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ABSTRACT Connected vehicles can benefit from sharing and merging their observations to develop a more
complete understanding of the traffic scene and track traffic participants behind obstructions. Although
vehicle-to-vehicle(V2V) communications provide a channel for point cloud data sharing, it is challenging
to align point clouds from two vehicles with state-of-the-art techniques due to localization errors, visual
obstructions, and differences in perspective. Therefore, we propose a two-phase point cloud registration
mechanism to fuse point clouds which focuses on key objects in the scene where the point clouds are most
similar and infer the transformation from those. Our system first identifies co-visible objects between vehicle
views based on hyper-graph matching using multiple similarity metrics, and then refines the overlap region
between co-visible objects across the views for point cloud registration. The system is evaluated based on
both experimental and simulation data, which shows tremendous performance improvement when combing
with state-of-art baselines.

INDEX TERMS Cooperative perception, Object Detection, Point Cloud Registration, V2X communication.

I. INTRODUCTION
As driving is becoming increasingly automated, vehicles rely
on multiple sensors (e.g., ultrasound, cameras, RADAR, or
LiDAR) to maintain comprehensive awareness of the sur-
rounding traffic environment. While much progress has been
made, it remains challenging to ensure the dependability over
the long tail of events and traffic situations that vehicles
can encounter. In particular, vehicles must contend with: (i)
physical occlusions, in which objects are blocked by others
and are only partially observable or unobservable; (ii) sensing
limitations, including field of view, resolving power, or light-
ing conditions that may limit the sensing range and quality.
Connected vehicles have the potential to overcome such limi-
tations by sharing observations across a wireless network and
merging them across different vehicles, since such physical
occlusions and sensing limitations from one perspective can
often be easily addressed when viewing the scene from a
different perspective.

In this paper, we specifically focus on the fusion of 3D point
clouds from different vehicles, which are usually generated by

stereo cameras or LiDARs, and broadly used for on-vehicle
applications such as object detection, object tracking, etc.
The previous work [5] has shown that the object detection
accuracy can be improved about 10% for the detection within
20 meters and 30% for longer distances by fusing the point
clouds from other viewpoints. In order to benefit from such
point cloud fusion in real world, one main challenge is to
align point clouds captured by different vehicles. Since the
non-negligible vehicle localization error in real system will
make the simply merged point clouds even more noisy,
point clouds from different vehicles should be well aligned
before feeding to applications. Although there has been
extensive research on point cloud alignment/registration, the
state-of-the-art methods cannot be directly applied to align
the pairwise point clouds from vehicles, as they require large
overlapping ratio between point cloud pairs [2], [7], [19],
[25]. (Note that the scope of this paper is to align point cloud
pairs without high definition maps, since they are expensive to
create and maintain, and only available for limited areas). Due
to occlusions from surrounding objects or vehicles perceiving
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FIGURE 1. Illustration of ICP point cloud registration performance in bird’s eye view.

the scene from different directions, the observations from
different vehicles usually have little overlap ratio and fail
to be aligned by the state-of-the-art point cloud registration
algorithms. Considering the most widely used point cloud
registration algorithm, Iterative Closet Point (ICP) [2], as an
example, the alignment results are shown in Fig. 1. When
vehicles are close to each other and driving towards the same
direction as shown in Fig. 1(a) marked with red and green
rectangles, ICP can align the point clouds from these two
vehicles when decimeter level localization error is introduced,
as (i) the inputs combined with localization error could still
be considered as a good initialization and (ii) there are
large enough overlapping ratio. However, as for the scene in
Fig. 1(e), the overlapping ratio will become much lower since
vehicles are driving towards different direction and there are
objects in between. Thus, ICP fails to fuse the point clouds
accurately as shown in Fig. 1(g). The requirement of the over-
lapping ratio for the state-of-the-art point cloud registration
methods largely restricts the potential peer vehicles which
can benefit from the vehicle networks based point cloud
sharing.

To overcome such limitations, we design a two-phase point
cloud alignment system that can fuse point cloud accurately
even when vehicles have large viewpoint difference. Our in-
tuition is to detect the overlapping region between two views
and only align point clouds based on that, so that the over-
lap ratio of input point clouds could be largely increased.
Specifically, the system first identifies and matches co-visible
objects, that is objects visible from both perspectives, using
hyper-graph matching based on the extracted location and
label information. It then estimates the co-visible region for
each pair of co-visible objects and cropped out the larger
overlap region. The selected co-visible areas will act as anchor
regions and their point cloud will be used to estimate the
transformation between two vehicles. The estimated transfor-
mation will then be applied to the entire point cloud from
the same viewpoint. We evaluate the accuracy of point cloud
registration and co-visible matching based on both real-world
KITTI [16], [17] dataset and synthetic CARLA [11] datasets.
Our contribution can be summarized as followed:
� We propose the first system which can accurately align

point cloud pairs under complex traffic conditions, such

VOLUME 3, 2022 179



LI ET AL.: BRIDGING THE GAP BETWEEN POINT CLOUD REGISTRATION AND CONNECTED VEHICLES

as scenes with various occlusions and large view angle
difference1 (e.g., 90◦, 180◦).

� We introduce a technique to identify co-visible objects
by combining multiple similarity metrics obtained in 3D
object detection results to distinguish co-visible objects
from single-visible objects.

� We show that fusion accuracy is improved when point
cloud registration is focused on the co-visible object with
the overlapping area among the views.

� We evaluate our system based on both synthetic scenes
and real-world experimental data across highway and
intersection scenarios and show that it can improve point
cloud registration algorithms with a significant margin.

Note that this paper is not proposing new point cloud reg-
istration algorithms, but enable existing ones to be applicable
in complex traffic scenes, which further activates the potential
of vehicle network based data sharing.

II. RELATED WORK
As our work lies at the intersection of point cloud registration
and vehicle information fusion, the related work in these two
areas is summarized in this section.

