Self-Organizing Cellular Radio Access Network with Deep Learning

<u>Wuyang Zhang¹</u>, Russell Ford², Joonyoung Cho², Charlie Jianzhong Zhang², Yanyong Zhang^{1,3}, Dipankar Raychaudhuri¹

> ¹ WINLAB, Rutgers University ² Samsung Research America ³ University of Science and Technology of China

> > IEEE INFOCOM Workshop 2019

Problem Statement

RAN Performance Problems Prevalent

- *My phone shows 5 signal bars but the connection is so slow!*
- Cannot hear your voice!
- This web page is not loading at all!
- Example root causes of RAN performance problems

NOT straightforward to diagnose the root cause!

F)]	IJ	۲C	ЪΕ	R	S		
		WI Ne	NLAE tworl	s W k Lal	/ireles	s In ory	forma	tion
	N	/IN	LA	B				

Self-Healing Radio Access Network

Can cellular network operators automate the diagnosis and self-healing of RAN?

System challenges:

- How to **predict anomaly KPIs** before any faults really appear?
- How to figure out **root causes** based on thousands of cell KPIs?
- How can the system self recover from the faults?
- How to deal with ~ TB level data of cell KPIs?

formation

etwork Laborator

WINLAB

System Overview

RUTGERS WINLAB | Wireless Information Network Laboratory

6/25/2019

Big Data Platform (Apache Spark + HDFS + Apache HBase)

Spark.

HBASE

4

Eners

Real-world KPI Dataset Overview

real-word data from a top-tier US cellular operator

- Aggregated Cell Dataset
- KPIs & error code summary: ~100. e.g., mobile subscriber count, attach count, detach count, handover count; x2_attempt, x2_enb_to, x2_dns_fail, s1_intra_src_attempt, s1_intra_tar_sgw_chg, etc,.
- Overall size: ~335 GB
- Collection date: 2017-06-30 2018-03-20
- Collection interval: 1hour
- Non-aggregated Cell dataset
- KPIs summary: ~4k.
- Overall size: ~ 100 TB
- Collection date: 2018-02-01 2018-07-31
- Collection interval: 15 minutes

- Accessibility
- Retainability
- Integrity
- Availability
- Mobility
- Connection Drop Rate
- Cell Throughput

Example KPIs in time series

Partial example KPIs

'InterferencePowerAvg', 'InterferencePowerTot', 'InterferencePowerCnt', 'ThermalNoisePowerAvg', 'ThermalNoisePowerTot', 'ThermalNoisePowerCnt', 'RssiOverPathAvg', 'RssiOverPathTot', 'RssiOverPathCnt', 'RssiPathOAvg'

Anomaly Prediction: Objective & System Challenges

٠

Objective: based on the currently/historically-reported cell KPIs, to *predict the potential anomaly KPIs/events* in the future

System Challenges:

- Identify related KPIs: Difficult to know in advance which of the thousands of KPIs are relevant and correlated with the predictive KPIs.
- Inter-cell interference: Some KPIs from neighboring cells may be related, like in the case of high intercell interference, but may not trigger an anomaly event at these neighbor cells.
- <u>Rare anomaly events</u>: The anomaly event labels rarely account for less than 0.1 percent over all the reported KPIs. The model needs to focus on those anomaly points.

slides

6

Wireless Information

Network Laboratory

WINLAB

Anomaly Detection: Model Selection

CNN

- Good at extracting spatial features from input: which KPIs are more correlated to the predictive target?
- Ignore temporal relations

RNN

- Good at extracting temporal relations between timeseries inputs
- Detect "periodic" pattern
- Selectively remember "important" time slots
- Gradient vanishing & gradient explosion
- Cannot remember long-term information

LSTM (Long Short Term Memory)

- Resolve gradient vanishing & gradient explosion
- Enable long-term memory
- Cannot well extract spatial features

