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Machine learning and optimization

Mathematically, machine learning is stochastic optimization: y

w* =argminE, | f(w, 2)]

 SVM (supervised learning)
z = (z,y) and f = max(0,1 — y(w”z + b)) + Al|w|3
* K-means clustering (unsupervised learning)

z=xand f = f: > d(x, ps)

1=1x€S;

Challenge: Distribution of data ‘z’ is unknown

Empirical Risk Minimization (ERM)

* Usetrainingdata Z = {z,}2_,

* Minimize the empirical risk:

N
Wy = argmin + > f(w, zy)
w n=1

* Mainresult: E,[f(wn, 2)] = E,[f(w*, 2)] (Vapnik’92) RUTGERS




What is decentralized machine learning?
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Training data is geographically distributed across an interconnected
set of devices, nodes, servers, data centers, etc.
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But ... the world is a dangerous place for decentralized systems
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How to train decentralized machine learning models in the
presence of malicious actors lurking within the network?
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Byzantine failure: The right model for malicious actors

A node is said to have Byzantine failure if it arbitrarily deviates from its intended

behavior within the network
. Omission Timing

e Start acting normal under scrutiny
e and so much more ...

But ... traditional decentralized optimization methods fail under Byzantine failures!

What can a Byzantine node do?

e Send out “bogus” data

e Collude with other Byzantine nodes

 Animportant (paraphrased) lesson from Su-Vaidya’15: Distributed empirical risk cannot
exactly be minimized in the presence of even a single Byzantine node

MNIST 9.8%
CIFAR-10 SVM D-ADMM 100 10 10%
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Byzantine-resilient decentralized machine learning

Network model
* Adirected graph G comprises M nodes, out of which a maximum of b can be Byzantine

* Each node has access to a local training set of cardinality N (total # of samples = NM)

Basic setup
* Nodes cannot share raw data among themselves
* Node j needs to learn a local model w;

* Set of “good” nodes in the network is J’

* Neighborhood of njc\)]dej in the network is A/
. _ 1
gi(w, Z;) = ¥ Zlf(wazjn)
n—

Goal: Develop a decentralized optimization method that ensures

Functioning node

Byzantine node

* Closenessto w* = argminkE,|f(w, z)]
w

* “Consensus” among nodes
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Algorithmic ingredient #1: Scalar-valued Byzantine-resilient

decentralized optimization (Su-Vaidya’15)

Classic Distributed Gradient Descent (DGD) iteration (Nedic-Ozdaglar’09)

w§-+1 = D aijw; — p'Vug; (wﬁ-,Zj)
'LEN Uy

Su-Vaidya’15 robustifies DGD in the scalar case by using a “screening” idea similar
to that of “trimmed mean” in robust statistics

Screening for Byzantine resilience O\OO /
1. Sort the received (scalar) iterates at node j "ol . ]
2. Eliminate the top and the bottom b iterates v 7

0.3

3. Take a mean of the rest of the iterates

0.2F

t+1 1 t — t > t N eal mean -
’UJJ |N 2b_|_17, 10 v’ng <wjj ZJ) ol —E:foll-r::r;?nigng |

-3 3

Convex combination e

Main result:

Vi€ J wt 5 Wys = arg min > Cagyi(w, Z5) / ?N
¢ w Ger > RUTGERS




Algorithmic ingredient #2: Coordinate descent

A P-dimensional optimization problem can be solved by solving P scalar-valued
subproblems, with convergence guarantees under various cases (Wright’15)

But ... we cannot solve the scalar-valued subproblems exactly in
the presence of Byzantine nodes

r iterations of coordinate descent loop RUTGERS




Byzantine-resilient distributed coordinate descent (ByRDiE)

1. Start with the coordinate descent loop

2. Ineach iteration r of CD, solve for the k-th subproblem using Byzantine-
resilient scalar-valued DGD

T iterations of Byzantine-resilient scalar-valued DGD

Jwt(k) = Wais = argmin > aj(r, k)g;(w, Z;
w j1eJ’

Does ByRDiE converge to something useful?
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Convergence guarantee of ByRDIE

Reduced graph
* Asubgraph of a graph is called a reduced graph if it is generated by:
1. Removing all Byzantine nodes along with their incoming and outgoing edges

2. Additionally, removing up to b incoming edges from each non-Byzantine node

Source component

* A source component of a graph is a collection of nodes in which each node in the
collection has a directed path to every other node in the graph

Theorem (Convergence of ByRDiE) [Yang-Bajwa’18]

Suppose the candidate models w belong to a closed, compact set and the function f(w, z)
is strictly convex and Lipschitz continuous. Then, as long as all reduced graphs generated
from G contain a source component of size at least (b + 1) and the training data are 1D,
ByRDIE guarantees with high probability that

Vi € J B[ f(w;, 2)] = E.[f(w”, 2)].
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Numerical results

Accu racy on MNISTSM = Consensus performance on DGD under failure
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Binary classification on MNIST dataset with linear classifier
e Strictly convex loss function, all assumptions fully satisfied
 DGD fails in the presence of Byzantine failures

* ByRDiE has better accuracy than training with only local data

* Trade-off between performance and robustness
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Conclusion

* Technologies like 10T require decentralized machine learning
* Malicious actors cannot be ignored in decentralized machine learning

Byzantine-resilient decentralized learning

e Guarantees training of machine learning models from
distributed data in the presence of Byzantine failures

Open problems

* Byzantine-resilient dual / second-order methods

* Non-smooth convex objective functions

* Nonconvex objective functions
. Omission Timing
* New screening methods

Preprints at http://www.inspirelab.us _
Task responses do not meet time frame
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Experimental setup

Network model
* Erd&s—Rényi graph with 800 nodes and parameter p = 0.5, b = 20

e Each Byzantine node broadcasts a random scalar in each iteration

MNIST8M dataset

* Binary SVM on the most inseparable case of ‘5" and ‘8’

* Training data: 250 images of each digit at each node

e Test data: 40,000 images

Performance metrics
* Learning: Average accuracy on the test set

* Consensus: 2-norm of pairwise differences

Methods
* Train an SVM at each node using ByRDiE / DGD
e Train an SVM at each node using only local data

* Centralized SVM on all 200,000 training samples (baseline) KUTGERS




Byzantine-resilient distributed gradient descent (BRIDGE)

Gradient descent
e Can be applied to nonconvex loss functions
* No need for dimension synchronization

e Cannot define “large” and “small” for vectors

BRIDGE
* Use dimension-wise trimmed mean as screening

* Update (simultaneously at dimension k):

[w§+1]k = |N,,-—125+1| > [wilk — P [Vwgy(wh, Z5)]k
i€ENF (t,k)

Screening

Screening .I +

Screening .I

Screening .
g;(w
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Convergence guarantee of BRIDGE

Challenge in analysis . .
 The vectors “break” after screening . .

 Can nolonger be expressed as a
convex combination of neighbors

Theorem (Convergence of BRIDGE) [Yang-Bajwa’19]

Suppose the candidate models w belong to a closed, compact set and the function f(w, z)
is strongly convex with Lipschitz gradient. Then, as long as all reduced graphs generated
from G contain a source component of size at least (b + 1) and the training data are 1D,
ByRDIE guarantees with high probability that

*

: N,
VieJ, w, 0w
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Numerical results
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