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Abstract— We consider a network setting, where a single
Service Provider (SP) provides wireless data services to a group
of users in the downlink. The transmission model is similar to
OFDMA and thus the SP allocates spectrum to the users. The SP
transmits at specific power spectral density. The user applications
are characterized by their received rate which is a function of the
allocated spectrum, its link gain to the SP and the transmit power
spectral density. The SP obtains the net spectrum requested by
all the users from a central clearinghouse. The SP charges the
users a two part tariff consisting of a fixed subscription fee and
variable usage cost and pays the clearinghouse a spectrum cost.
The SP also incurs a cost proportional to the power it transmits
to all the users. We model this allocation scheme and characterize
the trade-off between transmit power spectral density and net
spectrum purchased by the SP as a function of the spectrum and
power costs for different classes of concave user utilities.

I. I NTRODUCTION

Traditional wireless networks like 2G cellular allocate fixed
spectrum to its customers. Numerous studies have shown that
this leads to spectrum wastage and causes artificial spectrum
scarcity [1]. Thus dynamic allocation of spectrum have been
proposed for better utilization [2], [3]. In the future it is
likely that the spectrum regulatory bodies like FCC will grant
wireless service providers (SPs) with short term licenses [4]
so that they can purchase the exact amount of spectrum as
needed to serve their customers.

Motivated by these developments, we consider a centralized
network consisting of a single service provider (SP) that
allocates orthogonal chunks of spectrum to it’s customers
dynamically, based on their demand. It then transmits to
these users over their allocated spectrum. The user demand
of spectrum depend on the received rate which is different for
users due to the variations in the link gain. The SP purchases
the amount of spectrum needed by his customers, from the
FCC. The SP has to pay the FCC for the purchased spectrum
and in turn charges the users to recover his costs. In this work
we model the dynamic allocation as a SP profit maximization
problem and derive the optimal values of the prices.

Pricing for profit maximization has been studied under var-
ious contexts. Simple wireless settings have been considered
in [5], [6] but the full range of relationships between spectrum
prices, costs and user demands are not established. On the
other hand, several works in microeconomics have considered
pricing for profit maximization [7], [8] but for very generic
user demand functions and costs. In this work, we have applied

some of these principles specifically to a wireless setting and
evaluated the prices and characterized the behavior of the
allocation. This is an extension of our previous work [9] where
we had considered that the SP has a fixed powerP to allocate
to the users. Though a standard assumption for power limited
devices, in reality the SP will be wired and hence not power
limited. A more important practical constraint for wireless
settings is the FCC mandatedspectral mask i.e. maximum
value of transmit power per unit spectrum. Hence in this work
we assume that the SP transmits with a spectral density and
there is a cost associated with the total transmit power. We
have also considered two classes of concave utility functions
that model wireless data applications.

Pricing for resource allocation has also been considered in
many non-wireless flow control problems [10]. Though some
fundamental results stay same across models, our focus is
more on capturing the problems specific to the wireless model.

II. SYSTEM MODEL

Let there be one SP andL users in the system. The SP
transmits to users in the downlink with power spectral density
of ν Watts/MHz. Let the link gain between SP the userj be
given byhj . The spectral efficiency in the transmission to user
j is given by

Kj = log

(

1 +
νhj

N0

)

. (1)

The transmission is similar to OFDMA where different users
are allocated different number of tones, as per their application
requirements. If the tone spacing is narrow as compared to
the total bandwidth, we can assume the frequency variable to
be continuous. An example system is LTE which can operate
with 15 KHz spacing and2048 subcarriers [11]. Thus the rate
achieved by userj and the transmit power required are

Rj = R(ν, xj) = Kjxj (2a)

Pj = P (ν, xk) = νxj . (2b)

User j’s application is characterized by a utility function
Uj(Rj) which is increasing and concave inRj . Subsequently
we will also allow slight abuse the notation and denote the
utility by Uj(xj , ν). The SP charges a two part tariff [7] from
userj, consisting of a fixed connection priceκ and a priceµ
charged per unit of spectrum used. This results in a SP revenue
of ρ(xj) = µxj + κ from userj. The user does not have to



pay the connection priceκ if he is not receiving any service
from the SP, i.e. ifxj = 0. Thus

ρ(xj) =

{

µxj + κ, xj > 0

0, xj = 0.
(3)

III. SPECTRUMALLOCATION AND PRICING

The SP initially announces a price pair(µ, κ). Given this,
the userj optimizesxj as

max
xj

Uj(xj , ν) − ρ(xj). (4)

Note that if the price pair(µ, κ) is high, some of the users
may refuse service and hencexj = 0 for these users. After
all users perform this optimization, they inform the SP about
how much spectrum they desire. If userj receives non zero
spectrum, then

max
xj

Uj(xj , ν) − µxj − κ > 0. (5)

It can be easily verified that (4) is concave inxj . Taking
derivatives

µ =
∂U(xj , ν)

∂xj
. (6)

The graph of (6) is called thedemand function [8] which shows
how the demand for resourcex varies with priceµ.

