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Locating Rogue Access Point using
Fine-grained Channel Information

Chen Wang, Xiuyuan Zheng, Yingying Chen, Jie Yang

Abstract—Rogue access point (AP) has emerged as an important security problem in WLANs. However, it is a challenge task to
localize the rogue AP with both high accuracy and minimal infrastructure cost. Either expensive professional infrastructure (e.g.,
multiple wireless sniffers) or additional hardware (e.g., directional antenna) need to be pre-deployed for rogue AP localization with
high cost. Moreover, existing methods using Received Signal Strength (RSS) result in large error as RSS is suffered from the
multipath and shadowing effects in complex wireless environment. In this work, we exploit the channel state information (CSI),
which is readily available from commercial Wi-Fi devices, to locate the rogue AP with high accuracy. We use only a single
off-the-shelf Wi-Fi device for rogue AP localization which involves minimal infrastructure requirement. Our proposed rogue AP
localization framework consists of two components: direction determination and position estimation. The direction determination
can be carried out by using the human blocking effect on the CSI amplitude or phase. The multiple antennas on the Wi-Fi devices
can be further utilized to enhance the rogue AP direction estimation. Given the estimated direction, two schemes are proposed to
pinpoint the position of the rogue AP: determining directions at multiple locations grounded on triangulation and walking towards
the rogue AP with direction adjustment. Results from extensive experiments in both indoor and outdoor environments show that
our framework can achieve more practical and accurate rogue AP localization when comparing with existing RSS-based
approach.

Index Terms—rogue access point, channel state information, localization, direction determination

✦

1 INTRODUCTION

W ITH the rapid advancement of wireless technolo-
gies, wireless networks play an increasingly im-

portant role in our daily lives. For example, the wide de-
ployment of Wi-Fi Access Points (APs) enables any-time
any-where Internet access in public places, offices and
homes. While the mobile device users (e.g., smartphone,
tablet and laptop) enjoy the convenience of accessing the
Internet through the increasingly pervasive Wi-Fi APs,
the security and privacy issues can become a barrier for
the successful deployment of Wi-Fi networks. In particu-
lar, the emergence of rogue Access Points (i.e., rouge APs)
brings significant security and privacy threats in wireless
local area network (WLAN) [2], [16]. A rogue AP is an
unauthorized access point not deployed by the WLAN
administrator but created by an adversary to conduct a
man-in-the-middle attack [29]. The rogue AP is usually
equipped with two wireless cards, one is connected to
an authorized legitimate AP and the other is configured
as an AP for users to connect to [11]. The rogue AP can
thus eavesdrop the wireless communication and make the
users to believe that they are connected to the legitimate
AP. It has been estimated that almost 20% of corporations
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have rogue APs in their networks, which opens up the
network to a number of targeted cyber-attacks [8], [5].

A rogue AP is easy to setup, for example, an attacker
can simply configure a laptop as a rogue AP to mimic
the legitimate AP in public places, such as fast food
restaurants (e.g., MacDonald’s), cafes (e.g., Starbucks),
airport lounges and hotels. The rogue AP can passively
wait for users to connect to, or actively send out a dis-
association frame to force user to switch the connection
from a legitimate AP to a rogue AP. And the rogue AP
usually performs further configurations to reduce the
chance to be detected including spoofing MAC address
and SSID and setting up a DHCP server to assign valid
IP addresses to the connected users [11]. Once the users
are connectted to a rogue AP, the attacker can intercept
and manipulate the wireless communications and in the
meanwhile providing Internet access for the connected
users. By intercepting and manipulating the wireless
communication, the attacker can further conduct a variety
of malicious attacks [29] including launching phishing
attacks by redirecting an user’s webpage to a fake one so
that to steal the user’s private information (bank account
and password for example).

There have been active work in detecting rogue AP
by either using the fingerprints of legitimate APs [2],
[23], or by analyzing the network traffic at the gate-
way [4], or by measuring the connection time at wireless
users [17]. In this paper, we take the view point on
how to locate the rogue AP’s position after detecting its
presence. Knowing the location of the rogue AP allows
the network administrator to further exploit a wide range
of defense strategies. For example, we can physically visit
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the rogue AP and eliminate it from the network. There
are existing commercial solutions such as Cisco Adaptive
Wireless Intrusion Prevention Service and the AirMagnet
Portable Wi-Fi Analyzer, which employ professionals and
dedicated hardware to localize the rogue AP. [2]. Existing
work in locating a rogue AP are usually based on the
measured signal strength of the wireless signal emitted
from the rogue AP. For example, by deploying multiple
sniffers or specialized hardware (e.g., directional antenna)
in the area of interest, the location of the rogue AP can
be estimated based on the received signal at multiple
sniffers [20]. Or the administrators can hold a wireless
sniffer and walk towards the direction by receiving de-
creasing signal power to reach the rogue AP [3]. There
have already been commercial solutions such as How-
ever, deploying multiple sniffers and dedicated hardware
involves high infrastructural cost and extensive labor,
especially in a large organization. Furthermore, it is well-
known that the RSS is significantly affected by the mul-
tipath and shadowing effects in a complicated indoor
environment. As a result, the places receiving stronger
signal strengths do not necessarily mean they are closer to
the rogue AP. Thus, the RSS based rogue AP localization
methods suffer from poor accuracy, involve more time
and effort, or even fail to pinpoint the rogue AP.

In this work, we use only a single wireless device
and exploit the Channel State Information (CSI) available
from commercial Wi-Fi devices to locate the rogue AP.
CSI can be obtained from the subcarriers on Orthogo-
nal Frequency Division Multiplexing (OFDM), which is
commonly used in wireless communication systems (such
as IEEE 802.11 a/g/n, WiMAX). The detailed channel
response from multiple OFDM subcarriers is a suitable
candidate to achieve accurate location estimation of rogue
AP. Different from having only one RSS value per packet,
we can obtain multiple channel responses from each
wireless packet including amplitude and phase at each
OFDM subcarrier. CSI thus provides fine-grained infor-
mation when comparing to RSS and allows to obtain more
accurate localization results.

Our basic idea is to determine the direction of the
rogue AP by leveraging CSI of a single Wi-Fi device. We
find that the CSI received by the wireless device (e.g.,
laptop or smart phone) will be significantly affected by a
blocking object (e.g., the user) especially when the user
stands in-between the wireless device and the rogue AP.
Toward this end, we capture this phenomenon to facilitate
estimating the direction of the rogue AP utilizing CSI
amplitude in time domain or CSI phase in frequency
domain. We develop a two-step approach to estimate
the direction of the rogue AP. The first step derives an
angle range where the rogue AP may locate, and the
second step narrows down the angle range and derive
an exact direction towards the rogue AP. Given the avail-
ability of multiple antennas on many Wi-Fi devices, we
devise a strategy to improve the direction determina-
tion leveraging multiple antennas. Grounded on the CSI-
based direction determination technique, we derive two
position estimation methods: geometric relationship based
and obstacle avoidance direction adjustment. The geometric

relationship based approach is to directly pinpoint the
rogue AP’s position using triangulation based on the
directions determined from a few locations using a Wi-
Fi device. And the obstacle avoidance direction adjustment is
to walk towards the rogue AP via continuous direction
adjustment while the user encounters an obstacle.

