users
which varies as a function of the spectrum allocated to the
user. This makes sense for most future data centric systems
that are based on OFDM transmission. Spectrum allocated



to an user directly translates to the number of OFDM tones
over which his data is sent. Unlike the OFDM example, in
our work we assume that spectrum is a divisible resource for
analytical simplicity. We derive optimal values of the prices
and power allocation strategies that maximize the profit of the
SP. We use the concepts of pricing from the microeconomics
literature [10], [6] and show that there is benefit in applying
them to spectrum allocation problems.

C. SP Costs

We assume that the SP has to bear a cost C(X) for the
allocation of spectrum X to the users. We could broadly
decompose C(X) into,

• Fixed radio deployment costs like cost of setting up an
antenna denoted by F .

• Variable spectrum lease cost which arise as the SPs would
have purchased rights from the SPS to provide services
over some spectrum band. This can be similar to the
spectrum licensing costs that the cellular operators pay
to the FCC but is on a shorter time scale. A reasonable
model for cost is k1k2SX , where S is base spectrum
cost in dollars/MHz. k1 denotes the geographical region
in which the SP wants to operate with spectrum more
expensive in urban zones. Factor k2 denotes the band in
which the spectrum is leased, with a MHz in the crowded
bands like 800-900 MHz being more costly than a MHz
in the relatively unused bands.

• Thus we consider a cost function C(X) = F + CX .

II. SYSTEM MODEL

We consider a system with a single SP and L end users. Let
user j purchase xj amount of spectrum from the SP. In the
subsequent communication process the SP transmits to user j
over his purchased spectrum. The SP transmits with spectral
efficiency ν(xj) (measured in bps/Hz) to user j, resulting in a
received rate of Rj = ν(xj)xj bps. Assume that user j has a
utility function Uj(Rj) which is increasing and concave in Rj .
The SP charges a two part tariff [10] from user j, consisting of
a fixed subscription price κ and a price µ charged per unit of
spectrum used. This results in a SP revenue of ρ(xj) = µxj+κ
from user j. The user does not have to pay the subscription
price κ if he is not receiving any service from the SP, i.e. if
xj = 0. Thus

ρ(xj) =

{

µxj + κ, xj > 0

0, xj = 0.
(1)

The SP initially announces a price pair (µ, κ). Given this the
user optimizes over how much spectrum to obtain as follows,

max
xj

Uj(Rj)− ρ(xj) = max
xj

Vj(xj)− ρ(xj), (2)

where
Vj(xj) = Uj(Rj) = Uj(ν(xj)xj). (3)

Note that if the price pair (µ, κ) is high some of the users
may refuse service and hence xj = 0 for these users. After
all users perform this optimization they inform the SP about

how much spectrum they desire. The SP has to provide a total
spectrum of X =

∑L

j=1
xj . The SP purchases this amount

of spectrum from the FCC and has to pay C(X). Given X
the SP can further optimize his prices (µ, κ) to maximize his
profits

∑L

j=1
ρ(xj)− C(X). He performs

max
µ,κ

µX + κN − C(X), (4)

where N users accept the service. The SP announces the new
prices (µ, κ) and users again optimize over xj . We note that
the optimization problems (2) and (4) are coupled. At the
equilibrium there is a unique (L+2)-tuple {x1, · · · , xL, µ, κ}
that satisfy both these problems simultaneously.

III. MONOPOLISTIC PRICING

Since there is only one SP the domain of the problem lies
in the monopolistic pricing literature of microeconomics [10],
[13]. To arrive at the solution consider the following cases,

A. Uj(Rj) is same for all users

Recall that Uj(Rj) = Uj(ν(xj)xj). Thus for Uj(Rj) to
be same for all users consider when the SP provides uniform
spectral efficiency to all users, i.e νj = ν and Uj(νx) is same
for all j. An example could be the SP implementing an OFDM
transmitter in the downlink with the same modulation per
subcarrier and each user is interested in maximizing his rate.
Note that different subcarriers have different channel gains
and in order to provide the same ν per subcarrier, the SP
has to vary the transmit power, which is similar to perfect
power control in CDMA. Thus all users are allocated an equal
share of spectrum and the optimal allocation can be obtained
by considering any one user. For one user, the optimization
problems (2) and (4) become,

max
x

V (x)− µx− κ. (5)