The term “point cloud” refers to a set of data points in 3D
space which are usually used to represent objects or scenes.
Since point clouds are generally produced by depth-capable
sensors such as LiDAR [45] or RGBD cameras [32] with a
partial view of a scene, two or more partially overlapping
point clouds are often combined to represent the full 3D
geometry of the sensing region. This process of finding a
translation and rotation transformation of one point cloud so
that the overlapping portion matches that of another point
cloud is called point cloud registration or alignment. Note that,
the terminology point cloud registration or alignment in
this paper refers to the specific algorithms to match the point
clouds, and point cloud fusion refers the complete pipeline
of combing point clouds from a system perspective, including
prepossessing, sharing, and registration or alignment.

A. POINT CLOUD REGISTRATION
1) PAIRWISE POINT CLOUD REGISTRATION
Generally, there are two popular paradigms for point
cloud registration: correspondence-based methods and
correspondence-free methods, depending on whether
correspondences between point clouds are extracted
explicitly.

Correspondence-based methods first detect and match 3D
keypoints across point clouds and then infer the transforma-
tion from these putative correspondences. Since it is too inac-
curate to match points based on position alone, the matching
process is based on features the describe the shape surround-
ing a point. Traditional hand-crafted features commonly sum-
marize pairwise or higher-order relationships in histograms

1Defined as the bearing difference between two vehicles.

such as Fast Point Feature Histograms [36], Viewpoint Fea-
ture Histograms [37], or Clustered Viewpoint Feature His-
tograms [1]. With the development of deep learning, a number
of neural network based feature descriptors have been pro-
posed, such as PointNet [34], 3DMatch [48], PPFNet [10],
3DSmoothNet [19], Multi-view Descriptor [25], FCGF [8]
etc. Although the robustness of the learned 3D descriptors is
improved compared to the hand-crafted features, their regis-
tration pipelines still rely on the same process of matching
geometric features across point clouds. All these methods
require significant overlap between two point clouds to ac-
curately combine them. For example, the evaluation of these
methods, such as [10], [19], [25], require the input point cloud
pair to overlap by at least 30%, which is not necessarily the
case when vehicles approach an intersection from different
directions as in Fig. 1.

Iterative Closest Point (ICP) [2] and its variants, e.g., point-
to-plane ICP [27], point-to-line ICP [4] and Generalized-
ICP [39], are the most commonly used correspondence-free
methods. These algorithms perform optimization by itera-
tively refining a point correspondence and the associated rota-
tion from an assumed starting correspondence, but they are not
robust against outliers and converge to a global optimum only
when starting with a reasonable initial alignment. To over-
come this, correspondence-based methods can be used before
ICP to provide the coarse alignment. To remove the need for
initial alignment, recent work either integrates such two stage
registrations into an end-to-end learning algorithm [7], [28],
[44] or proposes non-training global registration pipelines [3],
[47], [49]. Moreover, NDT [29] represents point clouds by
a combination of normal distributions to apply standard nu-
merical optimization, and TEASER [46] reformulate the reg-
istration problem using a truncated least squares to yield a
fast computation and provides readily checkable conditions
to verify if the returned solution is optimal. Although the ap-
plicability of pairwise registration methods are extended, they
still cannot work for vehicle point cloud registration directly
due to the high outlier ratio caused by distinct vehicle views
and occlusions.

2) SCENE-BASED OPTIMIZATION
The aforementioned methods can register point clouds in a
pairwise manner, but the ambiguous cases that arise in pair-
wise matching can be mitigated by incorporating cues from
multiple views. Projects such as [18], [40], [41] posed the task
of finding a global alignment as picking the best candidates
from a set of putative pairwise registrations, such that they
satisfy the loop constraints. However, such approaches are
less desirable for vehicle point cloud generation since they
require the presence of a larger numbers of neighbouring
vehicles that share their point cloud in order to perform single
registration. Similar to our setting, the most relevant work to
ours is arguably [12], which matches and aligns point clouds
in different LiDAR scans. It can recover the correct alignment
over larger vehicle displacements, when vehicles are traveling
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in the same direction, but not the intersection scenario we con-
sider. Finally, although [15], [31] aim to register vehicle point
clouds at the object level, these methods assume a complete
point cloud of the surroundings from a high-resolution 3D
map as inputs. Given the substantial overhead of maintaining
such maps, we aim for a map-free solution.

Baselines: In order to illustrate our contribution, 4 base-
line algorithms are chosen as the benchmark for point cloud
performance comparison, including (1) the most widely used
correspondence-free registration algorithm ICP [2], (2) the
Generalized-ICP [39], which is more robust for incorrect cor-
respondences compared with ICP, (3) a deep learning based
feature descriptor FCGF [8] which is one of the most recent
progress on correspondence based registration algorithm, and
(4) the SSM [12], which is the closest work to ours in terms
of processing pipeline. Note that, we also try to consider
TEASER [46] as the baseline. But its estimated inliers are
usually incorrect, or the number of inliers is less than specified
lower bound, which results matching failure for most cases in
our datasets.

B. VEHICLE-TO-VEHICLE INFORMATION FUSION
Other pioneering work shows the potential benefit of vehicle
information fusion, but did not consider the various vehicle
viewpoint differences and localization errors at intersection
scenarios as we do. [42] proposed to fuse vehicle informa-
tion for perception, but focused on fusing compressed LiDAR
features. Although [23] studies the full stack of multi-vehicle
cooperative perception and driving, the design and imple-
mentation are limited to when vehicles are following each
other. [35] proposed a system to share vehicle’s view through
extracted features using SLAM [14]. However, the focus of
their proposed system is on visualizing and reconstructing the
shared camera view. Both [5] and [43] explored the benefits of
point cloud fusion, but no localization error was involved in
the pipeline, which always leads to perfect point cloud fusion.