Our framework can be used by either the network
administrator or Wi-Fi users to localize the rouge AP. The
involvement of the Wi-Fi users could enable the crowd-
sourcing of rogue AP localization, which facilitate the fast
discovery of the rogue AP. Certain rewards (e.g., points,
virtual currency) can be used to compensate the users
who actively participate in locating the rouge AP [30].

Note that our framework can be easily extended to
general wireless localization problems (e.g. the localiza-
tion of legitimate APs or wireless emitters). For example,
locating legitimate access points with our approach en-
ables the management of access points and the optimiza-
tion of AP displacement. Moreover, for each individual
user, the proposed methods can be used to locate nearby
APs so as to move closer to the nearest AP for better
signal reception. Although the proposed techniques can
be utilized for general wireless localization, deploying
our techniques in the context of rogue AP could signif-
icantly mitigate the security issues of rogue APs. While
traditional methods require professionals (e.g. network
administrators) and dedicated hardware to localize the
rogue AP, our approach can be utilized by both network
administrators and regular Wi-Fi users, which enables
crowdsourcing for protecting Wi-Fi networks.

We summarize the main contributions of our work as
following:

• We utilize CSI, which is a fine-grained physical
layer information provided by commercial Wi-Fi
cards, to locate the rogue APs. Different from exist-
ing received signal strength (RSS) based methods,
CSI provides richer information to characterize the
wireless channel, and makes it possible for more
accurate and practical rogue AP localization.

• We successfully capture the ”blocking” effect on
both CSI amplitude and phase when an object
is standing between a wireless device and the
rogue AP and utilize this important phenomenon
to derive the direction of the rogue AP.

• We statistically analyze the blocking effect on both
CSI amplitude and phase to determine the direc-
tion of the rogue AP. By examining CSI amplitude
in time domain, we develop amplitude correlation
and orthogonal transformation methods. By lever-
aging CSI phase in frequency domain, we calculate
variance and correlation of phase difference. We
further present a strategy to improve the per-
formance of direction determination by utilizing
multiple antennas on Wi-Fi devices.

• We develop a user-centric framework to localize
the rogue AP in two ways. One is to utilize the
spatial diversity by performing direction determi-
nation at multiple locations to enable the Wi-Fi
user to pinpoint the rogue AP’s position, and the
other is to let the user walk towards the direction



1536-1233 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TMC.2016.2629473, IEEE Transactions on Mobile Computing

IEEE TRANSACTION ON MOBILE COMPUTING, VOL. XX, NO. XX, XXXX XXXX 3

of the AP to finally reach it, in which we per-
form direction adjustment to deal with obstacles
encountered along the way.

• We conduct comprehensive experiments in both
indoor and outdoor environments to validate the
proposed framework. Comparing with existing
RSS-based direction determination, we show that
our approach is highly effective to determine the
rogue AP’s direction by achieving over 40% re-
duction in maximum error and 60% in median
error in both environments. This facilitates higher
accuracy of the location estimation of the rogue
AP.

The rest of the paper is organized as follows. In
Section 2, we present the related studies. We then describe
our framework in Section 3. In Section 4, we present the
blocking effect on both CSI amplitude and phase. We
detail our direction determination scheme in Section 5
and further develop two position estimation methods
in Section 6. We conduct experiments and evaluate our
proposed framework in Section 7. Finally, we conclude
our work in Section 8.

2 RELATED WORK

Existing work on rogue AP detection can be classified into
three categories. The first category of the work utilizes
wireless sniffers to capture the fingerprint of an AP (such
as SSID, MAC address [1], [2], and RSS values [23])
for rogue AP detection. And the radio frequency varia-
tions [6], and clock skews [12] have been proposed as well
for building the fingerprint of an AP. The second category
of the work is to analyze network traffic at the gateway
to detect if the associated AP is a rogue one [4], [17]. For
instance, the temporal characteristics, such as inter-packet
arrival time [4] is first proposed to detect rogue APs. The
arrival time of consecutive ACK pairs in TCP traffics [27],
[28], and the round trip time of TCP traffic [26], [17] were
proposed later for rogue APs detection.The last category
of the work utilizes the basic information that the rogue
APs are in the middle of users and the real AP for attack
detection. The connection time or wireless hop is utilized
to detect the presence of rogue APs since the wireless
hops for a user to access Internet increase under rogue
AP attack [29], [11]. These rogue AP detection techniques
can be utilized by our framework to detect the rogue APs
prior to localize them.

There has been active work on localizing APs. They
either utilize RSS [20], [3], [14], [7], [10], [31], or leverage
additional hardware [22], [25], i.e., directional antenna,
for AP localization. The RSS-based approaches assume
that a location closer to the AP will have a higher RSS
value. One commonly used method for localizing rogue
AP is to hold a wireless sniffer and walking along the
direction with decreasing signal power to reach the rogue
AP [3]. Or with multiple wireless sniffers in an area of
interest, a signal contour map can be built in order to
locate the rogue AP [20]. Similarly, three or more wireless
sniffers can be used to monitor the wireless transmission
of rogue AP, and the location of rogue AP can be deter-
mined by utilizing the measured wireless signal at the
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sniffers [14]. For localizing legitimate APs, existing RSS-
based approaches compute the gradient of the RSS value
across different locations either with a small set of local
measurements online [7], or by integrating the results of a
large number of measurements offline [10]. However, all
of these RSS based approaches either result in relatively
large localization errors due to the complicated indoor
signal propagation environments or involve intensive
labor due to signal map construction.

One recent work proposes to use human body as
an obstacle to block the wireless receiver at different
directions, and the direction of the AP can be determined
when the signal strength has the largest degradation [31].
This solution cannot work in complicated indoor environ-
ments and the performance in outdoor environments still
have large room for improvement. Other studies using
blocking effect of human body either estimate the inter-
ference of mobile device’s signals [15] or help to perform
localization of the human body [21]. Further, the work
that uses additional hardware, i.e., directional antenna,
either at the receiver or transmitter, to locate the APs [22],
[25] involves higher infrastructural cost and is neither
scalable nor portable. Different from the above work,
we perform rogue AP localization with high accuracy in
both indoor and outdoor environments by exploiting CSI
which provides richer channel information than that of
RSS. Our method is cost-saving as it uses only one off-the-
shelf Wi-Fi device without requiring additional hardware.