The SP optimization is,

max
µ,κ

µx + κ− C(x). (6)

To maximize his profits, the SP has to raise his prices (µ, κ).
However if the prices are too high the user might decide not
to obtain service from the SP. Thus SP will set the prices
such that the user is just indifferent between obtaining or not
obtaining the service [13]. In other words from (5),

max
x

V (x)− µx− κ = 0. (7)

The first order conditions of (5) is

µ = V ′(x). (8)

The graph of (8) is called the demand function [13] which
shows how the demand for resource x varies with price µ.
Substituting this in (7) we obtain,

κ = V (x)− µx = V (x)− xV ′(x). (9)

Calculating dµ/dx and dκ/dx from (8) and (9) and dividing
we obtain,

dκ

dµ
= −x or κ∗ =

∫ ∞

µ∗
x(µ)dµ, (10)



where (µ∗, κ∗) is the solution to (6) for x = x∗, where x∗ is
the solution of (5). The first order conditions of (6) w.r.t µ is,

x + µ
dx

dµ
− C ′(x)

dx

dµ
+

dκ

dµ
= 0. (11)

But the first and last terms cancel out from (10). We thus
obtain

µ = C ′(x). (12)

Thus the optimal usage price is equal to the marginal cost
evaluated at the optimal spectrum allocated x∗, or the cost
borne by the SP to produce one extra unit of spectrum at
x∗. Further revenue is then obtained from the subscription fee
κ. From (7) κ = V (x) − µx. In the economics literature,
κ is called the consumer’s surplus, which is a measure of
how much money the user has to be given in order to make
him give up the entire consumption of the good. Thus the SP
makes maximum profit by charging the user his surplus. For
C(x) = Cx + F , the production cost is exactly salvaged by
the usage fees µx and the SP’s subsequent profit is entirely
due to κ.

B. An example of Spectrum Allocation

From (8) and (12) we observe that x is obtained by solving,

V ′(x) = C ′(x). (13)

This is a standard result in microeconomics that says that at the
optimal production x∗ the marginal utility V ′(x) is equal to the
marginal cost of production C ′(x). Thus at optimal production,
the cost for providing an additional unit of spectrum is same
as the utility (in dollar value) provided by it.

Example 1: As an example consider V (x) = log(νx)
(corresponding to U(R) = log(R)) and C(x) = Cx + F .
From (12), the demand function is µ = 1/x. From (13) the
spectrum price is µ = C and spectrum allocated is x = 1/C.
The surplus of the user is κ = log(ν/C)− 1.

C. Relative Magnitudes of usage cost and subscription fee

Does the SP profit more by keeping usage cost rate µ high
or subscription fee κ high? The answer depends on the shape
of V (x). If the optimal value of allocated spectrum is x = x∗,
we have to compare the values of µx∗ = x∗V ′(x∗) and κ =
V (x∗)− x∗V ′(x∗). Thus

µx∗ ≷ κ∗ iff x∗V ′(x∗) ≷ V (x∗)− x∗V ′(x∗) (14)

or iff 2x∗V ′(x∗) ≷ V (x∗). (15)

Let us consider the class of general α-fair concave utility
functions [9] given by,

Uα(x) =







x1−α

1− α
, α 6= 1

log(x), α = 1
(16)

Different values of α lead to solutions that have different
notions of fairness [9]. For e.g. α = 0 corresponds to through-
put maximization utility, α = 1 corresponds to proportional
fairness and α → ∞ corresponds to max-min fairness. For
these class of utilities we can show that whenever 0 ≤ α < 0.5

or α > 1, usage cost µx is always greater than subscription fee
κ for any value of x. This includes the utilities for throughput
maximization and max-min fairness. The relationship between
the two costs is reversed for utilities with 0.5 < α < 1. For
α = 0.5 they are equal and for α = 1, there is no unique
relationship between the two for all values of x.

