next up previous
Next: Deterministic Sampling and Reconstruction Up: Linear Systems Review Previous: Orthogonal Signal Space

LTI Systems and Periodic Excitation

define $H(f)=\int_{-\infty}^{\infty}h(t)e^{-j 2\pi ft}dt$


\begin{displaymath}y(t)=T[x(t)]=T[\sum_k x_k e^{j \omega_0 kt}] = \sum_k x_k T[e^{j\omega_0 kt}]
\end{displaymath}


\begin{displaymath}T[e^{j\omega_0 kt}]=\int_{-\infty}^{\infty} h(\tau)e^{j\omega_0 k(t-\tau)} d\tau
=e^{j\omega_0 kt} H(\frac{k}{T})
\end{displaymath}

Therefore,

\begin{displaymath}y(t)=\sum_k x_k H(\frac{k}{T}) e^{j\omega_0kt}
\end{displaymath}

Which is why the frequency response of a system H(f) is so useful for sinusoidal signal inputs


next up previous
Next: Deterministic Sampling and Reconstruction Up: Linear Systems Review Previous: Orthogonal Signal Space

1999-02-01