Anomaly Detection: ConvLSTM

• Extracting both *temporal* and *spatial* features

- Input: thousands of historical cell KPIs
- Output: predictive values of target cell KPIs
- Model structures (similar to <u>LSTM</u>)

 $\begin{array}{ll} \textit{input gate} & i_t = \sigma(W_{xi} \ast X_t + W_{hi} \ast H_{t-1} + W_{ci} \circ C_{t-1} + b_i \\ \textit{forget gate} & f_t = \sigma(W_{xf} \ast X_t + W_{hf} \ast H_{t-1} + W_{cf} \circ C_{t-1} + b_f \\ \textit{sigmoid state} & C_t^* = tanh(W_{hc^*} \ast H_{t-1} + W_{xc^*} \ast X_t | + b_f) \\ \textit{update gate} & C_t = f_t \circ C_{t-1} + C_t^* \\ \textit{output gate} & o_t = \sigma(W_{xo} \ast X_t + W_{ho} \ast H_{t-1} + W_{co} \circ C_t + b_o) \\ \textit{hidden state} & H_t = o_t \circ tanh(C_t) \\ \textit{output} & Y_t = W_{hy} \ast H_t + b_{hy} \end{array}$

- The operator "*" (convolution operations) that is the key in this model
- The convolution operation enables to extract spatial features

Xingjian, S. H. I., et al. "Convolutional LSTM network: A machine learning approach for precipitation nowcasting." Advances in neural information processing systems. 2015.

6/25/2019

slides

8

GERS

Network Laboratory

WINLAB

eless Information

Anomaly Detection: Unbalanced Dataset

How to handle extremely unbalanced dataset? (Rare anomaly events)

- Data undersampling
 - <u>Discard the redundant data</u> that is far from the the anomaly points.

9

- Penalized classification
 - Penalizing error anomaly classification will introduce an extra cost to the model when it falsely classifies an anomaly point as a normal one. These penalties force the model to give greater emphasis to the minority class.

trainLoss = $\alpha * normClass + \beta * anomalyClass(<math>\alpha \ll \beta$)

Root Cause Analysis: System Challenges

System Challenges

- Root cause labels are *not available* for supervised training
 - Network engineers do not deliberately attach the resulting fault to the associated logs
 - Too expensive to collect the logs by purposely introducing the cell faults

Solutions

- Generate a *synthetic dataset* of cell faults with NS3
- Employ unsupervised clustering by removing the fault labels, with which we are able to quantify how the model performs
- Apply the model to a real-world dataset

Root Cause Analysis: NS3 simulation

NS3 simulation steps

power radiation of normal/anomaly eNBs

6/25/2019

NS3 simulation setup

Parameter	Value				
Тороlоду	3-sector hexagonal grid, 3 sites				
Carrier Freq.	2.12 GHz				
Bandwidth	10 MHz				
Channel model	UMi, shadow fading, no fast fading				
TX power	46 dBm				
Antenna	3D parabolic 70° azim., 10° vertical beamwidth 9° downtilt				
Handover algorithm	A3 RSRP (default Hyst = 3 dB, TTT = 256 ms)				
Scheduler	Proportional fair				
Mobility model	Steady state random waypoint UE speeds $\in U(1,20)m/s$				
Traffic model	Constant bit rate 800 kbps DL + UL flows				

normal cell configuration

- EU: excessive uptilt
- ED: excessive downtilt
- ERP: excessive cell power reduction
- CH: coverage hole
- TLHO: too late handover
- *II: inter-cell interference*