D. Uj(Rj) is different for users

In section III-A the SP transmitted at variable power to
enable equal rate to all users. Thus if the channel coefficient
between user j and SP was hj , then the SP transmitted at a
power proportional to 1/hj . However this might lead to large
transmit power requirements. In this section we consider that
the SP has a total power constraint P and allocates power
Pj to the transmission of user j. The SP is thus performing
a joint power and spectrum allocation. The spectral efficiency
obtained by user j is now given by, ν(xj) = log(1+hjPj/xj),
where we have assumed unit power spectral density of back-
ground AWGN. Thus Uj(Rj) is different for different users if
their channel coefficients to the SP are different. We assume
that hj is flat over frequencies and thus no matter between
what bands xj lies, hj is same.

We consider two different types power allocations,

1) The SP serves all the L users with equal power alloca-
tion. Thus xj 6= 0 and Pj = P/L for all j.

2) The SP optimizes Pj to maximize his profit. Thus some
users not accept service i.e. xj = 0, Pj = 0 because of
prices (µ, κ). The loss of revenue from these users can
be made up by increased revenue from other users.

Let Uj(Rj) = ηRj and thus Vj(xj) = ηxj log(1 + hjPj/xj)
where η is the fraction of the capacity that can be reliably
guaranteed by the SP and is a measure of its efficiency. Usually
the demand function of a user does not depend on number of
users L. However in our case the demand function of spectrum
as per (8) is,

µ = η log

(

1 +
hjPj
xj

)

−
ηhjPj

xj + hjPj
, (17)

which depends on Pj . Since there is a total transmit power
constraint P , the demand functions of the users are in fact
dependent on each other.

1) SP serves all users: From (4) the SP optimization
equation for N = L is max

µ,κ
µX + κL− C(X). The first order

conditions w.r.t µ are,

X + µ
dX

dµ
− C ′(X)

dX

dµ
+ L

dκ

dµ
= 0. (18)

If users have different utilities and the SP has to maximize
his profits while serving all of them, it will raise the (µ, κ)
values to that point when the surplus of some user becomes
zero. Increasing price any further would cause this user to
refuse the service. This user is referred to as the marginal
user. Let us denote this user by index m. Thus the price (µ, κ)
are set such that (7) and (10) are satisfied for user m. Thus
dκ/dµ = −xm in (18). To simplify the expression further we
follow the treatment in [10] and introduce the notations s =
xm/X , which indicates the fraction of the total spectrum that
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the marginal user obtains and ε = −(µ/X)(dX/dµ) which
in economics is called the price elasticity of demand [13].
This is a measure of how much percentage change in price
affects percentage change in consumption. This can be seen
by writing ε as −(dX/X)/(dµ/µ). Note that X decreases
with price µ and hence dX/dµ is negative and ε is positive.
In terms of these constants we can solve for µ from (18) as,

C ′(X) = µ

(

1−
1− Ls

ε

)

. (19)

For the single user case considered in Section III-A, L = 1
and s = x1/X = 1. Thus (19) reduces to (12) as expected.

We now state and prove the following lemma about spec-
trum allocation,

Lemma 1: The function

µ = f(z) = η log

(

1 +
1

z

)

−
η

1 + z
(20)

is decreasing and convex for positive z.
Proof: For z > 0, f ′(z) < 0 and f ′′(z) > 0.

Lemma 2: The user with the weakest channel to the SP is
the marginal user.
Proof: The demand function of user j is obtained by substi-
tuting Pj = P/L in (17),

µ = η log

(

1 +
hjP

Lxj

)

−
ηhjP

Lxj + hjP
. (21)

Assume WLOG that h1 > h2 > · · · > hL. Consider users
L and k, where k < L. Fix xL = xk = x. In terms of
zL = Lx/hLP and zk = Lx/hkP , (21) reduces to (20). Now
hk > hL ⇒ zk < zL and hence by Lemma 1, f(zk) > f(zL).
This is illustrated in Figure 1 which shows that the graph for
user k lies to the right of the graph for user L for all k.