3 FRAMEWORK OF CSI-BASED ROGUE AP LO-
CALIZATION

In this section, we first provide the motivation of us-
ing CSI for rogue AP localization. We then present the
overview of our proposed CSI-based rogue AP localiza-
tion framework.

3.1 Motivation

We exploit CSI, the fine-grained description of the wire-
less channel, measured from OFDM subcarriers to per-
form rogue AP localization. OFDM techniques have
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been extensively used in wireless systems, such as IEEE
802.11a/g/n, WiMAX and 3G LTE, to improve the com-
munication performance. CSI thus becomes available at
commercial wireless devices. For example, the firmware
of IWL 5300 wireless card exports the frequency response
as complex vectors over 30 subcarriers [9]. Different
from the traditional RSS, which is an averaged signal
power over all the subcarriers with only one value per
packet, CSI provides multiple channel responses from
each packet including amplitude and phase at each of
the 56 (128) OFDM subcarriers on standard 20 (40) MHz
channel. It describes how the signal propagates from
the transmitter to the receiver and reveals the impact of
multipath effect on each of the subcarriers instead of the
coarse-grained impact on the whole channel bandwidth
as the RSS does. We thus expect CSI to better describe the
wireless channel than RSS, especially in complex indoor
environments when the multipath dominates the signal
propagation.

3.2 Framework Overview

Our basic idea is to determine the direction of the rogue
AP via CSI measured at a single Wi-Fi device as knowing
the direction of the AP can be the first step toward
estimating the AP’s position. Specifically, we find that the
CSI measured at the Wi-Fi device (e.g., laptop or smart
phone) will be significantly affected by a blocking object
(e.g., the user) in-between the Wi-Fi device and the rogue
AP. By standing at multiple positions around the Wi-Fi
device, the different blocking effects captured by CSI can
be used to estimate the direction of the rogue AP in both
indoor and outdoor environments. We derive techniques
utilizing CSI amplitude in time domain and CSI phase
in frequency domain to capture such effects for direction
estimation. We further leverage multiple antennas, which
are readily available on commercial wireless devices,
to enhance the performance of direction determination.
Determination of the direction of the rogue AP can facil-
itate our system to localize the rogue AP in two ways.
We can either directly pinpoint the rogue AP based on
the direction determination at multiple locations using
triangulation or we can walk towards the rogue AP by
adjusting walking direction when the user encounters
permanent obstacles such as walls or furnitures. Note
that our framework can also localize legitimate APs or
wireless emitters.

Our rogue AP localization framework consists of two
main components as shown in Figure 1: direction determi-
nation and position estimation.

Direction Determination. We propose a two-step ap-
proach to determine the direction of the rogue AP: (1)
direction derivation and (2) direction calibration. At the first
step, the user stands at multiple positions around the
wireless device as shown in Figure 2 (a). By analyzing the
CSI obtained from different standing positions, we can
derive one standing position that has the most significant
impact to the wireless channel. The angle range derived
by this standing position indicates the rough direction
of the rogue AP. In order to further obtain the accurate
direction of the rouge AP, in the second step the user
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Fig. 2. Illustration of direction determination: (a) Direction Derivation:
user stands at eight different positions around the laptop; (b) Direc-
tion Calibration: user moves across an arc which covers an angle
range obtained by direction derivation.

moves across the arc of the angle range slowly as shown
in Figure 2 (b) based on the rough direction determined
by the first step. We expand the angle range obtained
from the first step to its left and right side to tolerant
possible estimation error from the first step. By analyzing
the continuously collected CSI data when the user moves
slowly across the arc, we are able to narrow down the
range of angles, and derive an accurate angle pointing
towards the rogue AP.

Position Estimation. Based on the results of direction
determination, we develop two methods to estimate the
rogue AP’s postion to meet user’s different requirements.
The first method, geometric relationship-based, is to perform
direction determination at multiple locations to enable
the user to directly obtain the position of rogue AP. At
each position, the user with the Wi-Fi device can obtain
an estimated direction towards the rogue AP based on
the direction determination approach. One straight line
can be uniquely determined by the direction starting
from the device’s physical location. Thus, we can find
the rogue AP’s position by averaging the intersections
of these straight lines using triangulation. The second
method, obstacle avoidance direction adjustment, is to let the
user walk towards the rogue AP following the direction
determination result of a single Wi-Fi device. We design
direction adjustment scheme to guide the user’s walking
direction when the user encounters permanent obstacles
(e.g., doors, walls, buildings, etc.), since the permanent
obstacles cause signal reflections and degradations, and
may deviate the true direction of the rogue AP.

4 BLOCKING EFFECT ON CSI
In this section, we discuss how the CSI measured at the
Wi-Fi device is affected by the user standing at differ-
ent positions around the Wi-Fi device. We analyze the
blocking effect of CSI directly in real indoor and outdoor
environments and the findings can be directly utilized to
design our approach in real wireless environments.

4.1 Leveraging Time Domain CSI Amplitude

Time Delay When Blocking the Line of Sight (LOS).
Given the CSI measured at each subcarrier in frequency
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Fig. 3. CSI amplitude in time domain at eight different positions
around the wireless device: time delay phenomenon in simple wire-
less environments.

domain, we can obtain the time domain CSI by applying
the n-point Inverse Fast Fourier Transform (IFFT). In
this work, we apply a 60-point IFFT, which provides
an appropriate time resolution for our investigation. The
commonly used CSI in time domain is described as:

h(τ) =

N
∑

i=1

aie
−jθiδ(τ − τi), (1)

where N is the number of multipath channel components,
ai, θi and τi are the amplitude, phase and the propagation
time delay of the ith path, and δ(τ) is the Dirac delta
function.

The curves in Figure 3 describe the CSI amplitude
with different time delays when the user stands at differ-
ent positions as shown in Figure 2 (a) with LOS existing
between the rogue AP and the Wi-Fi device. In particular,
the red solid curve shows the case when the user stands
at the position blocking the LOS, whereas the dash curves
indicate the cases when the user stands at other positions.
We observe in Figure 3 that the CSI amplitude in time
domain have multiple amplitude peaks with different
time delays. The strongest peak represents the signal ar-
rived through the LOS path since the signal propagating
through the LOS path carries most of the power in the
received signal. And the smaller amplitude peaks at later
times indicate that the reflected signals transmit through
longer reflection paths.

More importantly, we observe from Figure 3 in both
indoor and outdoor environments that the strongest peak
of the received signal is significantly delayed when the
user stands in-between the wireless device and the rogue
AP (curve in red) compared to other user positions
(curves in blue). This is because the user standing in-
between the wireless device and the rogue AP blocks the
direct path of the signal transmission. Thus a larger por-
tion of signals transmit through the indirect and longer
propagation paths. In other words, the reflected signal
transmitted through multipath takes more time to arrive
at the wireless device. This phenomenon is presented in
both indoor and outdoor environments when the LOS
path is blocked. We utilize this important observation as
the basis to derive the direction of the rogue AP.