III. SYSTEM OVERVIEW
Based on vehicular application scenarios and foregoing re-
view of the state-of-the-art in point cloud registration algo-
rithms we identify the following challenges for point cloud
fusion across vehicles:
� Aligning point clouds in complex traffic situations. Com-

plex traffic scenes challenge the point clouds registra-
tion between vehicles in two aspects: (i) the presence
of multiple traffic participants leads to participants expe-
riencing different occlusions in their observations. This
significantly decreases the amount of overlap between
point clouds from different vehicle; (ii) the same object
can be observed by vehicles from very different view an-
gles, for example when approaching from different legs
of an intersection. The resultant observations can thus
contain the same object observed from different sides,
which again leads to relatively distinct point clouds with
little overlap.

� Limit bandwidth consumption. The system should be
able to exchange any required data over a wireless net-
work between vehicles. While this information does not
necessarily have to be exchanged over very bandwidth-
limited technologies such as Dedicated Short Range
Communications (DSRC), the system should be able to
exchange the data over emerging technologies such as
millimeter-wave (mmWave) communications.

� Tolerate vehicle localization errors. Vehicle localization
errors will affect the transformation from vehicle sensor
coordinates to world coordinates, which is based on ve-
hicle locations. Although increasing sensor capabilities
and improved localization lead to more accurate vehicle
localization, the system should still be able to handle
localization errors at least at the decimeter level.

In order to merge vehicle point clouds and meet the design
objectives, we propose a two-phase point cloud fusion system
which first identifies objects that are co-visible from each
vehicle’s perspective and then refine the point clouds based
on co-visible region of these objects to align the point clouds.
The system is designed based on the outputs of 3D object de-
tection, since it is usually available when the vehicle has depth
sensing capability and the robust 3D object detection results
provide reliable hints during point cloud fusion. As shown in
Fig. 2, the input of the system based on the 3D object detection
results include the labels, centers, and point clouds of detected
objects. The coordinates of inputs are transformed into world
coordinates based on each vehicle’s own localization. The
Co-visible Object Detection module extracts multiple simi-
larity metrics based on the detected object labels and centers
to distinguish co-visible objects from those that are visible
only from a single perspective. Even though co-visible objects
can be observed from two vehicles’ viewpoints, they may
not have enough overlapping visible area to yield an accurate
point cloud registration. Thus, Co-visible Region Refinement
further trim the point cloud to keep the overlapping area of the
co-visible objects for transformation estimation between two
views.

The resulting aligned point clouds can be combined to cre-
ate a more complete representation of the traffic scene, which
better supports advanced driving assistance applications. Note
that not all pairs of vehicle point clouds can be fused in our
system, only the ones include co-visible objects and co-visible
areas can be fused by Co-visible Object Detection and Co-
visible Region Refinement, respectively. If fusion is not possi-
ble, vehicles can fall back on their individual perception. The
detailed fusion requirements of each module will be discussed
in Sections IV and V.

Note that our system design limits bandwidth consumption
since it only needs abstract information to determine whether
point cloud pairs can be potentially aligned, and then requests
the raw point cloud to estimate the transformation. Specifi-
cally, the input data volume of our fusion system to determine
the eligibility of point cloud alignment is in the order of
kilobytes, which includes the label, center and visible region
of each detected objects. Such information can be shared
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FIGURE 2. System Design.

through messages transmitted using periodic V2V communi-
cations, e.g., Cooperative Perception Messaging transmitted
via DSRC. With varied number of objects detected in the
vehicle’s view, the raw point cloud of detected objects could
be as large as in the order of a few megabytes, which could
be transmitted via large-bandwidth mmWave communications
when needed.

IV. CO-VISIBLE OBJECTS DETECTION
Co-visible objects detection module is designed to identify
co-visible objects. Specifically, we formulate the problem of
detecting co-visible objects as a hyper-graph matching prob-
lem [24], which is broadly used in computer vision for key
points correspondence determination. Since the single-visible
objects are considered outliers in graph matching, we first
coarsely filter out the single-visible objects using a threshold-
based filtering. Based on the remaining objects in two views,
different similarity metrics will be extracted for hyper-graph
matching to take advantage of the label and location informa-
tion obtained from object detection. As hyper-graph matching
can pair objects but not distinguish single visible objects,
we design a distance consistency check based on hierarchical
clustering to identify the correctly matched co-visible objects.
The illustration of co-visible objects detection is shown in
Fig. 3. After outlier removal, the detected objects are plot-
ted, where different color represents objects detected from
different view and different shape indicates different object
labels. Hyper-graph matching is able to generate the matching
between objects, and the consistency check will further extract
the correct matching based on the matched pairs.

A. PRELIMINARY
Hyper-graph matching was originally proposed to match cor-
respondences between images and can be solved efficiently
through reweighted random walk [24]. A hyper-graph G =
(V, E,A) consists of nodes v ∈ V , hyper-edges e ∈ E as well
as the attributes a ∈ A associated with the hyper-edges. A
hyper-edge e encloses a subset of nodes with size δ(e) from
V , where δ(e) denotes the order of each hyper-edge. The
goal of hyper graph matching is to establish the mapping
between nodes of two graphs GP = (VP, EP,AP ) and GQ =
(VQ, EQ,AQ).

FIGURE 3. Object matching illustration.
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p1
, v

Q
q1 ), . . ., cωk =
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function by �, the kth order similarity of the k-tuple can
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p1,...,pk
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q1,...,qk ). Therefore, the affinity
tensor including kth order similarities can be generalized in a
recursive manner as follows:
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where λ(k) represents the weighting factor of kth order sim-
ilarity value and the superscript on H denotes the dimension
of a tensor. Therefore, the object function of the hyper-graph
matching can be formulated to equation 2, where X is a binary
assignment matrix, mP and nQ denote the number of nodes
in GP and GQ, 1P

m and 1Q
n represent all-ones vector with size

m and n respectively. By maximizing the matching score of
objective function under the one-to-one constraints, the hyper-
graph matching problem can be solved by the Hungarian
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method [30] to find the assignment matrix X∗.