Let the optimal price be µ∗. The surplus of user k is the area
of the region DAC while that of user L is the area of region
DBC as these are the values of the integral in (10) evaluated
for xk and xL. Since area of DAC > area of DBC user L has
the least surplus amongst all users and is thus the marginal
user. ¥

Lemma 3: At the optimal solution spectrum price µ is more
than the marginal cost of production C ′(X).
Proof: Let the solution of (20) be z = f−1(µ). Since f(z)
is decreasing and convex, it is one-to-one and thus f−1(µ)
is also one-to-one. Let the optimal price be µ = µ∗. Since
zk = Lxk/hkP , we obtain,

xk =
hkP

L
f−1(µ∗). (22)

Thus in (19) we can evaluate,

Ls =
LxL
X

=
LhL(P/L)f−1(µ∗)

∑L

k=1
hk(P/L)f−1(µ∗)

=
LhL

∑L

k=1
hk

< 1,

(23)
as hL = min(h1, h2, · · · , hL). Hence Proved. ¥

The relationship µ > C ′(X) means that the spectrum cost
charged by spectrum regulatory body of a country like FCC
to the SP is increased and passed on directly to the customers
by the SP.

The parametric expression of xk in terms of hk as shown
in (22) is very useful for simplifying the results for optimal
pricing. For e.g. consider C(X) = F +CX , then substituting
for xk in (19) and after some algebraic manipulations we
obtain,

C = µ +
1− LhL/

∑L

k=1
hk

(1 + f−1(µ))
2

. (24)

Thus given a set of L users (24) can be solved and the optimal
value of µ determined. In practice we can assume that before
the actual spectrum allocation takes place, each user sends
beacon packets to the SP and thus the SP is aware of number
of users L and the channel coefficients h1 · · ·hL. The SP can
then solve (24).

Recall that dκ/dµ = −xL. Thus for µ = µ∗,

κ∗ =
hLP

L

∫ ∞

µ∗
f−1(µ)dµ. (25)

Observe from (24) and (25) that for C(X) = F+CX , µ∗ does
not depend on transmit power P while κ∗ does. In fact (25)
shows that κ∗ increases linearly with P . Thus it is profitable
for the SP to increase his transmit power. Of course we haven’t
factored in the cost incurred by the SP for increasing his
transmit power (for e.g. batteries draining out faster) which
might have given the optimal value of P .

2) SP optimizes the transmit powers: In this section we
return to the general demand function as given in (17) and
ask the following question: if there are L users and the SP
has a total transmit power constraint how should he optimally
allocate power to their transmissions so as to maximize his
profits? We mention at this juncture that power allocation has
traditionally been used for objectives such as user sum capacity
maximization but to the best of our knowledge has never been
explored for the SP profit maximization.

First assume that in the optimal solution the SP serves only
the first N out of L users. Then the user N is the marginal
user. Then (22) is modified to xk = hkPkf

−1(µ∗) and (25)
is modified to κ∗ = hNPN

∫∞

µ∗
f−1(µ)dµ. Recall that SP



profit π(N) = (µ∗−C)X+Nκ∗. Hence the power allocation
problem for profit maximization can be expressed as,

max
N

max
P1,··· ,PN

(µ∗ − C)f−1(µ∗)

N
∑

k=1

hkPk + Nκ∗

s.t. C = µ∗ +
1

(1 + f−1(µ∗))
2

(

1−
NhNPN
∑N

k=1
hkPk

)

κ∗ = hNPN

∫ ∞

µ∗
f−1(µ)dµ

P1 + · · ·+ PN = P

P1, · · · , PN > 0.