Capturing Time Delay Using Amplitude Correla-
tion. We find however the time delay phenomenon may
not be obvious in complex indoor environments when
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Fig. 4. CSI amplitude in time domain at eight different positions
around the wireless device: time delay phenomenon in complex
wireless environments.

no LOS exists and the multipath dominates the signal
propagation. Figure 4 shows a scenario that there is no
obvious time delay at the strongest peak. We find that this
happens mostly in complex wireless environments, i.e.,
indoors with many permanent infrastructures, or outdoor
environments with people blocking the LOS path. Due
to the complex wireless environment, the time delay
phenomenon may be shifted and observed at the smaller
amplitude peaks.

In order to capture the time delay phenomenon in
both simple and complex environments, we explore to
use amplitude correlation instead of directly examining
the time delay of the strongest CSI amplitude for direc-
tion determination. This is because the CSI amplitude
obtained from different standing positions tend to be
more correlated with each other as long as the user is not
blocking the direct path between the wireless device and
the rogue AP. In particular, as shown in Figure 3 and 4,
the correlation between the blue curves is over 90%. On
the other hand, the CSI amplitude when the user stands
in-between the wireless device and AP (curve in red)
tends to be less correlated to other user positions (curves
in blue). The correlation is less than 60% as shown in
Figure 3 and 4. These observations enable us to derive
the direction of the rogue AP by utilizing amplitude
correlation at different user positions.

4.2 Leveraging Frequency Domain CSI Phase

The Phase of CSI. We next investigate how to use the
frequency domain CSI phase to capture the blocking
effect. The CSI extracted from each packet represents the
complex channel response of each subcarrier. The CSI of
each subcarrier contains both the amplitude and phase
information:

H(fk) = |H(fk)| e
jsin( 6 H), (2)

where H(fk) is the channel response at the subcarrier
with central frequency fk, |H(fk)| denotes the amplitude
and 6 H denotes the phase. The phase obtained from the
complex value of CSI is wrapped to the range [−π, π].
In order to recover the original phase of the subcarriers,
phase unwrapping is applied [18]. Figure 5 (a) shows the
unwrapped CSI phase for three consecutive packets. We
find that the CSI phase is monotonically decreasing when
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Fig. 5. Illustration of CSI phase in the frequency domain: (a) un-
wrapped phase from three consecutive packets; (b) phase difference
when user stands at different positions.

increasing the subcarrier index. It is hard to characterize
the wireless channel by simply looking at the CSI phase
of each packet.

Capturing Blocking Effect Using Phase Difference.
We find that the phase difference between two adjacent
subcarriers could be utilized to characterize the blocking
effect of the wireless channel. We define the phase differ-
ence between the neighboring subcarrier k and k+1 when
user is standing at position j as,

d6 H,j(k) = | 6 Hk − 6 Hk+1| , k = 1...29. (3)

When the user blocks the direct path between the AP and
the wireless device, no LOS path exists and the multipath
dominates the signal propagation. Thus, the phase differ-
ence between adjacent subcarriers is distorted, resulting
in larger variation to the phase difference.

As shown in Figure 5 (b), the red dots indicate the
scenarios when the user stands in-between the laptop
and the AP, whereas the blue dots represent the scenarios
when LOS exists. We observe that the phase difference
varies dramatically when the user blocks the LOS path,
and the phase difference is much more stable when
the LOS path is not blocked. This observation suggests
that the variance of phase difference can be utilized to
capture the blocking effect. Additionally, similar to the
correlation of time-domain CSI amplitude, the correlation
of CSI phase difference could also be used to capture the
blocking effect in complex indoor scenarios.

5 DIRECTION DETERMINATION

In this section, we present the proposed two-step ap-
proach for determining the direction of the rogue AP: (1)
direction derivation and (2) direction calibration. Implement-
ing both steps can be based on either time-domain CSI
amplitude or frequency-domain CSI phase respectively.

To start with, the user stands at multiple positions
(denoted as l) around a Wi-Fi device. Our system iden-
tifies the standing position that has the most significant
impact on the CSI measured at that device. The angle
range derived by such standing position indicates the
rough direction that the rogue AP resides. We derive
statistical methods to derive the direction of rogue AP
leveraging CSI amplitude and CSI phase respectively. By
using CSI amplitude, we propose Amplitude Correlation

Method and Amplitude Orthogonal Transformation Method,
to perform direction derivation under different scenarios.
We then take advantage of these two statistical methods
to improve the direction derivation accuracy through Am-
plitude Combined Method. By using CSI phase, we derive
the direction by analyzing the variance or correlation of
CSI phase difference between different positions.

5.1 Direction Derivation Leveraging CSI Amplitude

5.1.1 Amplitude Correlation Method

We find in our experiments that the CSI amplitude is
highly correlated with each other when the user stands at
the positions out of the direct path between the Wi-Fi de-
vice and rouge AP. However, the CSI amplitude obtained
when the user stands in-between the wireless device and
rogue AP is less correlated with that of the positions out
of the direct path. This indicates that the standing position
in between the Wi-Fi device and rogue AP has the most
significant impact on the wireless channel. This is caused
by the user’s blocking effect to the wireless channel as
described in Section 4. To capture such blocking effect and
estimate the standing position for deriving the direction
of the rogue AP, we study amplitude correlation.

At each standing position, we obtain the time domain
CSI amplitude a(t), which denotes the arrival signal with
different time delays due to multipath effect. We define
the amplitude correlation between two standing positions i
and j as,

ρi,j =

∑T

t=1(ai(t)− āi)(aj(t)− āj)
√

∑T

t=1(ai(t)− āi)2
√

∑N

t=1(aj(t)− āj)2
, (4)

where T is the number of time delays, ai and aj are
the time domain CSI amplitude vectors of size 1 × T at
position i and j. āi and āj are the mean value of the CSI
amplitude at position i and j respectively.

We calculate the amplitude correlation between posi-
tion i and the rest positions, and then average the sum

of the correlation as ρi =

∑

l

j=1,j 6=i
ρi,j

l
, 0 < i, j ≤ l.

Therefore, the angle range that captures the rogue AP’s
direction can be derived as the angle range of the position
i with the smallest amplitude correlation value ρi.

