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Deep Learning (DL)

-------- Popular Al technique

' -------- Essentially neural network
"""" “Deep” & “Wide” (DNN)
- Powerful capability

Al: Artificial Intelligence
DNN: Deep Neural Network



Deep Learning - Everywhere
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Deep Learning for Comm./Network

* Very active research on DL for networking
-- Motivation: Big data, hard to model

 Early stage of DL for PHY in wireless comm.
-- Machine learning (ML) is not new for PHY
-- Existing work on DL for PHY
decoder, detector, estimator, equalizer



Why DL for PHY

Model-free solution

-- Sometimes it is hard to model channel
May improve BER performance

-- DL works when heuristic factors exist
Potential for on-line learning

-- Provide flexibility and reconfigurability
High Parallelism, avoid serial computing

-- Successive cancellation for polar decoder

-- Matrix Multiplication, no matrix inversion



Risks

 Currently non-ML approach is good enough
-- PHY is a field with solid math. Foundation
-- Very good codes (LDPC, polar) exist

* Overhead of using neural network?
-- Unlike networking, PHY is extremely
sensitive to latency, power, area...



Challenge of Deploying DNN

Storage
intensive

€ Tronstens (ralow )
A new era of NLP has just begun a few days
ago: large pretraining models (Transformer 24
layers, 1024 dim, 16 heads) + massive
compute is all you need. BERT from
@GoogleAl: SOTA results on everything

arxiv.org/abs/1810.04805. Results on SQUAD
are just mind-blowing. Fun time ahead!

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin  Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
jacobdevlin,mingweichang, kentonl, kristout}@google.com
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Our Viewpoint of DL for PHY

* Algorithm-hardware co-design
-- Compressing neural network (NN) model

-- Hardware-aware DL for PHY

* Utilizing our prior experience in DL and PHY
-- Pioneering work on polar decoder
(ICC’'12, ICASSP’13, TCAS-I'14, TSP’14...)
-- Recent work on both DL algo. and HW
(ICML’17, MICRO’17/18, AAAI'18/19, ISCA’19)



Two Paths of DL for PHY

* DL-aided solution
-- Reformulate existing approach to NN
-- Underlying algorithm is still non-NN
-- Popular in channel coding
-- Module-level

 DL-enabled solution
-- End-to-end, may not use domain info.
-- Inter-module level (e.g. NN for joint
detector/decoder)



DL for Channel Decoder

e Current belief-propagation (BP) decoder can

be viewed as a folded NN
-- Applicable to any linear codes (LDPC, BCH..)
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N. Agrawal, M.S. Thesis 2017



ResLLR-Net: Latency-aware NN-
aided Decoder

Inspired by the idea of residual block

-- Unrolled NN-aided decoder can be deep
-- Vanishing gradient problem exist

-- Residual arch. can mitigate

Irdu

F(x) + x

i _Iﬂ‘ , identity

Residual block Feifei Li, Stanford CS231n



Performance of ResLLR-Net

1o Decoding performance of LDPC(96,48) code
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DetNet: NN-enabled MIMO Detector

e MIMO detector

* DetNet

Learned
Variables

- Multiplication

- Addition
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- One-Hot Function

- Concatenation

- Relu Activation

N. Samuel, Arxiv 2018



Compress NN Models using Circulant
Matrix
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Performance Simulation

Detection performance of MIMO(20,30) QPSK
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Summary

DL for PHY is very emerging
* Interesting observation, potential huge
iImpact
-- If deployed, reshape landscape of PHY,
especially modem chip design
* Overhead is a challenging problem
* Potential directions:
-- Domain knowledge-based NN design
-- Domain knowledge-based compression
-- Cross-module NN design
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