X∗ = argmaxXH(k) ⊗ X

s.t. X1nQ×1 ≤ 1mP×1, XT1mP×1 ≤ 1nQ×1 (2)

B. MATCHING OUTLIER REMOVAL
To improve the object matching accuracy, our proposed
system first removes matching outliers. In the hyper-graph
matching task, matching outliers refer to the nodes which only
consist in one graph and can not be matched. In our vehi-
cle view matching context, matching outliers are the single-
visible objects. As the increasing of overlapping region be-
tween vehicle’s view, there will be more single-visible objects
involved each view. Therefore, removing such single-visible
objects will reduce the number of outliers and increase object
matching accuracy. At current stage, the single-visible can
be coarsely excluded based on nearest neighbour search. As
all the objects from two views are transformed into the same
world coordinates, if a object does not have any neighbours in
the other view within a threshold distance, the object can be
classified as single-visible object and removed before match-
ing. The distance threshold can be determined based on the
localization accuracy, such as the accuracy value provided
by Android Location API [20], which indicates horizontal
accuracy in meters as the radius of 68% confidence.

C. HYPER-GRAPH MATCHING WITH MULTIPLE SIMILARITY
MEASURES
Inspired by the existing work [6], [21], [24], our work ex-
tends the hyper-graph matching by combing multiple simi-
larity measures, including attribute-based similarity measures,
geometry-based similarity measures, etc., in matching.

Each vehicle can first build a hyper-graph based on its
locally detected objects, and additionally, it can also build
a hyper-graph for a remote vehicle based on the shared in-
formation from that vehicle. In the built hyper-graphs, nodes
denote detected objects by the observing vehicle and edges
represent the spatial relationship between detected objects.
The attributes of each node, such as the category the object be-
longs to, the size of the object, etc., can be utilized to distinct
one node from others. In our work, we focus on exploiting
the category information of objects since it is invariant under
different viewpoints.

H(1)
ω1,ω2,ω3

= exp

[
− 1

σs1

3∑
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| sin(θP
ωk

) − sin(θQ
ωk

) |
]

(3)
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ω1,ω2,ω3

= exp
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− 1
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∑
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| dP
ωiω j
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ωiω j
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]

(4)

H(3)
ω1,ω2,ω3

= 1

3

3∑
k=1

diff(lP
ωk

− lQ
ωk

)σs3 (5)

In order to qualify the hyper graph similarity, we specifi-
cally extract the angle, distance and label similarities based on

hyper edges. The angle similarity [13] is defined in equation 3
based on a pair of 3 rd order hyper-edges, eP

a,b,c ∈ EP and

eQ
x,y,z ∈ EQ, (a, b, c ∈ VP a �= b �= c and x, y, z ∈ VQ x �= y �=

z), where θP
ωk

and θ
Q
ωk denote the angles in the triangle pairs

formed by the correspondence ωk in P and Q. The distance
similarity [24] is quantified based on equation 4, where dP

ωiω j

and dQ
ωiω j represent the length of edges formed by the nodes

within the hyper-edge. σs1 and σs2 are scale factors, which are
set empirically to 0.5 and 0.15 as in [24].

To take advantage the label information predicted by ve-
hicle object detector, we define the label similarity H(3)

ω1,ω2,ω3

in equation 5, where lP
ωk

and lQ
ωk are the labels of the corre-

spondence. diff function is designed to output value ranging
from 0 to 1, which 1 indicates labels of the correspondence
are completely the same, and 0 means completely different.
Depending on the representation of the shared label from
vehicles, diff function can be implemented in various ways.
If only the final predicted label of each object is available,
then diff function can be implemented as piecewise function,
where same labels outputs 1 and different label outputs 0.
If the predicted confidence vector across all categories are
available, then diff function can be computed based on the
cross-entropy of the two confidence vectors. The scale factor
σs3 is set to 3 empirically in our implementation. Although
the distance and label similarity can be implemented based
on 2 rd order and 1st order edge respectively, we define them
based on 3 rd order here for easier probability combination.

Hω1,ω2,ω3 =
[
λ(1)H(1) + λ(2)H(2)

]
H(3) (6)

To merge the three similarity metrics, we combine them as
defined in equation 6, where the subscript of H(1) H(2) H(3)

are omitted as they share the same subscript as defined in
equation 3,4,5. Instead of linearly adding all the metrics as
generalized in [24], we propose to use the label similarity as
a conditional probability. It is because not only the correct
correspondence in label similarity can generate higher values,
the incorrect correspondence happened to have same labels
will also produce higher value. Therefore, linearly combining
the label similarity will actually increase the overall similarity
score for incorrect matching, which yields lower matching
accuracy. Using the label similarity as a conditional probabil-
ity can benefit the hyper-graph matching because the overall
similarity score will only be higher if the correspondence have
matched labels. λ(1) and λ(2) are the weights for linear com-
bining the angle and edge length similarity, and we set both to
0.5 for equal weights assignment in our implementation.

D. HIERARCHICAL CLUSTERING BASED CONSISTENCY
CHECK
Since hyper-graph matching only assigns matched objects be-
tween views but can not distinguish co-visible objects from
single-visible objects, we propose a hierarchical clustering
based consistency check to extract co-visible objects from
hyper-graph matching results.
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For detected objects in two observations, the distance be-
tween a pair of matched objects can be computed according
to the euclidean distance between the centers of objects in
the world coordinate system. If the matching is correct, then
the distance between the pair of objects consists two parts:
(i) the localization error and (ii) the error from inaccurate
3D object detection. As the state-of-the-art algorithms can
archive 81.43% accuracy for vehicle 3D detection based on
0.7 IoU threshold [33] but the localization error is still as
high as meter-level in the urban area, it is reasonable to infer
the localization error is the major component of the distance
between matched pairs. Since the objects detected by the
same vehicle shares the same localization error, the pairwise
distance between the correct matched objects should share
such same component in distance, which is the combination of
localization error of two vehicles. But the distance between in-
correct matched objects maybe largely diverse. Although the
direction of matched pairs have similar characteristics, it is not
resilient to the object detection error as the distance between
matched pairs. Small errors in object center location may
cause large direction error of matched co-visible object pairs.