5.1.2 Amplitude Orthogonal Transformation Method

During the course of our project, we find that under
some scenarios the received CSI amplitude at different
positions tends to be highly correlated no matter where
the blocking object locates (e.g., on the direct path be-
tween the rogue AP and the Wi-Fi device) as shown in
Figure 6 (a) (amplitude correlation between positions is
over 94%). This happens for example when the wireless
device is in a spacious open space with less reflections
and far away from the rogue AP, or when the device is in
a complex indoor environment with permanent obstacles
which incur many reflections and refractions. Since the
amplitude correlation method only captures the coarse-
grained information on how two sequences are different,
it is thus difficult to capture more detailed differences.
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Fig. 6. Illustration of using amplitude orthogonal transformation
method: (a) Time domain CSI amplitude at eight different positions
around the wireless device: the correlation between the positions
is over 94%; (b) after using amplitude orthogonal transformation
method while three principal components are considered.

We find that multiple distortions exist at the smaller
amplitude peaks when comparing the solid curve to
those of dash curves as shown in the zoom-in part of
Figure 6 (a). This inspires us to investigate the method
that can capture such detailed differences exhibited in
CSI when the user stands at different positions. We thus
transform the raw data to orthogonal spaces and convert
the correlated data into uncorrelated ones for capturing
the detailed differences.

In particular, we utilize principal component analysis
(PCA) in our second method to derive the direction of the
rogue AP. PCA is conducted in a way that the first princi-
ple component takes the largest possible variation in the
data, and each succeeding component in turn takes the
highest variation under the constraint that it is orthogonal
to the preceding components. We then study the impact of
the blocking object on the orthogonal spaces. The detailed
procedure of PCA can be found in literature [13].

Scheme Description. The CSI amplitude in time do-
main at multiple positions can be represented as a t × l
matrix a, where t denotes the number of time points and
l denotes the number of standing positions around the
wireless device. In order to capture the blocking effect
when the user stands in the direct path, we perform PCA
on the matrix a, and obtain the loading matrix b [13]. The
l × l loading matrix b indicates the correlation between
l original variables (CSI at l positions) and l variables in
orthogonal spaces (principle components). Each element
bi,j in this matrix is a weight, which measures how
important the variable j (CSI at position j) is associated
with variable i in orthogonal spaces (principle component
i). Higher value of bi,j indicates that the position j is
associated with larger amount of variation on principal
component i in the orthogonal spaces.

Therefore, the column vector bj of matrix b measures
the relationship between the position j and all l principal
components, which suggests the contribution of position
j to the variation of the data in the orthogonal spaces. In
order to measure the user’s impact to the wireless channel
at different positions, we calculate the vector distance
among column vector bj, j = 1 . . . l. We thus define the

distance in orthogonal spaces between position j and k,

DL{bj , bk}
j 6=k

=

√

√

√

√

L
∑

i=1

(bi,j − bi,k)2, {j, k} ∈ 1...l, L ≤ l.

(5)

The distance in orthogonal spaces measures the ‘simi-
larity’ between two positions in the orthogonal spaces.
Then, we sum the distance in orthogonal spaces be-
tween position j and all other positions: DL(bj) =
∑L

k=1,k 6=j DL{bj, bk}. Thus the angle range derived by
the position j, which has maximum sum of orthogonal
space distance DL(bj), is determined as the angle range
towards the rogue AP. Note that the number of principal
components L is decided as follows.

Number of Principal Components L. In order to
calculate the distance in orthogonal spaces for each posi-
tion, it is important to determine an appropriate value L,
which is the number of principal components for distance
calculation. For each position j = 1...l, we calculate the
DL(bj) from L = 1 to l, and choose L that produces the
maximum value of DL(bj), because it better represents
the discrepancy of this position in terms of L principal
components. Note that the value of L for different posi-
tions could be different.

An illustration of the amplitude orthogonal trans-
formation method with three principal components is
presented in Figure 6. Figure 6 (a) shows that the CSI
amplitude from all positions are highly correlated to each
other (over 94% average amplitude correlation). How-
ever, we can observe distortions for different positions
at smaller amplitude peaks from the zoom-in figure. By
measuring the distance in orthogonal spaces as shown in
Figure 6 (b), we can capture the user’s blocking effect to
the wireless channel, and distinguish the position where
the user is on the LOS path from other positions.

Confidence Level. We provide a confidence level as-
sociated with each estimation via amplitude orthogonal
transformation method. The confidence level gives the
user additional useful information of how confident the
estimation is. While performing PCA, we also obtain
eigenvalues [13] for each principle component, which
indicates the variation in the orthogonal spaces corre-
sponding to each principle component. While the angle
range corresponding to one standing position is derived
as the direction of the rogue AP, we have L princi-
pal components involved in calculating the distance in
orthogonal spaces at that position. We thus define the
confidence level as the percentage of eigenvalues of the L
principle components used for the distance calculation
to the eigenvalues of all principle components. The per-
centage of the eigenvalue corresponding to number of
principle components can be used as an indication of how
much variations of the data we have measured in our
method. It thus indicates how confident our estimation
is.

5.1.3 Amplitude Combined Method
We further combine amplitude correlation and amplitude
orthogonal transformation to benefit from both time do-
main CSI amplitude and its orthogonal spaces.
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When the amplitude correlation between user posi-
tions exceeds certain threshold ζ indicating the difficulty
for amplitude correlation method to provide accurate es-
timation, we turn to use the amplitude orthogonal trans-
formation method. Furthermore, if the amplitude orthog-
onal transformation method produces a low confidence
level γ indicating that both correlation and orthogonal
transformation method have uncertainties of the estima-
tion, we merge the results obtained from both methods.
We modify the two approaches by outputting m (starts
from 1) estimated directions. We choose the overlapped
estimates of the two approaches as the direction of the
rogue AP. If we do not have an overlap on the estimates
from these two methods, we increase m by one and re-
perform the above step until an overlapped estimate is
obtained. By combining the results from the two methods,
we characterize the blocking effect from both the time
domain CSI amplitude and its orthogonal spaces, and
thus reduce the large error and enhance the robustness
of the direction derivation of the rogue AP.

5.2 Direction Derivation Leveraging CSI Phase

We propose two methods variance of phase difference and
correlation of phase difference to derive the direction of
rogue AP by leveraging CSI phase. The variance of the
CSI phase difference can directly capture the blocking
effect of the wireless channel. It usually works in outdoor
environments but is sensitive to complex indoor scenar-
ios. To deal with complex indoor scenarios, we develop
the method using the correlation of CSI phase difference.

5.2.1 Variance of Phase Difference
When the direct path of wireless transmission is blocked
by the user, the phase difference d6 H,j(k) between two
adjacent subcarriers varies severely due to the received
signals coming from different paths, which leads to in-
creased phase difference variance. As studied in Sec-
tion 4.2, this phenomenon is illustrated in Figure 5 (b).
We define the variance of phase difference as var(d6 H,j)
to characterize the impact of the user’s standing point
to the wireless channel. The larger the variance is, the
more likely the user is blocking the direct path of wireless
transmission. Thus, the angle range derived by position
j with the largest value of var(d6 H,j) indicates which
direction the rogue AP roughly locate.