Fault Cause	Configuration
EU	Downtilt= $[0,1]^{\circ}$
ED	Downtilt=[16,15,14] °
ERP	$\Delta P_{TX} = [7, 8, 9, 10] \text{ dB}$
CH	$\Delta_{hole} = [49, 50, 52, 53] \text{ dBm}$
TLHO	HOM=[6,7,8] dBm
II	$P_{TX_{max}} = 33 \text{ dBm}$
	Downtilt=15 °
	AB=[30, 60] °
	EB=10 $^{\circ}$
No fault	Normal

fault cell configuration

Root Cause Analysis: NS3 simulation

- 6 possible faults:
 - EU (excessive uptilt),
 - ED (excessive downtilt),
 - ERP(excessive power reduction),
 - *II (inter-cell interference)*
 - TLHO (too late handover)
 - CH (coverage hole)
- Randomly select 6 out of 30 cells as the faulty ones
- Randomly assign 1 possible fault to the faulty cell

• 40 KPIs

'ul_delay_max', 'ul_PduSize_avg', 'dlrx_size', 'dl_TxBytes', 'ulmac_mcs', 'dl_PduSize_std','fault', 'dl_delay_max', 'ul_delay_avg', 'ul_PduSize_min', 'ul_TxBytes', 'dltx_size', 'dl_nRxPDUs','ultx_mcs', 'ulmac_sframe', 'dlrsrp', 'ul_delay_std', 'ul_PduSize_std', 'ul_nTxPDUs', 'dist', 'dl_PdSize_max','ultx_size','dl_delay_std','ul_RxBytes','dl_Pd uSize_min', 'dl_RxBytes','ul_PdSize_max', 'ul_nRxPDUs', 'dlrx_mcs', 'dlsinr', 'dl_delay_avg', 'ulmac_frame', 'dlrx_mode','dl_delay_min', 'ulmac_size', 'dl_PduSize_avg', 'dl_nTxPDUs', 'dltx_mcs', 'ul_delay_min', 'UE location'