Based on the analysis that the pairwise distance between
correct matched objects should be relative consistent, clus-
tering method can be applied on graph matching results to
extract the correct matched co-visible objects. Specifically,
we perform the hierarchical clustering on the hyper graph
matching outputs, and classify the objects cluster with con-
sistent pairwise distance as co-visible objects and the others
as single-visible objects. The threshold distance variance in
hierarchical clustering to select the cluster can be determined
based on the 3D object detection performance, because it
mainly comes from the 3D object detection error. In order to
increase the precision of co-visible objects detection, the num-
ber of co-visible objects, namely the number of objects within
the selected cluster, should be at least three to produce the final
output. Otherwise, the system will ignore the information and
does not perform fusion based on received data. Such design
will make sure the system only fuse the information when it
has enough confidence to do so.

V. CO-VISIBLE REGION REFINEMENT
Although the module of co-visible objects detection can iden-
tify single-visible objects and match co-visible objects, it re-
mains challenging to perform point cloud registration accu-
rately. It is because that the matched co-visible objects may
not have enough common seen area due to the large view-
difference and occlusions. For example, in Fig. 4, objects are
observed by two different viewpoints and the resulting point
clouds are colored by red and green, respectively. Although
the two point clouds in Fig. 4(d) refer to the same co-visible
object, no overlapping area exists between them. On the con-
trary, the two points in Fig. 4(a) shows a clear overlapping
area of the a co-visible object. As discussed in Section II, the
overlapping region between the two point clouds is essential
for correct point clouds alignment. In order to address the
challenge of lack of overlapping area, the Co-Visible Region

FIGURE 4. Object Visible Region Estimation.

Refinement is designed to first, among all detected co-visible
objects, quantify the overlap region of the co-visible objects
from two vehicle’s views and then align point cloud based on
cropped co-visible point clouds.

A. OBJECT VISIBLE REGION ESTIMATION
In order to identify the overlap region of co-visible objects, the
visible region of co-visible objects needs to estimate based on
each vehicle’s viewpoint. To address such challenge, we pro-
pose to quantify the object visible region approximately from
the bird’s eye view based on the relative location between
detected object center and corresponding point cloud of the
object. As point clouds are generated by sensors with depth
sensing capability, e.g. stereo cameras and LIDARs, such
depth sensing capability is compliant with the line-of-sight
rule, which can not see through objects and only sense line of
sight object regions. Therefore, the point cloud generated by
these sensors must locates between the detected object’s cen-
ter and the observer vehicle. Inspired by these characteristics,
we approximate the object visible region by estimating the
angle of the point cloud’s coverage region with respect to the
object’s center. By projecting the point clouds to a bird’s eye
view, the coverage region of a point cloud can be represented
as θ i = [θ i

start , θ
i
end ], where θ i

start and θ i
end are the starting

and ending angle of the point cloud coverage area for object
i. Both θ i

start and θ i
end are computed according to the same

axis such as west to east. Thus, the point cloud coverage can
be quantified based on the counter-clockwise circular angle
difference from θ i

start to θ i
end . The demonstration of visible

region estimation are shown in Fig. 4(b), (c), (e), (f).
The points which are closer to object center or reflected by

vehicle roof will be noisy to estimate object visible region.
Thus, a prepossessing can be applied to improve the robust-
ness by filtering out such as points based on distance threshold
or surface detection.
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FIGURE 5. Sample alignment results with 0◦, 90◦, 180◦ view angle difference in Carla simulation.

B. CO-VISIBLE OBJECT SELECTION
Although co-visible objects can be identified based on ob-
ject matching, there is no guarantee that the observation of
co-visible objects from each vehicle’s view will have overlap-
ping area. Given the fact that, the state-of-the-art point cloud
registration methods require the overlapping area between
point clouds to estimate the transformation. The co-visible
objects which include no or little overlapping area is generally
not suitable for point cloud registration.

Based on this observation, we propose to measure the inter-
section area based on the overlapping of point cloud coverage
angle which can be defined as | intersect(θ i, θ j ) |. In general,
the intersection between two point cloud coverage angle in-
dicates the overlapping area between two point clouds. For
example, the estimated object visible region shown in Fig. 4(e)
and (f) don’t have any overlapping area since the intersection
of them is zero. However, the visible region shown in Fig. 4(b)
and (c) shows the intersection angle between two point clouds
is around 120 ◦, which can be potentially used for point cloud
registration.

Generally, larger overlapping area between point clouds
will have better registration performance. In order to improve
to the point cloud registration accuracy, we propose to
examine the visible region of each pair of detected co-visible
objects, and only keep the point clouds for the pairs whose
visible region is larger than a threshold. If there are more
than one of such pair is found, the system will further to crop
and align the point clouds. However, the system will reject to
align the point cloud pair if the intersection visible region of
all co-visible objects is smaller the threshold and only align
the point cloud based on minimizing the distance between
co-visible object centers. In our implementation, the threshold
is set to 30◦ as it is commonly required for state-of-art point
cloud registration algorithms.

C. CROPPED POINT CLOUD ALIGNMENT
Based on the selected co-visible objects, point cloud regis-
tration can be applied to align two point clouds. In order to
improve the robustness of point cloud registration, we propose
to crop the point cloud based on the intersection of visible
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regions. Specifically, only the points within the intersection
region intersect(θ i, θ j ) will be used for point cloud registra-
tion. Such process will remove outliers and increase the inlier
ratio for point cloud registration. Eventually, the transforma-
tion estimated based on the selected co-visible object will
be applied to the whole point cloud captured by the sharing
vehicle. General point cloud registration algorithms can be
used here for transformation estimation, such as ICP.

VI. EXPERIMENT SETUP AND IMPLEMENTATION
In order to explore the system performance, we construct
three datasets, including an experimental dataset extracted
from KITTI and two synthetic datasets generated by the
CARLA [11] and SUMO [26] simulators. Additionally, we
also implemented 3D object detection and three baseline al-
gorithms.