The SP has to provide a total spectrum ofX =
∑L

j=1 xj . It
purchasesX from the FCC and has to payC(X). It also incurs
a power costF (ν,X) for transmitting withν Watts/MHz over
a bandwidth ofX MHz.

The SP maximizes his profitsΠ =
∑L

j=1 ρ(xj) − C(X) −
F (ν,X) over prices(µ, κ) for given ν.

Π∗(ν) = max
µ,κ

µX + κL − C(X) − F (ν,X). (7)

He then broadcasts the new prices(µ, κ) and the users
optimize overxj again.

The optimization problem (4) and (7) is an example of a
Stackelberg game [12, Ex. 97.3]. When the SP announces a
price tuple(µ, κ), it knows how the user will react and can
decide his price accordingly.

A. The Marginal User Principle

Define thesurplus of userj as

Sj = Uj(xj , ν) − µxj , (8)

which is the residual utility after paying the usage fee. Let
the system requirements be such that the SP has to serve all
the users. To maximize his profits, the SP will raise his prices
(µ, κ) to the point that the surplus of some userm is equal to
κ. After paying the connection feeκ, userm’s residual utility
is zero. If the prices are raised any further, userm will decide
not to obtain service from the SP. Userm with Sm = κ is
said to beindifferent from obtaining the service [8]. From (4)

max
xm

U(xm, ν) − µxm − κ = 0. (9)

From (5), (6), (7) and (9), the complete SP optimization,
Π∗(ν), is given by

max
µ,κ

µX + κL − C(X) − F (ν,X) (10a)

s.t.µ =
∂U(xj , ν)

∂xj
, 1 ≤ j ≤ L (10b)

max
xm

U(xm, ν) − µxm − κ = 0, m ∈ {1, L} (10c)

max
xk

U(xk, ν) − µxk − κ > 0 for all k 6= m. (10d)

The first order condition of (10a) is

X + L
∂κ

∂µ
+

(

µ − C ′(X) −
∂F

∂X

)
∂X

∂µ
= 0. (11)

Let xm be the spectrum allocated to the marginal user. It was
shown in [9] that

∂κ/∂µ = −xm. (12)

To calculate the optimal prices we first define the elasticityof
demand,ǫ, [8] which gives the relationship between percentage
change in demand to the percentage change in price,

ǫ = −
∂X/X

∂µ/µ
= −

µ

X

∂X

∂µ
> 0. (13)

The last inequality holds as∂X/∂µ < 0 as demand reduces
with price. Definings = xm/X, the fraction of the spectrum
allocated to the marginal user, we can show that the (11) can
be re-written to solve forµ as

C ′(X) +
∂F

∂X
= µ

[

1 −
1 − Ls

ǫ

]

. (14)

We now characterize the solution for specific SP cost functions
C(X) andF (ν,X) and user utilitiesU(R).

B. SP Cost Functions

The spectrum costC(X) is the license fees paid by the
SPs to a central regulatory body like FCC. As mentioned
in [9], a reasonable model for cost isk1k2SX, whereS is
base spectrum cost in dollars/MHz. Factork1 denotes the
geographical region in which the SP wants to operate as
spectrum can be more expensive in urban zones. Factork2

denotes the band in which the spectrum is leased, with a MHz
in the crowded bands like 800-900 MHz being more costly
than a MHz in the relatively unused bands. Thus we model
C(X) = CX.

The SP also pays a power cost proportional to its total
transmit power, given by

F (ν,X) = TνX, (15)

whereT is the constant of proportionality. A part of it could
be the electricity costs. The FCC may also levy an cost on
transmit power which is additional to the spectrum costC.
This is because transmission with a higher power spectral
densityν could cause interference to other systems potentially
operating in that band. A possible example could be that
the SP considered is a 802.22 transmitter [13], a secondary
system operating in the TV bands. To safeguard the primary



TV transmitters, the FCC may decide to charge the 802.22 SP
more if it transmits with more power.