5.2.2 Correlation of Phase Difference
Under complex indoor scenarios, the walls, furniture
and obstacles create multipath propagation which could
lead to large variance of phase differences. Under such
scenarios, variance is less effective in characterizing the
blocking effects. We propose to use the correlation of the
phase difference to capture the blocking effect under the
hope that the use of correlation technique could smooth
out the environmental impact.

The CSI phase difference d6 H,j(k) obtained at each
user position j is a sequence of values with the length
(k − 1). Each phase difference sequence shows a specific
pattern corresponding to a channel state, as shown in
Figure 5 (b). To filter out the environmental impact,
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Fig. 7. Illustration of applying the phase difference methods when the
user moves around the laptop with 1 feet distance: (a) variance of
phase difference (b) correlation coefficient of phase difference.

our system first calculates the phase difference sequence
when no user is standing around the Wi-Fi device. This
initial phase difference sequence is used to characterize
the multipath effect in indoor environments. It is used as
the base sequence to correlate with the phase sequence
when user is standing at different positions around the
Wi-Fi device. In particular, we calculate the correlation
between the phase difference sequence when the user
stands at different positions and the sequence when no
user is standing around the Wi-Fi device. The result-
ing correlation coefficient then reflects how the user’s
standing position affects the wireless channel. When the
direct path between the AP and Wi-Fi device is blocked,
a more significant change of wireless channel incurs. It
thus results in a lower correlation coefficient value. The
standing position corresponding to the lowest correlation
can then be identified as the user is standing between the
AP and Wi-Fi device. We denote correlation coefficient
ρi,0 as the one when the user stands at position i. The
detailed correlation coefficient calculation is similar to
equation 4 where ai(t) has been replaced by d6 H,i(k)
and aj(t) has been replaced by d6 H,0(k) which is the
phase difference when no user is standing around the
Wi-Fi device. The angle range derived by position j with
the lowest value of ρi,0 is identified as the direction the
rogue AP roughly resides.

Figure 7 (a) and (b) illustrate the variance and correla-
tion of phase difference when the user is walking around
the laptop. We observe that both the largest variance and
the lowest correlation value capture the direction of the
rouge AP.

5.3 Direction Calibration

With an angle range towards the rogue AP derived from
the previous step, we then perform direction calibration
to narrow down the angle range to a direction pointing to
the rogue AP. As shown in Figure 2 (b), we can obtain the
continuous collected data with M packets when the user
moves slowly across the arc of the angle range ω.

5.3.1 Leveraging CSI Amplitude
We compute ω averaged CSI from these collected M pack-
ets to get the degree resolution as 1 degree. Specifically,
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we average the data over a sliding window of size N with
a step size n =

⌊

M
ω

⌋

, where N = M − n × (ω − 1) (i.e.,
M = 300, ω = 90, N = 33, and n = 3 are used in our
experiments). We use these ω averaged CSI to simulate
the CSI collected at ω evenly distributed positions along
the ω degree arc. Therefore, the degree difference between
two simulated neighbor positions is one degree. We then
compute the orthogonal space distance based on these
ω averaged CSI and further determine the direction of
the rogue AP by choosing the direction with the largest
distance in orthogonal spaces to others. Note that we also
consider utilizing amplitude correlation to calibrate the
direction. However, the computational cost of calculating
correlation between any two positions can be extremely
high (e.g., O(ω2) operations of correlation calculation).
Therefore, we apply the amplitude orthogonal transfor-
mation method in direction calibration leveraging time
domain CSI amplitude.

5.3.2 Leveraging CSI Phase
Similarly, for the direction calibration using phase differ-
ence, we utilize the same sliding window to calculate the
phase difference variance or correlation for each degree
within the angle range derived by direction derivation.

In outdoor scenarios, variance of phase difference is
calculated at each degree. The largest one among the
ω variances indicate the calibrated direction. In indoor
environments, phase difference sequence of each degree
in the arc of angle ω is correlated with the basic sequence
when no user is around the Wi-Fi device. The direction
of the rogue AP is identified as the the angle with the
smallest correlation coefficient.

5.4 Using Multiple Antennas

Additionally, multiple antennas are widely available on
commercial Wi-Fi devices. By utilizing the spacial diver-
sity provided by the multiple antennas, our system can
obtain higher accuracy when determining the direction
of the rogue AP.

At the direction derivation step, The aforementioned
approaches are applied to obtain all the measurements at
each position from each pair of antenna. Then, at each
pair of antenna, we can obtain one candidate position
indicating the most possible angle range of the rogue AP.
The overlapping of these angle ranges from each pair
of antenna is used as the identified angle range of the
rouge AP. If no overlapping exists, our system increases
the angle range of each candidate by extending the angle
range from 1 standing position to 2 standing positions.
The angle range increases until an overlap is identified
from the multiple antenna pairs.

At the direction calibration step, we perform our
prior approaches, and derive an estimated angle-degree
for each antenna pair. Then we average the estimated
directions from all the antenna pairs.

6 POSITION ESTIMATION METHODS

In this section, we develop two methods to estimate the
position of the rogue AP based on direction determi-
nation: geometric relationship based and obstacle avoidance
direction adjustment.
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Fig. 8. Illustration of position estimation of the rogue AP through
geometric relationship based method while conducting direction de-
termination at three different locations.

6.1 Geometric Relationship-based Method

This method directly pinpoints the location of the rogue
AP using spatial diversity. It performs direction deter-
mination at multiple locations and applies triangulation
to obtain the position of the rogue AP. In particular, the
user can derive the direction of the rouge AP at multiple
locations by placing the Wi-Fi device at different locations
with spacial diversity. Then the location of the rouge
AP can be estimated by using the derived directions
together with the locations where the Wi-Fi device has
been placed.

Our proposed scheme takes two inputs: the physical
locations where the Wi-Fi device was placed, (xi, yi) for
ith position, and the angle φi derived at position i to-
wards the rogue AP. Then, a straight line li : y = aix+ bi
can be uniquely determined by the two inputs, where
ai = −tan(φi) and bi = yi + xitan(φi). Given different
number of locations the Wi-Fi device was placed, there
are two scenarios: 1) If the user repeats direction de-
termination at two different locations, we can pinpoint
the rogue AP as the intersection point (x̂1, ŷ1) of the
two directional lines determined independently at two
positions; 2) If the user repeats direction determination
at more than two locations, we can obtain multiple in-
tersections (x̂i, ŷi), i = 1, 2, ...,m, where m is the total
number of intersections. We then derive the location of
the rogue AP by calculating the centroid of these inter-
sections (x̂, ŷ) = ( 1

m

∑m

i=1 x̂i,
1
m

∑m

i=1 ŷi). An illustration
of the geometric relationship based method is shown in
Figure 8. We show the example of locating the rogue AP
by performing direction determination at three different
locations. The red dot represents the estimated location of
the rogue AP, which is the centroid of the three intersec-
tion points of the three directional lines.