This is a complicated non-convex problem. However we can
arrive at the optimal solution indirectly. Let us first consider 2
users with h1 > h2 and derive the optimal power allocation.
The result can be generalized to the case when more users are
present. From definition of ρ(xj), the SP revenue from user j
(see (1)) we can write the SP objective function is,

π(2) = ρ(x1) + ρ(x2)− C(x1 + x2) (26)

Recall from the discussion in Section III-D.1 that the entire
surplus of the second user is extracted by the SP. Thus utility
V2(x2) = ρ(x2). This is true even if no spectrum is allocated
to user 2 as then V2(x2) = 0 and ρ(x2) = 0 by definition.
However the first user still has some surplus left and hence
V1(x1) > ρ(x1). Thus for all x1, x2

π(2) < V1(x1) + V2(x2)− C(x1 + x2). (27)

Thus,

max
x1≥0,x2≥0

P1≥0,P2≥0

P1+P2=P

π(2) < max
x1≥0,x2≥0

P1≥0,P2≥0

P1+P2=P

2
∑

k=1

Vk(xk)− Cxk. (28)

But the optimization problem in the RHS of (28) is similar to
the sum utility maximization problem considered in [2] with
the shadow price being replaced by the spectrum cost C. It
has been shown in [2] that the solution of the optimization
problem is achieved by allocating all power to the user with
the best channel. Since h1 > h2, the optimal power vector
is [P, 0]. But for this power vector both the LHS and RHS
optimization problems in (28) become the same problem. This
is a optimizing x1 for P1 = P . Thus for [P, 0] the optimization
of π(2) touches the maximum value of its upper bound and
hence this is the optimal power allocation strategy.

Thus to maximize profits the SP maximizes the sum utility
of the system as he can then extract dollar revenues propor-
tional to the sum utility.

E. Numerical Results

We now numerically evaluate how the SP profit varies with
the number of users served under a uniform power allocation
policy. Let the SP serve N users with the largest value of
channel gains. The users are indexed from 1 to N and each
transmission takes place at power P/N . Cases considered in
Sections III-D.1 and III-D.2 correspond to N = L and N = 1
respectively.
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Fig. 2. The SP profit as the number of served users varies

No. of Users, L 15
Path Loss Coeff 3.7
Reference Distance 100m
Cell Radius 1km
Transmit Power 5 Watt
Efficiency, η 0.08
Fading Margin 44 dB

TABLE I

PARAMETERS FOR SPECTRUM ALLOCATION

We assume L = 15 users are distributed in a cellular area
of 1 km. The channel coefficients originate from a distance
based path loss model. We also assume that due to shadow
fading the received SNR is reduced by a constant fading
margin. As mentioned earlier the the channel coefficients
are flat over frequencies and depend only upon the user
locations. The values of µ and κ are calculated from (24)
and (25) respectively. The simulation parameters are explained
in Table I. The SP profit depends on how the function
g(N) = NhN/

∑N

k=1
hk, varies with N . Now g(1) = 1

and for N1, N2 > 1, g(N1), g(N2) < 1, but their relative
order depends on the values of the coefficients hk. Thus for
each N > 1, we generate 10000 instances of channel vector
[h1, · · · , hN ] and calculate the average value of SP profit. The
result is shown in Figure 2. We see that the SP profit decreases
as the number of users increase. It is most profitable for the
SP to serve only one user as was proved in Section III-D.2.

Figure 3 plots the breakup of the SP revenue from subscrip-
tion cost κ and usage cost µx for the marginal user and the
user with the best channel to the SP (referred to as the best
user), for C = 0.5. The majority of the revenue comes from
the usage cost of the best user. Least revenue comes from
the subscription cost. The demand function graphs as given
in Figure 1 give us the intuition that for lower values of C,
the spectrum purchased and the surplus κ is more. This is
observed in Figure 4 where the value of C is lowered to 0.05.
Lastly Figure 5 shows that the SP profit reduces exponentially
with production cost C.