A. KITTI BASED EXPERIMENTAL DATA
The KITTI [16], [17] dataset includes detailed information of
a single autonomous vehicle travelling through a wide range
of road scenarios. It contains a trove of sensor readings from a
variety of sensor modalities such as high resolution color and
grayscale stereo cameras, a Velodyne 3D laser scanner and a
GPS/IMU inertial navigation system. For this work, however,
the KITTI dataset is not directly applicable since we need two
sets of point clouds captured at different perspectives of the
same scene.

We address this limitation by leveraging Lidar point clouds
obtained at different timestamps of the same route from the
vehicle, to imitate two cars travelling by following each other.
(There are no eligible cases found to imitate cars facing each
other.) More specifically, we examined KITTI’s 3D object de-
tection dataset [17] and identified a plethora of time-instance
pairs where more than three same street object are detected
at both scenes and vehicles are traveled more than 4 meters
based on GPS. We removed pairs where the transformation
between object pairs are not consistent to filter out inaccurate
ground truth labeling and moving street objects. This process
ended up generating 668 pairs of different time instances
that satisfied the requirement of our fusion pipeline, which
includes at least 3 pairs of co-visible objects and at least one
of co-visible objects has more than 30◦overlapping region. As
our system built based on the KITTI 3D object detection task,
which can only be performed on the front view camera, the
input point clouds in this experiment are limited to the LIDAR
points in the front view. The evaluated based on this dataset
will be referred as KITTI in the following sections.

B. CARLA BASED SYNTHETIC DATA
Since there is no labeled large view angle difference dataset
available, we use CARLA [11] to render realistic intersec-
tion scenes, which provides open digital assets (urban lay-
outs, buildings, vehicles) and supports flexible specification
of sensor suites. Based on CARLA’s builtin map and naviga-
tion APIs, we created a four-legged perpendicular intersection
simulation, which will be introduced in section VI-B1 and

FIGURE 6. Bird’s eye view sample snapshot of CARLA intersection
simulation.

referred as CARLA. In order to further evaluate the system
with more realistic urban traffic pattern, a four-legged skewed
intersection is co-simulated by CARLA and SUMO, where
CARLA is mainly used to render the scene and generate sen-
sor information and SUMO is used for urban traffic mobility
simulation. The design of the co-simulation is described in
section VI-B2 and referred as SUMO in following sections.

1) CARLA SOLO SIMULATION
The CARLA solo intersection scenario is rendered in Town 5
of CALRA builtin map, includes 4 directions and each direc-
tion with two lanes. A bird’s eye view sample snapshot of the
simulation is shown in Fig. 6. Each lane has 5 vehicles, which
are set to be the same model to avoid rear-ended collisions,
since vehicles are controlled based on throttle in CALRA
and different models may have different acceleration based
on same throttle value. But the outlook color of each set of
5 vehicles are different and randomly picked. In addition, 6
pedestrians are considered on 4 corners of the intersection in
groups of three, which are standing in line and trying to cross
the intersection if there is not conflicting traffic. Overall, the
intersection scenario includes 40 vehicles and 24 pedestrians
in total.

For each vehicle, 4 cameras are mounted on the center top
of vehicles’ roofs with the height as 2m from the ground to
cover the full 360◦field of view. In order to generate dense
point clouds, we use ‘depth camera’ in CARLA to obtain the
pixel depth, which is the ground-truth pixel range perfectly
aligned with the corresponding RGB image. Besides, the po-
sition and bounding box of vehicles, and the pose transform
of cameras are also logged. In order to simulate the unstable
GPS reading, we randomly sample localization error from
a Gaussian Distribution X ∼ N (0, 1) with zero mean and 1
meter standard deviation. Among the process of vehicles and
pedestrians completed cross the intersection (positioned on
the other side of intersection), we evenly take 16 snapshots
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FIGURE 7. CARLA-SUMO co-simulation intersection.

with 1 second interval. Applying the same filtering of KITTI
dataset, 3228 pairs of vehicle observations meets our fusion
system requirement and are extracted for evaluation.

2) CARLA-SUMO CO-SIMULATION
SUMO [26] is a traffic simulation package designed to handle
large road networks, which allows for intermodal simulation
and comes with a large set of tools for scenario creation.
To generate realistic traffic mobility, we built the simulation
based on [9], which simulates the realistic traffic demand
and mobility patterns for Luxembourg, a mid-size European
city. Limited by the CARLA simulation memory size, we
cannot co-simulate the whole Luxembourg traffic pattern with
CARLA. Therefore, a four-legged skewed intersection in the
downtown area of Luxembourg is cropped out as show in
Fig. 7.

In order to render the road structure in CARLA, the net file
of SUMO simulation is cropped and exported to OpenDrive
file. Then RoadRunner is used to perform coordinates pro-
jections and eventually fed into CARLA. Note that, there is
no surrounding buildings rendered in this simulation. During
the simulation, the mobility of vehicles is controlled by the
SUMO simulation based on socket API and there are up to 42
vehicles rendered at the same timestamp. The model of vehi-
cles is randomly picked but comply with the categorical def-
inition in the SUMO simulation, such as sedan, van, bus, etc.
Each vehicle is equipped with a LIDAR at 2 meter’s height,
which has 10Hz rotation frequency and generates around 1
million points per second. The noise along the ray-casting
direction of LIDAR reading is added which sampled from a
Gaussian distribution with 0.02m standard deviation. 21,902
pairs of observations are found within a 90s duration simula-
tion with 1Hz snapshot rate. The location logging is same as
the CARLA solo simulation.

