Project Report

From ZHIBIN WU

1. Design Specifications(For whole ALU):

Arithmetic Instructions Supported:

	Mnemonic
	Instruction

	ADD.fmt
	Floating Point Add

	SUB.fmt
	Floating Point Subtract

	MUL.fmt
	Floating Point Multiply

	DIV.fmt
	Floating Point Divide

	ADD
	Integer ADD

	SUB
	Integer SUB

	MUL
	Integer MUL

	DIV
	Integer DIV

	SHL
	Logical SHIFT

	SHA
	Arithmetic SHIFT

2. Shifter and Shift operation

A 32-bit barrel-shifter design is used to perform the both logical and arithmetic SHIFT operation. And this shifter could also be used for other arithmetic component to facilitate the operations.

3. Divider and divide operation
The Divide operation is adopting a Radix-2 algorithm. This type of divide algorithm (named as “Radix-N”) is widely used for ALU design, such as the one used in the famous Pentium® Processor. Another popular algorithm is to perform divide by “multiply-the-reciprocal” method. This is fast but it requires a large size of look-up table to store those “reciprocal” values. Thus, for our 32-bit GPS processor’s purpose, I choose the formal scheme.

Although the Divide algorithm is not very fast, it does not severely affect our GPS processor’s ability because “divide” operation is not very frequently used , comparing with “add” and “multiply” operations.
Both the integer divide and floating point divider is using the same Radix-2 algorithm. Thus, the integer divide operation uses a 32-bit Radix-2 divider. While the floating point divider uses only a 24-bit Radix-2 divider. Both the top level diagram of them are shown below:

[image: image1]
Figure 1. Top level diagram of floating point divider

[image: image2]
Figure. 2. Top level diagram of integer divider

The basic idea of Radix-2 algorithm is to use a recursive (iterative) algorithm to subtract the divisor from the dividend iteratively to get the final result (quotient). It is basically composed of two types: restoring method or not-restoring method. The radix-2 algorithm I used is a fast, complex non-restoring algorithm. It is a little complicated by the final quotient outputs are triple-valued: -1, 0, 1. Thus, an additional procedure to “correct” and recover the quotient digits is required. Combine this step with the “serial-to-parallel” converter, which is used to turn the iterative results clock by clock to a final output, is the “on-the-fly converter”. This converter is using two registers to store and shift the partial results from the iterative “add/sub” operation simultaneously, according to a conversion rule. It is similar to the “carry-select” adding algorithm.
The overall diagram of the Radix-2 adder is given below:

[image: image3]
Figure 3. The diagram for a Radix-2 divider
4. Layout Area
Based on the layout currently done and further analysis and estimation, the probable layout area to be used is listed as below:

· Floating point divider

· 0.225 mm × 0.225 mm

· Integer Divider

· 0.27 mm × 0.27 mm

· 32 bit barrel shifter

· 0.27 mm × 0.27 mm

For reference, the basic cell layout is also listed as below:

· A one-bit full adder: 200λ * 100λ
· 1-bit Half adder :100 λ * 100 λ
· Basic area for register: 200 λ * 50 λ
· Basic area for 2-to-1 mutiplexer: 50 λ * 50 λ
5. Power Consumption:

Actually, we have used two methods to estimate the power:

First method is to use some “practical data” extracted from chip specifications online. In this way, the basic assumption is:

For 8-bit carry-ripple adder: The power consumption is 0.9968mw .

Thus, we having following estimation about the full carry-ripple adder:

24 bit full adder: 2.9904mW

32 bit full adder: 3.9872mW

Based on the results above, the power consumption for both the floating point divider and integer divider is suggested to consume power:
Floating point divider: <10mW

Integer divider: <8mW

(We assume a 20% duty here for the divider which uses multiple adders for different purposes.)

The other way to get the parameters about the power consumption is to calculation based on the parameters of the design;

As the system clock for the ALU will work as 10MHz,

The average load capacitance for the full-adder is 0.5fF

The integer divider has about 6000 transistors.