Note that the absolute values of the various parameters
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shown in the figures should not be interpreted literally. For
e.g. we have C = 0.5, 0.05 but profit values which are bigger
by several orders of magnitude. This is because for simulation
purposes, the various systems equations like µ = V ′(x) =
C ′(x) haven’t been normalized. One dollar, the unit of C ′(x)
is not equivalent to one bps, the unit of V ′(x). The results in
this paper are true within bounds of proper scaling.

In passing we note that the role of the marginal user in profit
maximizing pricing strategies have also been studied in [1]
for a communications system with only fixed subscription
costs κ and where the SP allocates power to a group of
downlink nodes. The results are slightly different due to the
non inclusion of usage based cost in the problem formulation.

IV. CONCLUSION

In this paper we considered a system where a single SP
allocated spectrum to users subscribed to its network and
charged a two part tariff consisting of a fixed subscription price
and variable usage cost to maximize its profits. We showed that
the usage price is determined by the cost incurred by the SP
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in providing services over the spectrum and the subscription
price is determined by the excess surplus of the marginal user.
We also showed that the optimal power allocation policy that
maximizes SP profit is to allocate all resources to the user with
the highest channel gain which is also the policy that solves
the sum utility maximization problem of the users.

REFERENCES

[1] D. Acemoglu, A. Ozdaglar, and R. Srikant. The marginal user principle
for resource allocation in wireless networks. In Proc. of IEEE Conf. on
Decision and Control, 2:1544–1549, December 2004.

[2] J. Acharya and R. D. Yates. A framework for dynamic spectrum sharing
between cognitive radios. In Proc. of IEEE International Conf. on
Communications (ICC), June 2007.

[3] M. Buddhikot, P. Kolodzy, S. Miller, K. Ryan, and J. Evans. DIMSUM-
net: New directions in wireless networking using coordinated dynamic
spectrum access. IEEE WoWMoM, pages 78–85, Jun 2005.

[4] R. Etkin, A. Parekh, and D. N. C. Tse. Spectrum sharing for unlicensed
bands. In Proc. of IEEE Symposium on New Frontiers in Dynamic
Spectrum Access Networks (DYSPAN), pages 251–258, November 2005.

[5] O. Ileri, D. Samardzija, and N. B. Mandayam. Demand responsive
pricing and competitive spectrum allocation via a spectrum server. In
Proc. of IEEE Symposium on New Frontiers in Dynamic Spectrum
Access Networks (DYSPAN), pages 194–202, Nov 2005.

[6] J. K. MacKie-Mason and H. R. Varian. Pricing congestible network re-
sources. IEEE Journal on Selected Areas in Communications, 13:1141–
1149, September 1995.

[7] N. Mandayam. Cognitive algorithms and architectures for open access
to spectrum. The Conference on the Economics, Technology and
Policy of Unlicensed Spectrum, East Lansing, MI, (Available online at:
http://quello.msu.edu/conferences/spectrum/papers/ mandayam.pdf).

[8] M. McHenry and D. McCloskey. New York City spectrum
occupancy measurements, September 2004. (Available online at:
www.sharedspectrum.com/inc/content/measurements/nsf/NYCreport.pdf).

[9] J. Mo and J. Walrand. Fair end–to–end window–based congestion
control. IEEE/ACM Trans. Networking, 8:556–567, October 2000.

[10] Walter Y Oi. A disneyland dilemma: Two-part tariffs for a mickey
mouse monopoly. The Quarterly Journal of Economics, February 1971.

[11] V. Rodriguez, K. Moessner, and R. Tafazolli. Auction driven dynamic
spectrum allocation: optimal bidding, pricing and service priorities for
multi-rate, multi-class CDMA. In Proc. of IEEE Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), 2005.

[12] V. Rodriguez, K. Moessner, and R. Tafazolli. Market-driven dynamic
spectrum allocation: Optimal end-user pricing and admission control
for CDMA. In 14th European Information Society Technologies (IST)
Mobile and Wireless Communications Summit, 2005. Dresden, Germany.

[13] Hal R. Varian. Intermediate Microeconomics. W. W. Norton, 1999.