6.2 Obstacle Avoidance Direction Adjustment

In this method, the user walks towards the rogue AP
along the determined direction with a single Wi-Fi de-
vice to reach the AP. However, the user’s path may be
blocked by doors, walls, buildings, etc. The user needs to
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Fig. 9. Direction derivation with single antenna for indoor and outdoor.

bypass the obstacles and then continue approaching the
rogue AP. Under such situations, we develop a direction
adjustment scheme to re-calculate the direction of the AP
after passing the obstacle, since the obstacles may affect
the accuracy of the previous direction determination.

The user makes the direction adjustment in two sce-
narios. First, the user encounters a permanent obstacle
such as a building or room, and bypasses it along the
previous estimated direction by entering the building or
room. We conduct the direction adjustment after pass-
ing the obstacle. If the obstacle is a dead end, such as
corner or the border of a building, we re-conduct our
direction determination scheme at the current location.
Second, the user performs the direction determination
again after walking over a long distance, i.e., 300 feet,
since the coverage of normal wireless AP is around 300
feet [24]. Under such a scenario, the result of the previous
direction determination maybe inaccurate, we thus need
to perform direction adjustment.

7 PERFORMANCE EVALUATION

7.1 Experimental Methodology

7.1.1 Experimental Setup

We conduct experiments in a 802.11n Wi-Fi network using
a laptop equipped with IWL 5300 wireless cards [19]. The
laptop has two internal antennas at the top of the LCD
screen housing. We associate the laptop with a commer-
cial wireless AP, Linksys E2500, which serves as the rogue
AP. The laptop runs Ubuntu 10.04 LTS with the 2.6.36
kernel. The Intel wireless cards’ driver we installed are
able to collect CSI information from frames transmitted
in HT rate [24]. We use ping command to simulate the
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Fig. 10. Direction derivation with multiple antenna for indoor and
outdoor.

communication packets transmitted between the laptop
and the AP. The packet rate is 20 packets per second. For
each packet, we extract the CSI measured at 30 subcarri-
ers which are distributed evenly in the 56 subcarriers of a
20MHz channel between each of the antenna pair [9]. We
also record RSS value of each packet for comparison. The
laptop is placed on a 4 feet high stool. The user stands at 8
evenly distributed positions with 1 foot away around the
wireless device as shown in Figure 2 (a). The user slowly
moves across the arc at a speed of around ν = 6◦/sec
as shown in Figure 2 (b). We note that the range that
the user moves across in direction calibration is ω = 90
degree. The granularity of the direction calibration is
1 degree. For our amplitude combined method, we set
the correlation threshold ζ = 0.85, and confidence level
threshold γ = 0.75.

7.1.2 Experimental Scenarios
We conduct experiments in both indoor and outdoor en-
vironments. The indoor environments include a research
lab and classrooms, and the outdoor environments include
a soccer field and the area outside of the research building.
For each site, we put the laptop at more than 50 locations
with the AP placed at several different positions. During
the experiments, there are people moving in the environ-
ments, e.g. students playing in the soccer field or walking
in the research lab.

The details of the experimental environments are de-
scribed as follows: 1) The research Lab with a size of 50×60
feet is located on the 5th floor of Burchard building at
Stevens Institute of Technology. The research lab includes
two rooms, where the outer room has desks, chairs and
shelves with electronic instruments on it, and the inner
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Fig. 11. Impact of different number of packets in direction derivation
using multiple antennas in indoor environments.

room is an empty space without furniture. We conduct
experiments in both the inner empty space and the outer
room with few students in the lab. 2) The classrooms are
located on the first floor of Babbio Center of Stevens Insti-
tute of Technology. One large classroom with 100×80 feet,
and two small classrooms with around 40× 50 feet. Both
classrooms are full of desks and chairs. 3) The soccer field
on campus is a large open space with around 500 × 350
feet. We collect data at various positions from 30 feet
to 400 feet away from the AP. During our experiments,
several students are playing soccer or base ball in the
field. 4) We examine the scenario where the AP is placed
inside the first floor of the Burchard building, and the
user and the laptop are outside of the research building. We
collect the data at various locations from 50 feet to 200
feet away from the AP.

7.2 Metrics

We use the following metrics for experimental evaluation.
Error of Angle Range. It is defined as the error

between the estimated angle range and the true angle
range where the rogue AP locates. As there are 8 positions
to test around the Wi-Fi device, each position represents
the angle range of 45 degrees. If the estimated range has
n range differences from the true range, the error of angle
range is n.

Angular Error. It is defined as the error between the
true direction of the rogue AP and the estimated direction
with granularity to be 1 degree.

Location Error. It is the distance between the esti-
mated location and the true location of the rogue AP.

7.3 Performance Evaluation of Direction Determina-
tion

7.3.1 Direction derivation

Single Antenna. Figure 9 (a) and (b) present the per-
formance of direction derivation with single antenna for
indoor and outdoor environments respectively. We ob-
serve that the proposed amplitude combined method is
effective in capturing correct angle range of the rogue AP
in both indoors and outdoors. Specifically, the amplitude
combined method produces the correct angle range at
around 90% of the cases for both environments. Fur-
thermore, the performance in outdoors is slightly better
than that of indoors due to the signal propagation is less

complicated in outdoors. Moreover, we find the method
based on CSI phase difference has better performance
than CSI amplitude correlation method and is lightly
worse than the CSI amplitude orthogonal transformation
method in both indoor and outdoor environments. We
observe that the amplitude combined method has the best
performance.

The amplitude combined method integrates both the
CSI amplitude correlation and CSI amplitude orthogonal
transformation. The results show that amplitude com-
bined method can achieve the best performance in esti-
mating the angle range of the rogue AP in both environ-
ments. This provides a solid foundation in estimating an
accurate angle of the rogue AP in the direction calibration
step.

Multiple Antennas. We next examine the perfor-
mance of direction derivation by utilizing multiple an-
tennas. As the both the laptop and wireless AP we
used in the experiments have 2 antennas, we can collect
CSI information from 4 antenna pairs.We find that the
performance of all the approaches for both indoor and
outdoor shown in Figure 10 is improved significantly
by using multiple antennas. Specifically, Figure 10 shows
that there are no large errors (e.g., 3 and 4) when using
multiple antennas, and over 94% of the tests have 0 error
of angle range. Therefore, the spatial diversity provided
by the multiple antennas largely enhances the overall
performance of direction derivation. We also observe that
the number of cases which have error of angle range is
significantly reduced, especially for the cases which have
the error of angle range equaling to or larger than 2.
This is because the spatial diversity provided by antennas
can mitigate the severe multipath effects experienced at a
particular antenna pair.