1 hour duration

snapshot of the dataset

	A	B	c	D E		`			J	К	L	M	N	0	P	0	R			U	
1	cellid tir	me	ulmac size	ditxphy msc dirsrp	diric nrxpdus d	diric txbytes	ault	lsinr d	Irlc pdusize o	llsinr	dltxphy size dlr	ic rxbytes dir	mac msc d	diric delav	dirxphy msc d	irxphy se	ulmac msc	ultxphy msc d	lmac size	ultxphy size	interference
2	28	0.2	211.280275106	28 2.899803/766792E-13	1.5	21112	3	1,889095	1056	611.3317779407	2961	1584	28	0.017	28	29 51	319360351563	319360351563	2961	2111280280118	313,0409748262829
3	28	0.3	211.280275106	28 2.8569203042326E-13	1.5	2112	3	1.889095	1056	602.2911990799	2961	1584	28	0.017	28	2951	3.9360351563	3.9360351563	2961	211.280280113	3 3.0409748262329
4	28	0.4	175.348144531	28 2.8148648131869E-13	2.5	3168	3	1.85025	1056	593.4258915011	2961	2640	28	0.017	28	29 1	2.3332519531	2.2915039063	2961	173.946289063	3 2.088120565625
5	28	0.5	229.281593323	28 2.7736289445455E-13	2.5	3168	3	1.85025	1056	584.7322978326	5 2961	2640	28	0.017	28	2901	3.0364608765	3.0364532471	2961	229.282211304	4 1.3605782263672
6	28	0.6	544.5	28 2.7331833467738E-13	2.5	3168	3	1.81243	1056	576.2061803528	3 2961	2640	28	0.017	28	2961	10	10	2961	544.5	5 2.12151305
7	28	0.7	172.500686646	28 2.6935211078559E-13	2	2112	3	1.81243	1056	567.8442945451	2961	2112	28	0.017	28	296	2.0416717529	2.0403747559	2961	172.466217041	1 1.8434034068359
8	28	0.8	228.750343323	28 2.6546186797386E-13	2	2112	3	1.775615	1056	559.6430423222	2961	2112	28	0.017	28	296	3.0208358765	3.0177612305	2961	228.669250488	3 1.719890719043
9	28	0.9	500.6640625	28 2.6164624861111E-13	2	2112	3	1.73979	1056	551.5988026256	5 2961	2112	28	0.017	28	296.	7.017578125	4.0703125	2961	282.9375	5 1.5997480875
10	28	1	172.500686646	28 2.579033346561E-13	2.5	3168	3	1.73979	1056	543.7076770888	3 2961	2640	28	0.017	28	2961	2.0416717529	2.041683197	2961	172.50151062	2 1.8519879962891
11	28	1.1	281.5625	28 2.5423111241337E-13	1.5	2112	3	1.704935	1056	535.9665369998	3 2961	1584	28	0.017	28	2961	4.03125	4.0625	2961	278.125	5 1.6256818966797
12	28	1.2	180.359375	28 2.5062855815974E-13	1.5	2112	3	1.704935	1056	528.3720118599	2961	1584	28	0.017	28	2961	2.171875	2.171875	2961	180.359375	j 2.1588516
13	28	1.3	172.500686646	28 2.4709435388072E-13	1.5	2112	3	1.67099	1056	520.9208986281	2961	1584	28	0.017	28	2961	2.0416717529	2.0416717529	2961	172.500686646	3 1.9013077572266
14	28	1.4	278.125	28 2.4362646455028E-13	3.5	3168	3	1.637925	1056	513.6100497433	3 2961	3696	28	0.017	28	2961	4.0625	4.125	2961	271.25	5 1.7330785373047
15	28	1.5	177.27734375	28 2.4022384130291E-13	3.5	3168	3	1.605705	1056	506.4361004964	2961	3696	28	0.017	28	2961	2.0439453125	2.0439453125	2961	177.27734375	5 2.4120340005859
16	28	1.6	173.563186646	28 2.3688440338756E-13	3.5	3168	3	1.605705	1056	499.396744426	5 2961	3696	28	0.017	28	2961	2.0729117529	2.0677185059	2961	173.423248291	1 1.9709440927734
17	28	1.7	249.002197266	28 2.3360772026846E-13	1	2112	3	1.605705	528	492.4881114437	2961	1056	78	0.00	28	23 61	ana	rc 4	2961	249.008789063	3 1.4936061804688
18	28	1.8	172.500686646	28 2.303912499183E-13	1	2112	3	1.574315	528	485.707625586	5 2961	1056	28	0.0035	28	2961	0 16 1 529	2.041 513184	2961	172.492584229	2.1886146304688