Note that for these cost functions the SP profit in (10a)
becomes

Π∗(ν) = max
µ,κ

(µ − C − Tν)X + κL (16)

We introduce the following notation

Ce = C + Tν, (17)

which we will call as theeffective spectrum cost.

C. Uj(Rj) = log(1 + Rj) = log(1 + Kjxj)

These type oflogarithmic utilities are used to model elastic
applications like data. For userj, the demand function in (6)
is given by

µ =
Kj

1 + Kjxj
. (18)

The maximum value of the RHS of (18) isKj (for xj = 0)
and thus for a feasible allocation,

µ < min
j

Kj = Km. (19)

A plot of the demand function is given in Figure (1).
Lemma 1: For slogarithmic utilities, the user with the weak-

est link gain to the SP is the marginal user.
Proof: Let the optimal value of the spectrum price be

µ∗. The marginal user is the user who has the least surplus.
Substituting forx∗

j from (18) in (8), the surplus of userj is
given by

Sj = log

(
Kj

µ∗

)

− 1 +
µ∗

Kj
. (20)

Taking derivatives ofSj w.r.t. Kj and using relation (19),
it can be shown that∂Sj/∂Kj > 0 i.e. Sj increases in
Kj . So the user,m with least surplusSm is given bym =

arg minj Kj
(a)
= arg minj hj . Relation(a) follows from (1).

A graphical proof for a similar system was given in [9].
Substituting forxj from (18) in (14) and after some algebraic
manipulation, we can show that the optimal value of the price
µ = µ∗ satisfies the following quadratic equation

(
1

Km
−

Ks

L

)

µ2 − µ + Ce = 0

∣
∣
∣
∣
µ=µ∗

(21a)

whereKs =

L∑

j=1

1

Kj
. (21b)

The optimal values of spectrum,x∗

j are given by substituting
for µ = µ∗ in (18). DenoteX∗ =

∑

j x∗

j .
Lemma 2: For users with logarithmic utilities, the spectrum

is overpriced, i.e. µ∗ > Ce.
Proof: Relation (21a) can be rewritten as

(
1

Km
−

Ks

L

)

µ∗2 = µ∗ − Ce. (22)

Using (19), we can prove that(1/Km−Ks/L) > 0 and hence
the LHS of (22) is positive. Thus the RHS has to be positive
which yields the desired result.

An intuition about the SPrevenue can be understood by
calculating the value of the elasticity,ǫ∗ for the given optimal
values ofX∗ andµ∗. Using the value ofX∗ from (18) in (13)
we can show that

ǫ∗ =
L

L − µ∗Ks
> 1. (23)

The implication of this result from [8, Chapter 15] is
Lemma 3: For logarithmic utilities, the aggregate demand

function of spectrum for all users iselastic.
It means that the percentage change in spectrum demanded is
greater than that percentage change in price. Hence, when the
optimal priceµ∗ is increased, percentage decrease in spectrum
demand is higher and the totalrevenue of the SP given by
µ∗X∗ decreases.

Now let us look at the SP profit. From (16)

Π∗(ν, µ∗) = (µ∗ − Ce)X
∗

︸ ︷︷ ︸

Π∗

U

+ κ∗L
︸︷︷︸

Π∗

C

. (24)

Note thatΠ∗

U andΠ∗

C are the profits from the usage cost and
the subscription fees respectively. We now want to investigate
how Π∗(ν, µ∗) changes as a function of spectrum priceµ∗. In
Appendix I we prove that

Lemma 4: The following results hold about the SP profit
functions.

a) The profit from subscription,Π∗

C decreases with costµ∗.
b) The profit from usage,Π∗

U increases withµ∗ for Ce <
µ∗ <

√

CeL/Ks

The fact that there is a maximum threshold onµ∗, occurs
because of the elastic nature of spectrum demand, i.e. the
increase inµ∗ is more than offset by the decrease inX∗.

D. Uj(Rj) = Γj

(
1 − e−Rj/Γj

)
= Γj

(
1 − e−(Kj/Γj)xj

)

This type ofexponential utilities model situations where the
userj has a target rateΓj . From (6), the demand function of
userj is given by

µ = Kje
−(Kj/Γj)xj . (25)

This is shown in Figure 1. Note that being of exponential
dependence, the demand functions decreases more sharply
than the logarithmic demand function of (18). This is a
consequence of the fact the logarithmic utilities are unbounded
from above and there is always demand for spectrum, unlike
the exponential utilities, which flatten at a value ofΓj for
high spectrumxj and in that regime there is little demand for
spectrum.

Lemma 5: For exponential utilities, when all users have
equal target rates, the user with the weakest link gain to the
SP is the marginal user.