The floating point divider has about 4000 transistors.

The power of CMOS VLSI technology is mainly made up of the following power budgets:

a). leakage current

b) short circuit current
c) switching current

Using equations on the textbook, the power consumption is calculated as:
Floating point divider: 15.2 uW
Integer divider : 22.8 uW

The results from different methods provide totally different results. The latter one is only about 1/1000 of the former one. What exactly is the actual power dissipation depends on practical measurements of the final chip.

6. Timing Analysis
Generally speaking, the worst propagation delay in the ALU is the carry-ripple delay. Thus, we obtain the results of an 8-bit carry-ripple adder has a total delay of 3.80ns. Based on this data, we get the final result for both 24-bit adder and 32-bit adder as:

 32-bit carry ripple: 15.2ns
 24-bit carry ripple: 11.4ns
As the clock of the ALU is working on 10MHz, which means the basic clock cycle is 100ns. Thus, we can conclude that the basic 32-bit “add” operation could be finished with one clock cycle.

However, it is not the actual delay for the operation time of “DIV” instructions because an iterative algorithm is used for calculate the quotients. Thus, it will take several clock cycles to get things done. Compare to the clock period, the propagation delay in the CMOS circuit, such as rising and falling time, can be neglected. Also, when we perform the operation of divide floating point operands, the exponent part of the operands will be singled out to perform a “subtract” operation. So, the final result of exponent part is well much earlier done than the “fraction” part. Thus, the real time delay is determined by the Radix-2 divide algorithm. So, the current timing analysis results are:
· For floating point divider: delay is 2400ns

· For integer divider: delay is 3300ns
7 A conclusion for the divider design

With above analysis of the performance of the divider, we can see the design is actually a trade off: speed .vs. power and area. Slow operation, however, with less area and low power.
 8 Testing Strategy
For ALU operations, it is not bad to choose random pattern generation to test the faults of the chip. Thus, ATPG (Automatic Test Pattern Generation) is used for testing this part of ALU. The flowchart for the ATPG is depicted in the following figure:

[image: image4]

Some faults in some auxiliary circuits, such as “exception” detection for overflow, underflow and other flags, may not be easily detected in random pattern generation. This is to be covered by some specific patterns designed specially for those faults.
9 Criticism of CAD Tools
Cadence software is major tool used in this Project. However, the software is terribly designed. It is not user-friendly. If the software developer has even a little considerate about the characteristics of human-machine interface, it will be a blessing for all the users. For instance, the pop-up menu is normally badly arranged, you has a great chance to mis-mouse the “CANCEL” button when you really want to select a checkbox. Also, the pop-up menu does not really pop-up when you need it, thereby making the working space a mess.
Comparing to the cadence software, Synopsis is better, but still far from any favorable comments.

10. Directory to save my design for the project

All the GPS Project related files are in “gpspj” library with the “zbwu” account.

0

1

1

 2

 m

D[0:22]

D[23:30]

D[31]

mux

 n

MSB

mux

SL n bit

24-bit divider

SR 1 bit

SR 2 bit

Add m

Add 127

B[0:22]

A[0:22]

B[31]

A[31]

XOR

B[23:30]

A[23:30]

8bit SUB

n

D[0:31]

m

Shift R m

32-bit

Radix-2

Divider

Sub

Shift Left n

Shift left n

B[0:31]

A[0:31]

Leading Zero Detector

Leading Zero Detector

n

q(j+1)={q+, q-}

Quotient

q-

q+

Quotient

detect

q+

one’s complement

INIT

Dividend

Cin

CLK

0

On-the-fly converter

24bit Register

Divisor

2-Mux ×24

4-Mux ×24

24-bit adder

Reset prob.

No

Adequate?

stop

Set p(0)=p(1)=1/2

start

Test faults

Generate a

random pattern

Check coverage