19	28	1.9	213.004394531	28 2.2723469321861E-13	1	2112	3	1.543715	528	479.0523798614	2961	1056	28	0.0085	28	2961	4	4	2961	213.004394531	1 1.4593047875
20	28	2	277	28 2.2413612772892E-13	2.5	3168	-3	1.543715	1056	472.5198914674	2961	2640	28	0.017	28	2961	8	8	2961	271	2.35475825
21	28	2.1	177.3828125	28 2.2109410134026E-13	2.5	3168		1.51389	1056	466.1072836535	5 2961	2640	28	0.017	28	2961	2.0454101563	2.0454101563	2961	177.3828125	5 2.2642017511719
22	28	2.2	276	28 2.1810821180586E-13	1	2112	3	1.484815	528	459.8121322435	5 2961	1056	28	0.0085	28	2961	4	4	2961	261	/ 1.5133929707031
23	28	2.3	595.561035156	28 2.1517664599613E-13	1	2112	3	484815	528	453.6315027526	5 2961	1056	28	0.0085	28	2961	8.255859375	5.0234375	2961	375.423828125	5 1.5440763496094
24	28	2.4	256.875171661	28 2.1229788277127E-13	3.5	3168	3	1.5647	1056	447.5633974619	2961	3696	28	0.0135	28	2961	3.5104179382	2.0416946411	2961	172.502334595	5 2.2436435478516
25	28	2.5	500.328125	28 2.0947163264719E-13	3.5	3168	3	1.45017	1056	441.604936517	2961	3696	28	0.0135	28	2961	7.03515625	7.0234375	2961	499.84375	5 1.4341564546875
26	28	2.6	172.500686646	28 2.0669628902132E-13	3.5	3168	3	1.42883	1056	435.7536614367	2961	3696	28	0.0135	28	2961	2.0416717529	2.020690918	2961	171.938049316	3 1.63610431875
27	28	2.7	500.9375	28 2.039705994751E-13	3.5	2112	3	1.40187	1056	430.0075872778	3 2961	3696	28	0.01116665	28	2961	7.03125	7.25	2961	500.5	5 1.3046641171875
28	28	2.8	177.48828125	28 2.0129352300666E-13	3.5	2112	3	1.40187	1056	424.3643094692	2961	3696	28	0.01116665	28	2961	2.046875	2.03125	2961	177.3359375	j 2.0875824804688
29	28	2.9	256.875171661	28 1.9866455834145E-13	2	3168	3	1.375575	156	18.8210000756	2961	2112	28	0.017	28	2961	3.5104179382	3.0178833008	2961	228.670349121	1.7248147191406
30	28	3	392.328125	28 1.9608184173229E-13	2	3168	3	1.349925	1 1 56	113.3767614421	9 1	2112	28	0.017	28	2961	5.53515625	4.1875	2961	288.25	i 1.5662938
31	28	3.1	140.683636665	28 1.935452443142E-13	2	3168	3	1.349925	1 56	408 02 89 89 21	911	2112	28	0.017	28	2961	3.98828125	3.98828125	2961	140.683765411	1 1.8942802887695
32	28	3.2	187.966818333	28 1.9105287787585E-13	2	2112	3	1.324895	1056	402.77475063	3 2961	2112	28	0.017	28	2961	2.556640625	2.48828125	2961	185.683765411	1.407280749585
33	28	3.3	258.359375	28 1.8860444497562E-13	2	2112	3	1.324895	1056	397.6130900824	2961	2112	28	0.017	28	2961	5.33203125	5.33203125	2961	258.359375	j 1.570740515625
34	28	3.4	175.070333958	28 1.8619904735234E-13	3	3168	3	1.30047	1056	392.5414563252	2961	3168	28	0.01465	28	2961	2.1328125	2.265625	2961	173.140625	j 1.5880388526367
35	28	3.5	381.026367188	28 1.8383495819488E-13	3	3168	3	1.2766315	1056	387.5583986734	2961	3168	28	0.01465	28	2961	5.1357421875	2.5234375	2961	200.5859375	i 1.5548901625
36	28	3.6	230.373046875	28 1.8151243333553E-13	3	3168	3	1.2533675	1056	382.6616137304	2961	3168	28	0.01465	28	2961	3.064453125	3.03515625	2961	229.58984375	j 2.2576297851563
37	28	3.7	253.474630833	28 1.792296776476E-13	3	2112	3	1.2533675	1056	377.849552859	2961	3168	28	0.0144	28	2961	3.748046875	2.96875	2961	158.157623291	1 2.0180640430664