C. 3D OBJECT DETECTION IMPLEMENTATION
To obtain 3D object detection results, we implemented two
detectors on both datasets, respectively. For the KITTI dataset,
we reproduce the 3D object detection workflow proposed

in [33] to obtain the results. As there is no pre-trained 3D
object detection model available for Carla synthetic data, we
implemented a 2D-driven detector inspired by [33] to intimate
the state of art 3D object detection performance based on
ground-truth. Specifically, 2D object detection is performed
on RGB images, and the detected 2D bounding box will be
projected into 3D space based on depth. If a projected 2D
bounding box intersects with the ground-truth bounding box,
then the corresponding ground-truth bounding box will be
used by adding a 3D noise vector which sampled from the
uniform distribution within range [-0.2m, 0.2m]. Note that the
precision and recall of such 3D object detector still depends on
the 2D detection performance, where we use the pre-trained
SSD-ResNet50 model provided Tensorflow Object Detection
API [22].

D. BASELINE ALGORITHMS IMPLEMENTATION
As introduce in the section 2.1, we implemented 4 baseline
algorithms to serve as the benchmark for point cloud perfor-
mance comparison. Specifically, (1) ICP [2] is implemented
based on MATLAB pcregistericp function. (2) Generalized-
ICP [39] (referred as GICP in evaluation) takes advantage of
the implementation of Point Cloud Library [38] (3) the deep
learning feature descriptor FCGF [8] is extracted based on
the pre-trained model on KITTI dataset and combines with
RANSAC as a state-of-art correspondence-based baseline. (4)
The closest work to ours, SSM [12] is also implemented in
MATLAB. Note that, SSM [12] uses ICP to align the point
clouds after its object matching.

VII. EVALUATION RESULTS
In this section, we evaluate the proposed method in terms of
(i) the achievable accuracy of point cloud registration; (ii) the
accuracy of object matching in the co-visible objects detec-
tion; (iii) the benefit eligibility of our method under different
system settings.

A. POINT CLOUD REGISTRATION ACCURACY
Following the evaluation setup in [2], [7], [19], [25], we select
accuracy, mean error and error standard deviation (STD), as
the primary evaluation metrics. Specifically, the accuracy is
computed based on the average distance between the ground-
truth alignment and the estimated alignment. If the average
distance is less than a pre-defined threshold (0.2 m in our
evaluation), the estimated alignment is considered as correct
aligned. The accuracy metric is actually same as the ‘recall’
defined in [2], [7], [19], [25]. The mean error and the STD are
then computed for the correct aligned pairs.

In Table 1, we show the performance of four baseline point
cloud registration algorithms, ICP,GICP FCGF, SSM as well
as three enhanced variants by using our method denoted by
Ours + ICP, Ours + GICP and Ours + FCGF. Across all
metrics, Ours enhanced variants outperforms baseline solu-
tions in all datasets by a significant margin. Specifically, Ours
+ ICP achieves the highest accuracy in KITTI dataset and
Ours + GICP performs best in CARLA and SUMO dataset.
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TABLE 1 Point cloud registration accuracy on KITTI, CARLA and SUMO dataset

Comparing to the vanilla ICP, GICP and FCGF, our method
can boost the alignment accuracy to 86.68%, 92.81% and
90.55% for KITTI, CARLA and SUMO dataset respectively.
Such a large gain is due to our method can extract co-visible
regions between the two input point clouds and thus largely
reduce the ambiguity in the point cloud registration.

Note that, the performance of method Ours+FCGF can
be potentially further improved if the feature extractor of
FCGF is re-trained on the extracted point clouds using our
method. SSM does not work well on both datasets, as it
only crops point cloud based on the object matching but
not further refine co-visible regions. As KITTI dataset in-
volves large localization errors, the object matching in SSM,
which largely relies on pairwise distance between objects,
fails. Our method, on the other hand, is much more robust
to the large localization errors, as our method takes advan-
tage of multiple similarity measures between observed objects
and these similarity measures are resilient to the localization
errors.

We also evaluate the performance of our method with re-
spect to view-angle differences in the SUMO dataset. Since
the SUMO dataset is generated based on skewed intersec-
tion and vehicles can make left and right turns from each
intersection leg, the view-angle difference between any two
vehicles varies from 0◦to 180◦. To quantify the input point
clouds overlapping region over three view-angle differences,
we define the overlap ratio as the number of overlapped vox-
els over all voxels when downsampling point clouds with
0.1m. Figure 8 shows the overlap ratio of input point clouds
and the accuracy of point cloud registration for different
view-angle difference, where each bar the covers the range
of [x, x+30◦]. Compared to the raw inputs which are the
points of within all the detected object bounding boxes, the
filtered point clouds using our method yield a much higher
overlap ratio for different view-angle difference. The results
indicate that the performance of the methods highly correlates
with the overlap ratio of the input point clouds. In particu-
lar, the performance of GICP and Ours+GICP yield relative
lower accuracy under smaller overlap ratio input point clouds,
such as around 30◦and 60◦, and show relative higher accu-
racy for larger overlap ratio cases, like around 0◦and 150◦.
In summary, the results show that our method can increase
overlap ratio in the input point clouds and thus improves
point cloud registration accuracy significantly compared with
baselines.

FIGURE 8. Point cloud registration performance across different vehicle
view angle difference.

Additionally, we also qualitatively compare the point cloud
registration results in sample test cases across different view
angle difference between ICP and Ours+ICP methods in
Fig. 5. Figure 5(a) and (d) show the comparison when two
vehicles are closely following each other with the same view
angle. Even though such case pairs include overlapping area,
there are still large portion of single-visible objects involved,
which makes the ICP fails to align the point cloud correctly.
Figure 5(b) and (c) demonstrate the results of ICP in 90◦and
180◦vehicle view angle difference respectively, where the
alignment is not performed accurately due to low overlapping.
However, our two phase point cloud registration method can
can align the point clouds accurately as show in Fig. 5(e)
and (f).

