Motion-Triggered Surveillance Camera using MF-IoT

Jiachen Chen, Sugang Li, Yanyong Zhang, and Dipankar Raychaudhuri

WINLAB, Rutgers University, NJ, USA. Email: {jiachen, sugangli, yyzhang, ray}@winlab.rutgers.edu

Motivation

Rapid growth in IoT deployment posed unprecedented challenges to the underlying network

- Global reachability:
 - Allow devices to be identified and located from anywhere
- Mobility:
 - Support seamless connection when devices are mobile
- Resource heterogeneity:
 - Support IoT devices with different resource constraints
- Diverse communication patterns:
 - Provide efficient support for query/response, publish/subscribe (pub/sub), multicast, anycast, etc.
- Service-oriented naming & communication:
 - Allow users/applications to address “services” rather than the location of the devices
 - Example: Devices provide services that can be consumed by applications or other services

MobilityFirst-IoT

MF-IoT [2] extends MobilityFirst to low-end devices

- GUID-based communication in the application layer:
 - Every entity, including (services on) IoT devices, use GUID to address each other
 - Use Locally Unique Identifiers (LUIDs) to compress packet headers (10 bytes)
 - Transparent translation between LUIDs & GUIDs in the network layer
 - GUID-LUID mapping managed at gateways
 - Efficient support for diverse communication patterns (unicast, multicast, anycast)

- Highly efficient communication in IoT domains:
 - IoT devices form domains which connect to the core network via gateways
 - Applications/services “call” services via their GUIDs
 - Support device mobility & ID

Service-Oriented Communication

MF-IoT treats “services” as first-class citizens

- Services are seen as network entities:
 - Each service has a GUID
 - Many-to-many relationship between services and devices
- Services addressed by their GUIDs:
 - Applications/services “call” services via their GUIDs
 - Allow multiple instances of a service in the network
- Benefits:
 - No need to reconfigure other services when the device that provides a service changes (e.g., service migration)
 - Intrinsic multicast/anycast support
 - Service Chaining: data go through multiple services before consumed
 - Example: Alice does not have to reconfigure her smartphone when she forgets to wear her Fitbit and uses her smartphone as the step counter

MobilityFirst

MobilityFirst [1] is a future Internet architecture that supports device mobility & ID-based communication

- Globally Unique Identifier (GUID):
 - Public-key-based self-certifying flat names for every entity in the network (e.g., device, service, content, etc.)
- Global Name Resolution Service (GNRS):
 - Stores the mapping between GUIDs and network addresses (NAs)
 - Logically-centralized network layer function
- Mobility support:
 - Routers re-perform GNRS lookup on device move (late-binding)
 - Storage-aware delay tolerant routing based on NAs (GSTAR)

Service-Oriented Comm. in Motion-Triggered Surveillance Camera

References: