Demo: Tagging Vision with Smartphone Identities by Vision2Phone Translation

Bryan Bo Cao
Stony Brook University
boccao@cs.stonybrook.edu

Abrar Alali
Old Dominion University
aalali003@odu.edu

Hansi Liu
Rutgers University
hansiii@winlab.rutgers.edu

Nicholas Meegan
Rutgers University
njm146@scarletmail.rutgers.edu

Marco Gruteser
Rutgers University
gruteser@winlab.rutgers.edu

Kristin Dana
Rutgers University
kristin.dana@rutgers.edu

Ashwin Ashok
Georgia State University
aashok@gsu.edu

Shubham Jain
Stony Brook University
jain@cs.stonybrook.edu

Abstract—We demonstrate our system ViTag to associate user identities across cameras’ and smartphones’ multimodal data. ViTag associates a sequence of camera's bounding boxes with smartphones’s Inertial Measurement Unit (IMU) data and Wi-Fi Fine Time Measurements (FTM). Our system translates one modality to another by a multimodal LSTM encoder-decoder network (X-Translator). Next, an association module finds camera and phone identity correspondences by matching the translated modality with the observed data for the same modality. Our system runs in real-world indoor and outdoor environments, achieving an average Identity Precision Accuracy (IDP) of 88.39% on a 1 to 3 seconds window. We demonstrate our system by visualizing the resulting camera-phone correspondences.

Index Terms—Cross Modal, Fine Time Measurements, Inertial Tracking, Object Tracking, Association, Multimodal Learning

I. INTRODUCTION

With the pervasive use of multimodal sensors of cameras and smartphones, a key application is associating camera detected persons with smartphone’s sensor data, as depicted in Figure 1. Real world application includes sending alert messages to associated pedestrians’ devices who have been visually detected from camera, distracted pedestrians at risk detected through an infrastructure mounted camera are alerted by voice or vibration on their smartphones and so forth; a particular use case is in facilitating exposure notifications to users in the same scene to prevent potential spread during the current COVID-19 pandemic.

To solve the multimodal association problem, we hereby propose and demonstrate ViTag, a system that associates data across camera and phone domains. In particular, vision tracklets are generated by a vision tracker from the camera stream, which are matched with IMU and FTM data obtained from the smartphones.

II. SYSTEM ARCHITECTURE

The workflow of ViTag consists of two steps shown in Figure 2: (1) cross-modal translation by an encoder-decoder network X-Translator; and (2) association by a bipartite matching algorithm. X-Translator employs bidirectional LSTM for sequential data extraction, as well as a joint representation layer between vision, motion, and WiFi data from two domains.

- camera and smartphone. X-Translator leverages the joint representation to reconstruct or translate one modality into the other. In the second step, the reconstructed data (e.g. reconstructed phone data) is matched with the observed data from the same modality.

X-Translator comprises three main modules: (1) an Encoder that learns each input unimodal representation, (2) a joint representation layer that learns the latent features across various modalities, and (3) a Decoder to reconstruct the other modality. X-Translator is trained by multimodal reconstruction losses that enforce the network to reconstruct different modalities when not all input modalities are available.

III. DEMONSTRATION

A. System Setup

We first introduce our experimental setup as preparation for our system demonstration. An RGB-D camera with a WiFi access point device are installed in both indoor and outdoor environments shown in Figure 3. Users walk (in a random manner) with their smartphones in their hands and are captured by the camera. Readings from motion sensors including accelerometer, gyroscope, and magnetometer are captured by each device. Simultaneously, subjects’ smartphones exchange FTM messages with the WiFi access point.

1Code is available at https://github.com/bryanbocao/vitag. Dataset can be downloaded at https://sites.google.com/winlab.rutgers.edu/vi-fidataset/home.
All modalities are synchronized before they are fed into the model. Network Time Protocol (NTP) is used to synchronize the camera and phone data. The sampling rate for camera frames, IMU and FTM readings are 30 fps, 100 Hz, and 3-5 Hz, respectively. Camera data is downsampled to 10 fps and used as an anchor to resample other modalities.

Our model X-Translator runs on a server equipped with a NVIDIA GPU RTX 2080 Super. Ubuntu 18.04 LTS as well as the required drivers and frameworks are installed on the server, including CUDA drivers, TensorFlow and Keras.

B. System Demonstration

We demonstrate our system by first visualizing vision tracklets from camera domain. To be specific, subjects are detected and tracked in the camera stream, which is decorated by subjects’ vision tracklets in different colors. Each tracklet has a unique ID displayed. Our system assigns subject’s phone data with another set of IDs. A script synchronizes and feeds vision tracklets to our pre-trained model X-Translator to reconstruct the corresponding IMU and FTM data. Then the system applies maximum bipartite matching (Hungarian Algorithm) to the reconstructed phone data with phone received data for ID matching. Lastly, we demonstrate the Vision-phone ID matching results by displaying phone IDs next to their corresponding vision tracklets shown in Figure 2.

IV. Evaluation

Comparison of ViTag’s and baseline methods is summarized in Table I. Our system ViTag achieves the highest association performance with an average IDP of 88.39% in all datasets, exceeding PDR+PA (38.41%) and Vi-Fi (82.93%).

<table>
<thead>
<tr>
<th>Method</th>
<th>PDR+PA [%]</th>
<th>Vi-Fi [%]</th>
<th>ViTag (Ours) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. IDP</td>
<td>38.41</td>
<td>82.93</td>
<td>88.39</td>
</tr>
</tbody>
</table>

V. Conclusion

This work demonstrates a practical solution to cross-modal association. We designed and demonstrated ViTag to associate pedestrians visually detected from a camera stream with corresponding smartphone data in real world scenarios.

VI. Acknowledgement

This research has been supported by the National Science Foundation (NSF) under Grant Nos. CNS-2055520, CNS-1901355, CNS-1901133.

References