Proof: Let Γj = Γ for all usersj. Substitute forx∗

j from
(25) in expression of user surplus in (8) to obtain,

Sj = Γ

(

1 −
µ∗

Kj

)

− µ∗
Γ

Kj
log

(
Kj

µ∗

)

. (26)

Similar to proof in Lemma 1 we can show that∂Sj/∂Kj > 0
and the remainder follows.
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Fig. 1. Demand functions for logarithmic (top) and exponential utilities
(bottom) with two users with spectral efficienciesK1 = 1 andK2 = 2 and
Γ = 1 for the exponential utility target rate

Note that relation (19) also holds for exponential utilities.
Lemma 6: The following facts hold

a) For very low prices,µ ∼ 0, the marginal user obtains
the maximum spectrum.

b) For high prices,µ ∼ Km, (from (19)) the marginal user
obtains the least spectrum.

Proof: Instead of a rigorous proof by analyzing (25) we
present an semi-analytic proof that is more illustrative.

a) For low µ∗, enough spectrum can be bought by each
userj to makeRj high enough such thatUj(Rj) → Γ.
But userm with weakestKm would have to purchase
more spectrum than others to reach to a highRm (as
Rm = Kmxm). Note that this purchase is possible as
µ∗ is low and any amount of spectrum can be bought.

b) Looking at (25) for marginal userm, we see that when
µ∗ → Km, the spectrumx∗

m → 0.

Contrast Lemma 6 with the the logarithmic utility case when
the marginal user always obtained the least spectrum.

Substituting for xj from (25) in (14) and after some
algebraic manipulation, we can show that the priceµ is given
by the positive solution of

Ce = (1 − C1)µ + C2µ log(µ), where (27a)

C1 =





L∑

j=l

Γj

Kj





−1 



L∑

j=l

Γj

Kj
log(Kj) −

LΓm

Km
log(Km)





(27b)

C2 =





L∑

j=l

Γj

Kj





−1 



L∑

j=l

Γj

Kj
−

LΓm

Km



 . (27c)

We now show that unlike the logarithmic utility case, the
exponential utilities do not always overprice spectrum. In
Appendix II we prove that

Lemma 7: If C1 > 1, then for users with exponential
utilities having the same target rates, the optimal price,µ∗ < 1.
Thus the spectrum isunderpriced, i.e. µ∗ < Ce whenCe > 1.
To calculate the elasticity, substitute forx∗

j from (25) in (13)

ǫ∗ =

L∑

j=1

1

Kj

L∑

j=1

1

Kj
log

(
Kj

µ∗

) . (28)

Note thatǫ∗ ≯ 1 for all cases unlike the logarithmic utility
case in (23).

Lemma 8: For exponential utilities, the aggregate demand
function of spectrum isinelastic, i.e. ǫ∗ < 1 when

µ∗ < µ0 =
Km

e
. (29)

Proof: The jth term in numerator ofǫ∗ is multiplied
by log(Kj/µ∗) in the corresponding term of the denominator.
We have to find conditions forǫ∗ < 1. One straightforward
condition is log(Kj/µ∗) > 1 for all j. This implies µ∗ <
Kj/e for all j. The rest follows from (19).
The reason for this is at lower values of prices, characterized
by being below the thresholdµ0, each user has adequate
spectrum to be near the flat region of the exponential utility
curve. Even if priceµ∗ changes, users have little incentive to
alter their purchased spectrum.

In Appendix III we prove that
Lemma 9: The following results hold about the SP profit

functions.

a) The profit from subscription,Π∗

C decreases with costµ∗.
b) The usage profit,Π∗

U increases whenµ0 > µ∗ > Ce.

IV. N UMERICAL RESULTS

To illustrate the nature of the allocation, we consider a linear
network with the SP in center andL = 10 users in a linear cell.
For path loss, we choose the COST-231 propagation model for
outdoor WiMAX environments [14], at an operating frequency
of 2.4 GHz. Let the distance of userj from the SP bedj . Thus
the link gain is given by

hj,dB = −31.5 − 35 log(dj). (30)

Consider an user arrangement where the vector of user dis-
tances ared(1) = [d1, · · · , dL] = [10, 20, · · · , 10L]. We
consider users with exponential utilities havingΓj = 1 Mbps
because the exponential utility allocation results present more
possible variations as seen in Section III-D. The total SP profit
is given in Figure (2) when the power cost is10 times the total
transmit power. We see that the profit reduces with spectrum
costC. Also when costC increases, the SP has an incentive
to switch to higher transmit power spectral densityν as the
effective costCe = C+Tν is dominated byC and is invariant
of ν, but the user utilities and hence payments increase with
ν. Similarly for low C regimes, SP cost is dominated byTη
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and the SP has no incentive to transmit at highν. Though the
results in Figure (2) are ford(1), the general trends hold for
other user placements.

