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Deep Learning (DL)

Neural network

1980’s
Prosperous

2006
Resurgence

Popular AI technique

Essentially neural network

“Deep” & “Wide” (DNN)

Powerful capability
AI: Artificial Intelligence
DNN: Deep Neural Network



Deep Learning - Everywhere

Siri

AlphaGo

Medical Diagnosis
In courtesy of www.bigstockphoto.com



Opportunities
Deep learning software revenue 



Deep Learning for Comm./Network

• Very active research on DL for networking
-- Motivation: Big data, hard to model

• Early stage of DL for PHY in wireless comm.
-- Machine learning (ML) is not new for PHY
-- Existing work on DL for PHY

decoder, detector, estimator, equalizer



Why DL for PHY

• Model-free solution
-- Sometimes it is hard to model channel

• May improve BER performance
-- DL works when heuristic factors exist

• Potential for on-line learning
-- Provide flexibility and reconfigurability

• High Parallelism, avoid serial computing
-- Successive cancellation for polar decoder

• Hardware-friendly computation
-- Matrix Multiplication, no matrix inversion



Risks

• Currently non-ML approach is good enough
-- PHY is a field with solid math. Foundation
-- Very good codes (LDPC, polar) exist

• Overhead of using neural network?
-- Unlike networking, PHY is extremely 

sensitive to latency, power, area…



Challenge of Deploying DNN

Computation
intensive

Resnet-152
from Microsoft

11.3G MAC

Storage
intensive

393M Parameters
BERT from Google



Our Viewpoint of DL for PHY

• Algorithm-hardware co-design
-- Compressing neural network (NN) model
-- Hardware-aware DL for PHY

• Utilizing our prior experience in DL and PHY
-- Pioneering work on polar decoder

(ICC’12, ICASSP’13, TCAS-I’14, TSP’14…)
-- Recent work on both DL algo. and HW

(ICML’17, MICRO’17/18, AAAI’18/19, ISCA’19)



Two Paths of DL for PHY

• DL-aided solution
-- Reformulate existing approach to NN
-- Underlying algorithm is still non-NN
-- Popular in channel coding
-- Module-level

• DL-enabled solution
-- End-to-end, may not use domain info.
-- Inter-module level (e.g. NN for joint 

detector/decoder)



DL for Channel Decoder

• Current belief-propagation (BP) decoder can 
be viewed as a folded NN
-- Applicable to any linear codes (LDPC, BCH..)

N. Agrawal, M.S. Thesis 2017



ResLLR-Net: Latency-aware NN-
aided Decoder
• Inspired by the idea of residual block

-- Unrolled NN-aided decoder can be deep
-- Vanishing gradient problem exist
-- Residual arch. can mitigate

Feifei Li, Stanford CS231n



Performance of ResLLR-Net



DetNet: NN-enabled MIMO Detector

• MIMO detector

• DetNet

N. Samuel, Arxiv 2018



Compress NN Models using Circulant 
Matrix
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Performance Simulation
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Summary

• DL for PHY is very emerging
• Interesting observation, potential huge 

impact 
-- If deployed, reshape landscape of PHY, 

especially modem chip design
• Overhead is a challenging problem
• Potential directions:

-- Domain knowledge-based NN design
-- Domain knowledge-based compression
-- Cross-module NN design
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