Impact of Number of Packets. We next study how
the number of packets used affects the performance. We
vary the number of packets utilized in our approaches
from 100, to 500, and 1000 packets. The results are shown
in Figure 11 with two methods: amplitude correlation
method and amplitude combined method and similar
results can be found with amplitude orthogonal transfor-
mation and phase method. We observe that the accuracy
increases when we increase the number of packets for am-
plitude correlation method. Specifically, the percentage of
0 angle range error increases from 78% to 93% when the
number of packets increases from 100 to 1000 packets;
whereas it decreases from 20% to around 5% for 1 angle
range error. Moreover, we find that the amplitude com-
bined method is less sensitive to the number of packets.
As shown in Figure 11(b), the performance of amplitude
combined method has little difference when the number
of packets vary from 100 packets to 1000 packets. The
amplitude combined method thus has the capability to
provide accurate direction derivation by only using small
number of packets.

7.3.2 Direction Calibration
In Figure 12, we present the performance of direction cal-
ibration using CSI amplitude (i.e., red curves) and phase
(i.e., black curves) in both indoor and outdoor environ-
ments. The method using CSI amplitude is slightly better
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Fig. 12. Comparison of direction calibration between CSI-based
methods (amplitude combined and phase difference) and RSS-
based method under the scenarios of both single and multiple an-
tennas.

than the method using CSI phase for both environments
and the direction calibration using the two methods can
be both improved by utilizing multiple antennas. We
find that the proposed direction calibration achieves high
accuracy in identifying the direction of the rogue AP in
both indoors and outdoors. In particular, the median error
is about 10 degrees and the 90% error is at around 20
degrees in both indoors and outdoors. We do observe
that the CDF curves have tails in both environments with
about 40 degrees maximum error. This is mainly because
we have a very small percent of cases which bring in
errors from the direction derivation step. That is, the true
direction of the rogue AP does not fall into the range
which is used for calibration. Moreover, we observe that
the performance of indoors is comparable to that of the
outdoors, although it is more challenging in indoors. The
results demonstrate that our method is highly effective in
outdoors as well as in complicated indoor environments
with heavy multipath and shadowing effects.

7.3.3 Comparison with RSS-based Method

We further compare our CSI-based direction determi-
nation methods with the existing RSS-based method.
Specifically, we compare our CSI-based method with the
RSS-based method proposed in [31]. By using human
body as an obstacle to block the wireless receiver at
different directions, RSS-based method determines the
direction of the AP when the signal strength has the
largest degradation. Figure 12 shows the comparison of
the direction determination accuracy when using CSI-
based method (i.e., red curves) and RSS-based method
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Fig. 13. Position estimation performance via geometric relationship
based method while using CSI amplitude and phase for direction
derivation respectively.

(i.e., blue curves) under our experimental setup in both
indoors and outdoors.

We observe that the proposed CSI-based method sig-
nificantly outperforms the RSS-based methods in both
environments. In particular, we can achieve around 10
degree median error for both environments, while the
maximum error is around 25 degree in outdoors and 50
degree in complex indoor environments for RSS-based
method. The results show that our proposed CSI-based
method significantly outperforms the RSS-based method
in both environments, especially in complex indoor en-
vironments. Overall, our approach can achieve over 40%
error reduction in maximum error for both indoors and
outdoors, 80% error reduction in median error for in-
doors, and 60% error reduction for outdoors. This is be-
cause CSI provides fine-grained channel information and
can characterize the user’s blocking effect better, whereas
the RSS is coarse-grained information and suffers from
the multipath and shadowing effects in complex wireless
environments.

7.4 Performance Evaluation of Position Estimation

7.4.1 Position Estimation through Geometric
Relationship-based Method

We present the position estimation results of geometric
relationship based method in Figure 13 by using the
directions determined at two, three or four locations. The
position estimation performance is related to the direction
estimation accuracy at each location and the number of
locations used. Specifically, the maximum error is reduced
from 15 feet to around 8 feet in indoors, and from over
20 feet to 12 feet in outdoors by increasing the number
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Fig. 14. Position estimation through obstacle avoidance direction adjustment: the 1st floor of Babbio Center of Stevens Institute of Technology.

of locations used from 2 to 4. And we achieve 3.5 feet
median error in indoors, and 6.5 feet median error in
outdoors when using four different locations.

7.4.2 Position Estimation through Obstacle Avoidance
Direction Adjustment
Finally, we present the path comparison of the user
walking towards the rogue AP utilizing CSI and RSS
respectively in an indoor environment. Figure 14 shows
two walking paths (starts from the lobby and the stairs
respectively) towards the rogue AP on the 1st floor of
Babbio Center of Stevens Institute of Technology. The
solid line represents the walking path using CSI (ampli-
tude combined method), and it takes 3 times of direction
determination to arrive at the rogue AP. Whereas the dash
line represents the walking path via RSS, which takes
more than 5 direction adjustments to capture the rogue
AP. The accurate and robust direction determination re-
sulted from CSI-based method enable the user to arrive
at the rogue AP with shorter walking distance and less
direction adjustments. However, the RSS-based approach
incurs large uncertainties of direction, and leads the user
to more rooms and more direction adjustments which
wastes the user much more time to reach the rogue AP.
The results show that it is more efficient to locate the
rogue AP by using the CSI-based method compared to
RSS-based method.

8 CONCLUSION

Locating the position of the rogue AP is important to
ensure the successful deployment of pervasive wireless
networks. In this paper, we propose to use the fine-
grained channel state information (CSI) obtained from
commercial Wi-Fi device to perform accurate rogue AP
localization. Our proposed framework using a single
Wi-Fi device involves minimal infrastructure cost and
achieves high accuracy. Two components are proposed in
the localization framework including direction determi-
nation and position estimation. The direction determina-
tion component captures the blocking effect of the user to
the wireless channel by exploring both CSI amplitude and
phase to estimate the direction of the rogue AP. The mul-
tiple antennas on the device can be utilized to further im-
prove the direction estimation accuracy. The determined

direction of the rogue AP can facilitate the rogue AP
localization by either directly pinpointing the rogue AP
using spatial diversity (with the directions determined
at multiple locations) or walking towards the rogue AP
through obstacle avoidance direction adjustment. Our
experimental results show that the proposed direction
determination method using CSI is highly effective and
robust to both indoor and outdoor environments. In
contrast, the existing RSS-based angle estimation method
cannot work in indoors and the performance in outdoors
is significantly worse than that of our method. Further,
our proposed CSI-based framework is more efficient and
accurate in locating the rogue AP when comparing to
existing RSS-based method confirming that CSI provides
richer information than that of RSS for describing the
wireless channel.
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