B. OBJECT MATCHING ACCURACY
Since the two phase design of our system takes the output
of object matching to perform co-visible region refinement,
we evaluate the co-visible objects detection individually in
terms of precision, recall and accuracy. Note that the met-
rics are only calculated when our co-visible objects detection
can produce a result, i.e., when there are at least three pairs
of objects are kept after consistency check. Specifically, the
precision and recall are defined as the number of correct co-
visible matching over the number of all detected co-visible
objects and the ground-truth number of co-visible objects,
respectively. But the correct detection in the accuracy eval-
uation requires to not only match the co-visible objects, but
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FIGURE 9. Object matching precision, recall and accuracy.

also identify the single-visible objects correctly. As shown in
Fig. 9, our method can achieve 98.76% and 99.43% precision,
86.14% and 81.46% recall, 86.22% and 82.21% accuracy for
the KITTI and the CARLA dataset, respectively. The high
precision of our system guarantees that co-visible objects can
be identified and matched accurately and thus guarantees the
correctness of the input to the following co-visible region re-
finement and the final point cloud registration. The high recall
of our system makes sure that the most co-visible objects are
extracted for next phase.

C. BENEFIT ELIGIBILITY
In order to push our system to real deployment, we study the
system benefit eligibility in this section, including: (1) how
likely does a vehicle can find a peer to share and align point
cloud based on our system (2) what is network requirement
and performance trade-off for our system between different
vehicle settings (3) how does the point cloud synchronization
affect the system performance.

Since our system requires to discover at least three pairs of
co-visible objects to fuse the point cloud, we explored how
likely these cases will occur in our CARLA and SUMO inter-
section simulations. If a vehicle can fuse the data from at least
one neighboring vehicle, it can potentially benefit from our
system. In order to quantify such benefits, we define Benefit
Ratio, which is the ratio of the number of vehicles which
can gain benefit at current timestamp over the number of all
vehicles. The benefit ratio is calculated for each of snapshots
in our simulations. As the point cloud in CARLA dataset is
generated based on four set of RGB-D cameras, we perform
the experiments based on two different field of views(FoV),
i.e., 360◦FoV and 90◦FoV by using all 4 set of cameras and
only front view cameras respectively. Figure 11 shows the
empirical cumulative distribution of benefit ratios. Since a
larger field of view can increase the overlapping sensing area
between vehicles, the benefit ratio of 360◦FoV are generally
higher than that of 90◦for both co-visible object detection and
co-visible region refinement. Even though some cases include
more than 3 pairs of co-visible objects, the overlapping area
of the co-visible objects are still too small to perform the
co-visible region refinement. Therefore, the co-visible region
refinement of both FoVs are lower than the co-visible object

FIGURE 10. Accuracy across different synchronization time difference.

FIGURE 11. Cumulative distribution of benefit ratio.

detection. Compared with CARLA dataset, SUMO dataset
has lower benefit ratio. It is because the SUMO dataset has
more diverse traffic distribution which will be harder for meet
the system requirement. The variation of the benefit ratios
within a setup depends on the location distribution of the
objects. The benefit ratio of the co-visible region refinement
with 90◦FoV in CARLA dataset is greater than 0.7 for some
snapshots. It is because the crossing vehicles of these snap-
shots are close to the center of the intersection and make
themselves to be identified as co-visible objects for others.
Among the cases where vehicles can perform the co-visible
region refinement, we also check the number of neighboring
vehicles whose information can be potentially fused. We ob-
serve that the median number of the candidate neighbours for
the co-visible region refinement is 2 and 14 for the 90◦FoV
case and the 360◦FoV case in CARLA dataset, respectively.
Therefore, it is confident to believe the proposed system can
benefit fair amount of vehicles when they are driving around
busy intersections.

We explore the network requirements and system perfor-
mance across different field of views, as shown in Table 2.
The volume of data to be shared is calculated based on the
size of required information by each vehicle to perform the
fusion. The accuracy in this subsection is evaluated based on
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TABLE 2 Data sharing volume and system performance across different
field of view

the same definition as in section 7.1, but with a loose threshold
1m. Specifically, the volume of data required by the system to
determine whether it is eligible to perform the fusion is the
size of abtract information including detected object center
label and point cloud visible region, and the point cloud data
sharing volume is considered as the size of whole point cloud
which is arguably to enable various applications. 90◦FoV ve-
hicle to vehicle information fusion requires to share 1.69KB
for the abstract information and 0.42MB for the whole point
cloud. 360◦FoV needs more shared information, with 4.98KB
and 1.53MB for the two steps respectively, but also conse-
quently increases the benefit ratio and decreases the mean
errors of point cloud registration.

Additionally, we also evaluate the system performance with
different synchronization time difference. Although the point
cloud can be shared with a timestamp, the synchronization
between point cloud pairs may not be perfect due to hard-
ware clock bias, sensor sample frequency, etc. Thus, the point
cloud registration accuracy is evaluated according to different
synchronization error by selecting input point clouds with
different timestamps. As shown in Fig. 10, the point cloud
registration accuracy decreases as more synchronization dif-
ference introduced. Given the relatively large synchronization
error in 100ms and 200ms, the system can still align the point
cloud with 89.66% and 68.55% accuracy respectively.

VIII. CONCLUSION AND DISCUSSION
In order to overcome the limitations of state-of-art point cloud
registration algorithms and enable the point cloud fusion
across connected vehicles, a two-phase point cloud fusion
system is proposed. The system first identifies and matches
co-visible objects using hyper-graph matching based on the
extracted location and label information. It then estimates the
co-visible region for each of them and crops out the larger
overlap region. The selected co-visible area acts as an anchor
point and its point cloud will be used to estimate the transfor-
mation. We evaluate the accuracy of point cloud registration
and co-visible matching based on both real-world KITTI [16],
[17] dataset and synthetic CARLA [11] datasets, and shows it
can achieve 86.68% and 92.81% accuracy with a 0.2 m mean
point-wise error threshold.

We believe that the system performance can be further
improved if more objects are detected and considered dur-
ing object matching. Our existing implementation focuses
on detecting moving objects in the scene but static objects
such as traffic lights and light poles could increase the prob-
ability of discovering 3 co-visible objects across two vehicle

views and thereby improve the benefit ratio of surrounding
vehicles.
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