next up previous
Next: About this document ...

Rutgers University
The State University Of New Jersey
College of Engineering
Department of Electrical and Computer Engineering


332:501Systems Analysis
Pop Quiz I Statement and Solution

1.
What are the properties of a distance measure?

There are three properties

2.
Is


\begin{displaymath}\rho(x,y) =
\sum_{i=1}^p x_i \log(x_i/y_i)
+
\sum_{i=1}^p y_i \log(y_i/x_i)
\end{displaymath}

a distance measure? Constraints:

\begin{displaymath}\sum_{i=1}^p x_i = \sum_{i=1}^p y_i = 1
\end{displaymath}

and xi, yi > 0.

3.
Show rigorously that

\begin{displaymath}\lim_{p \rightarrow \infty}
\left (
\sum_{i=1}^N
(\alpha^*)^p...
...}
\right )^{1/p}
=
\alpha^* \equiv \max_i \vert x_i - y_i\vert
\end{displaymath}

Well

\begin{displaymath}\frac{\vert x_i - y_i\vert^p}{(\alpha^*)^p} \le 1
\end{displaymath}

owing to the definition of $\alpha^*$. Thus we can bound the term from above and below as

\begin{displaymath}\lim_{p \rightarrow \infty}
\left (
(\alpha^*)^p
\right )^{1/...
...m_{p \rightarrow \infty}
\left (
(\alpha^*)^p N
\right )^{1/p}
\end{displaymath}

or

\begin{displaymath}\alpha^*
\le
\lim_{p \rightarrow \infty}
\left (
\sum_{i=1}^N...
...right )^{1/p}
\le
\alpha^*
\lim_{p \rightarrow \infty}
N^{1/p}
\end{displaymath}

The result follows since $\lim_{p \rightarrow \infty} N^{1/p} = 1$.



 
next up previous
Next: About this document ...
Christopher Rose
1998-09-16