38	28	3.8	401.686523438	28 1.769863534376E-13	3	2112	3	1.230647	1056	373.11991369	2961	3168	28	0.0144	28	2961	5.5322265625	5.53125	2961	401.616210938	3 1.5496058597656
39	28	3.9	253.420909166	28 1.7478132433863E-13	4	3168	3	1.208472	1056	368.4716718622	2 2961	4224	28	0.0135	28	2961	3.7470703125	2.984375	2961	158.578296661	1 2.1084995529297
40	28	4	176.547046661	28 1.7261423334147E-13	4	3168	3	1.208472	1056	363.9027777572	2 2961	4224	28	0.0135	28	2961	2.359375	2.3593826294	2961	176.547973633	3 1.9678409675781
41	28	4.1	246.687911987	28 1.7048381111073E-13	4	3168	3	1.208472	1056	359.4115502446	5 2961	4224	28	0.0135	28	2961	7.1041564941	5.9633789063	2961	208.033203125	i 1.5661931179688
42	28	4.2	176.638183594	28 1.683894550327E-13	1	2112	3	1.1868085	528	354.9959777417	2961	1056	28	0.0085	28	2961	2.0314941406	2.0307617188	2961	176.662109375	i 1.95710145625
43	28	4.3	230.897888184	28 1.6633029996551E-13	1	2112	3	1.1656585	528	350.6553385273	3 2961	1056	28	0.0085	28	2961	3.0078125	2.02734375	2961	176.525390625	i 1.8841027421875
44	28	4.4	301.296875	28 1.6430614226292E-13	1.5	3168	3	1.1449935	528	346.3880277586	5 2961	1584	28	0.0085	28	2961	4.74609375	4.734375	2961	301.03125	j 1.910369490625
45	28	4.5	160.481284231	28 1.6231572804243E-13	1.5	3168	3	1.1449935	528	342.1911489597	2961	1584	28	0.0085	28	2961	1.5616862178	1.1217398643	2961	143.925046444	4 1.5422658097412
46	28	4.6	422.230407715	28 1.6035842694496E-13	1.5	3168	3	1.1248055	528	338.064811133	3 2961	1584	28	0.0085	28	2961	5.8770141602	5.5073242188	2961	401.952636719	J 1.3106922876953
47	28	4.7	160.050048828	28 1.5843343610298E-13	1	2112	3	1.0872415	528	334.0070315995	5 2961	1056	28	0.0085	28	2961	1.5053710938	1.5048828125	2961	160.045410156	j 1.8839077010742
48	28	4.8	166.605879009	28 1.5654052013886E-13	1	2112	3	1.0872415	528	330.0164867548	3 2961	1056	28	0.0085	28	2961	2.4400228262	3.0099277496	2961	160.170810699	J 1.6727647943359
49	28	4.9	109.627197266	28 1.5467850013022E-13	1	3168	3	1.0679795	528	326.0910663235	5 2961	1056	28	0.0085	28	2961	0.0416259766	0.0825195313	2961	110.278320313	3 1.7393347814453
50	28	5	160.293379009	28 1.5284728611125E-13	1	3168	3	1.0679795	528	322.230964264	2961	1056	28	0.0085	28	2961	1.5201009512	0.0669403076	2961	109.782688141	1 1.5691462202393
51	28	5.1	220.578125	28 1.510460888991E-13	1	3168	3	1.0384465	528	318.4332417568	3 2961	1056	28	0.0085	28	2961	3.25	3.2265625	2961	220.765625	i 1.8561719203125
52	28	5.2	142.895881653	28 1.4927404183823E-13	1	2112	3	1.0200565	528	314.6977500599	2961	1056	28	0.0085	28	2961	1.0052089691	0.0049438477	2961	108.671264648	3 1.6010166367188
53	28	5.3	381.56710434	28 1.4753119670139E-13	1	2112	3	1.0200565	528	311.0224548541	2961	1056	28	0.0085	28	2961	5.0944004059	2.7550048828	2961	229.534912109	1.352629170401
54	28	5.4	375	28 1.4581576679704E-13	1.5	3168	3	1.002083	1056	307.4067236796	2961	1584	28	0.0135	28	2961	6.171875	6.15625	2961	375.625	1.544611734375
55	28	5.5	193.123867393	28 1.4412814500662E-13	1.5	3168	2	1.002083	1056	303.8493650639	2961	1584	28	0.0135	28	2961	4.0138347149	4.0325469971	2961	192.850517273	3 1.5191023734131