Figure (3) plots the SP effective costCe and spectrum price
µ together. We see that for most portions the spectrum is
underpriced. The effect of this is also seen in Figure (4) which
plots the breakup of the usage and the connection profits,Π∗

U

and Π∗

C respectively. We see the the places where spectrum
is underpriced,Π∗

U is a loss. Another thing to note is that
the SP profit comes predominantly from the connection fee.
These effects are also described in [15]. The intuition is to
look at the demand function in (25). Since it extends to infinity,
there is a demand even at large amounts of spectrum. However
the demand decays exponentially. So the users want a large
amount of spectrum but have low willingness to pay usage
fees for large amounts. So the SP can’t hope to gain from the
usage fees. It thus reduces the spectrum price (underpricing it
in the process) so that users purchase a lot of spectrum and
the SP can makes use of their increased utility by extracting
their increased surplus as the connection fee.

Lastly we consider that the SP can operate with10% user
outage. ForL = 10 users, let link gains satisfyh1 > · · · >
h10. Thus user10 is the marginal user. The SP can choose to
serve9 users by raising prices to make user10 refuse service.
User9 would be the new marginal user. The loss of revenue
from user10 can be made up by the increased revenue from
the other users. The results are shown in Figure (5). For high
values ofν, the profits are more forL = 10. For low ν, it is
slightly advantageous to serve9 users whenC is high. Recall
from Figure (3) that in that regime,µ ∼ Ce and the profits
are mostly due to the connection fees. So the deciding factor
is the relative differences in the surpluses of users10 and9.

V. CONCLUSION

In this work, we have considered a network where a single
service provider allocates spectrum to it’s customers in the
downlink. We propose a dynamic allocation scheme based on
SP profit maximization. The SP uses two part monopolistic
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pricing, consisting of a fixed connection fee and a variable
usage cost. We showed that for a broad range of concave
user utilities, the user with the weakest link gain decided the
connection fee. We characterized the spectrum allocation and
derived values for various prices involved. We showed that for
logarithmic utilities, the spectrum was overpriced relative to
the costs of the SP and the demand was elastic. In contrast,
for users whose applications have exponential utilities, the
demand could be inelastic. Numerically we illustrated some
key analytical ideas and also tested the performance of the
allocation algorithm with user outage. We conclude that the
microeconomic model gave us an instructive framework to
study the profit maximization problem.

APPENDIX I
PROOF OFLEMMA 4

a) From (12) we have∂Π∗

C/∂µ∗ = −Lx∗

m < 0.
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b) Taking derivatives

∂Π∗

U

∂µ∗
= X∗+(µ−Ce)

∂X∗

∂µ∗

(a)
= X∗

[

1 − ǫ∗
(

µ∗ − Ce

µ∗

)]

,

(31)
where equality(a) follows from (13). From (31), it can
be shown∂Π∗

U/∂µ∗ > 0 holds when

ǫ∗
(

µ∗ − Ce

µ∗

)

< 1 (32)

Substitute for ǫ∗ from (23) in (32) and after some
manipulations we obtain,

µ∗ <

√

CeL

Ks
(33)

APPENDIX II
PROOF OFLEMMA 7

Equation (27a) can be re-written as

Ce + (C1 − 1)µ∗ = C2µ
∗ log(µ∗) (34)

Thusµ∗ is the point of intersection of the two graphs in LHS
and RHS of (34). LetΓj = Γ for all usersj. From (19) the
term in (27c),C2 < 0. WhenC1 > 1, the function in LHS,
h(µ) = Ce +(C1 − 1)µ is a straight line with a positive slope
and intercept. It can be verified that function in RHS,g(µ) =
C2µ log(µ) is a concave function with zeros inµ = 0, 1 and
g(µ) > 0 for µ ∈ [0, 1]. A plot of the two graphs is shown in
Figure (6). It can be seen that the solution,µ∗ < 1.

APPENDIX III
PROOF OFLEMMA 9

a) Proof is same as proof of Lemma 4a)
b) Similar to the proof of Lemma 4b), we have to show

that the elasticity satisfies condition (32). Now(µ∗ −
Ce)/µ∗ < 1. And it was proved in Lemma 8 that for
µ∗ < µ0, elasticity,ǫ∗ < 1.
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