Root Cause Analysis: Unsupervised Learning

- Feature selections
 - a critical preprocessing step that <u>selects a subset</u> from the <u>high-dimension input</u> to decrease the <u>overfitting</u> probability and to reduce the <u>training/inference</u> time
- Auto-encoder is an unsupervised <u>data</u> <u>coding</u> approach that can extract both linear and nonlinear relations from highdimensional input
 - the similar feed-forward network structure with CNN and consists of two symmetrical components: encoder and decoder
 - The encoder takes the highdimensional data and outputs the lowdimensional one, while the decoder will learn to fully recover the initial input from the compressed output with little loss.

Root Cause Analysis: Unsupervised Learning

- Agglomerative Clustering
 - A bottom-up algorithm.
 - Flow: starts by regarding each feature input as an independent cluster and repeats to merge two nearest clusters (measured by *Euclidean distance* or *Pearson correlation distance*) iteratively until the total remaining cluster number equals to a predefined number.
 - Limitation: <u>cannot</u> naturally map each cluster to a <u>particular fault class.</u> A network expert may further need to empirically infer the physical representation of each cluster, e.g., intercell interference, based on the distributions of significant KPIs.

Evaluations: Anomaly Prediction

- Prediction Objective: used the last 5 hours data to predict the value in the next hour of "<u>X2 handover failure rate</u>" (only an example) (using realworld dataset)
- **Deep Learning Models** (implemented with Tensorflow/Keras):
 - CNN (resnet50)
 - LSTM
 - convLSTM
 - CNN + convLSTM

• Performance Metrics:

- true positive (TP): the number that anomaly points are correctly predicted (key indicator)
- false negative (FN): the number that anomaly points are missing
- false positive (FP): the number that we give a false alarm over a a normal case
- true negative (TN): the number that we correctly predict a normal case
- MSE: mean square error over the anomaly points and the whole dataset

MINI AR

Evaluations: Anomaly Prediction

Prediction Performance with Different ML Models

Model	ТР	FP	ANOM_MSE	ALL_MSE		
LSTM	1	5	0.0185	0.0041		
CNN	3	11	0.032	0.0083		
ConvLSTM	15	17	0.0117	0.0032		
CNNConvLSTM	18	23	0.00096	0.0022		

Prediction Performance with Different Anomaly Class Weights

Weight	ТР	TN	FP	FN	recall
0.01/1	16	5854	391	7	69.5%
0.001/1	20	4442	1802	3	86.9%
0.0001/1	23	3022	3223	0	100%

normal weight/anomaly weight

```
recall = TP/(TP+FN)
```

- ConvLSTM, and CNN+convLSTM perform much better than LSTM and CNN
 - Important to extract spatial and temporal features at the same time

- An insufficiently high weight => low recall
- Excessively increase the weight => blindly classify any input as anomaly KPIs
- Needs to explore the trade-off between the anomaly prediction accuracy and the tolerance of false alarms to reach an optimal point.

17

•

Evaluations: Root Cause Analysis

Clustering accuracy: <u>99.5 %</u> by comparing the fault labels in the dataset. (<u>Auto-encoder + agglomerative clustering</u>)

KPI distributions over 6 faulty cases + 1 normal case

• Although the network cluster might be unknown, we can take it as the input to the deep reinforcement learning for the self-healing.

18

GERS

Network Laboratory

WINLAB

WINLAB | Wireless Information

Conclusions & Future Work

- Propose a <u>self-organizing cellular radio access network system</u> with deep learning
- Design and implement the <u>anomaly prediction</u> and <u>root cause analysis</u> components with deep learning and the evaluation of the system performance with real world data from a top-tier US cellular network operator
- Demonstrate that the proposed methods can achieve <u>86.9%</u> accuracy for anomaly prediction and <u>99.5%</u> accuracy for root cause analysis

Future Work

- Continue to design and implement the last component, "<u>self-healing functions</u>" with <u>deep</u> <u>reinforcement learning</u> and make RAN as an integrated, close-loop, self-organizing system.
- Investigate the root cause analysis with <u>supervised learning</u> with real-world fault labels.
- Better understand how <u>KPI sampling granularity</u> will effect the anomaly prediction accuracy.