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Abstract

The proliferation of wireless networking technology in a wide variety of devices allows for networks
to exist in challenged environments where connectivity is intermittent. Networks capable of de-
livering data under such conditions are called delay or disruption tolerant networks (DTNs). A
promenent example of a DTN is a disaster recovery network, in which emergency responders must
be able to communicate even in complete infrastructure failure. Current work in routing protocols
for these networks leverages epidemic-style algorithms that trade off injecting many copies of mes-
sages into the network for increased probability of message delivery. However, such techniques can
cause a large amount of contention in the network, increase overall delays, and drain each mobile
node’s limited battery supply. We present a new DTN routing algorithm, called Encounter-Based
Routing (EBR), which maximizes delivery ratios while minimizing overhead and delay. Further-
more, we present a means of securing EBR against black hole denial-of-service attacks. To prop-
erly evaluate EBR, we develop an event-driven, role-based mobility model for disaster recovery
networks that highlights several high-level characteristics of this environment. We then evaluate
EBR against many of the best current DTN protocols showing substantial improvements in com-
mon metrics as well as three composite metrics that more effectively describe the quality of DTN

routing algorithms.
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Chapter 1

Introduction

Wireless networks have permeated society, enabling communication in many new environments.
However, current solutions require connected networks. Even solutions aimed to support node mo-
bility can not support communication if no end-to-end path exists at the time of the requested
communication. In response, the research community has proposed new protocols that enable
communication in such networks. These delay or disruption tolerant networks (DTNs) transport
application data by creating a “store and forward” network where no infrastructure exists (e.g.,
bus networks [8], wildlife tracking [21], Pocket Switched Networks [10]) or the infrastructure has
been destroyed (e.g., disaster recovery networks [24]). Although end-to-end connectivity may not
be available between two nodes that wish to communicate, DTN routing protocols take advantage
of temporal paths created in the network as nodes encounter their neighbors and exchange mes-
sages they have been asked to forward.

The goal of DTN communications is to deliver data in an effective and efficient manner for the
applications using the network. Since DTNs are characterized by connectivity challenges, rout-
ing this data is often the most difficult challenge. Standard ad hoc routing techniques, such as
AODV [26] and DSR [20] fail because they attempt to find a complete end-to-end path before
transmitting any data. Instead, DTN routing protocols utilize a store-and-forward technique that
tries to progress messages closer to the destination over time.

DTNs enable communication in a large class of environments. One environment where DTNs
can be effective is a community-based bus network, where buses act as transport devices and can
exchange data only when in close contact. Bus networks are characterized by a highly partitioned
environment as well as somewhat predictable movement patterns, based on predetermined bus
routes. Another environment where DTNs are useful is disaster recovery networks. This type of
DTN is formed when communication infrastructure is suddenly unavailable, and communication
must rely on wireless ad hoc networks that form mainly as a result of people and vehicles mov-

ing. The goal of these networks is to support communication for organizations like police and fire



departments, as well as other first responders and civilians in the area. Given the characteristics
of this environment, DTNs are well suited to handle communication. The challenge in creating
a routing protocol for disaster recovery networks, and DTNs in general, is how to utilize specific
characteristics of disaster networks, including mobility patterns exhibited by different roles, to
make intelligent forwarding decisions.

The research presented in this thesis focuses on enabling communication in challenged envi-
ronments. We first present our routing protocol, Encounter-based Routing (EBR), for DTNs that
exploits the heterogeneity expected in DTNs, especially disaster recovery networks. Although the
environments where DTNs are expected to be most effective are quite complex, little has been
done to model these environments. Therefore, we next present our event and role based mobil-
ity model that captures the high-level mobility characteristics of disaster environments. Finally,
we evaluate EBR using this new mobility model as well as other popular models. By exploiting a
very simple piece of knowledge about mobility characteristics, EBR outperforms other DTN proto-

cols in many environments.

1.1 DTN Routing Challenges

The challenge to providing effective communication in DTN lies in finding solutions that provide
a good delivery ratio despite the disconnected nature of these networks. Since there are no guar-
antees that a route will ever be available between two nodes, many current DTN routing proto-
cols apply epidemic-style techniques [35], leveraging the fact that an increased number of copies
of a particular message in the network should improve the probability that the message will reach
its intended destination. However, such techniques come at a high price in terms of network re-
sources, which can have adverse effects. First, flooding messages into the network can rapidly de-
plete buffer space on resource-limited mobile devices (e.g., mobile phones). If the network or of-
fered load is large enough, even nodes with relatively large disk space can suffer from space con-
straints. While storage limitations can limit successful delivery in a network, they can also be
detrimental to applications wishing to store local data. Second, flooding messages into the net-
work can rapidly deplete the available bandwidth, which in turn leads to heavy network conges-
tion. Furthermore, a large amount of message passing has the potential to further increase end-
to-end delay [8]. Finally, protocols that flood the network can quickly deplete the energy of the

mobile devices. The goal for DTNs should be to provide high data delivery in a timely fashion,



while not overwhelming the resources in the network.

A number of routing protocols have been proposed to enable data delivery in such challeng-
ing environments [3, 8, 14, 23, 27, 33, 34, 36, 38, 13, 12]. However, many of these protocols trade
overhead and computational complexity for increased successful delivery. This overhead expresses
itself as more traffic in the network creating more contention in areas of high node density and in-
creased energy consumption for nodes exchanging messages. Furthermore, many DTN protocols
make routing and forwarding decisions based on advertised, local contact information, allowing for
denial-of-service attacks over the already intermittently connected network. All of these effects can
decrease overall network performance.

One method to mitigate this overhead is to identify key properties in the network that allow
for more intelligent forwarding and message replication decisions. The main contribution of our
research capitalizes on these network properties to design a DTN routing protocol that uses local
observations about a node’s environment. Our protocol, Encounter-Based Routing (EBR), uses
an encounter-based metric for optimization of message passing that maximizes message delivery
ratio while minimizing overhead both in terms of extra traffic injected into the network and con-
trol overhead, as well as minimizing latency as a second order metric. The intuition behind EBR
is that, in environments targeted by DTNs, such as disaster scenarios and certain vehicular net-
works, different classes of nodes naturally tend to have more node encounters than others. In ad-
dition to the routing component, we present a security extension to our protocol, found at the end
of this thesis, that protects against denial-of-service attacks aimed at eliminating copies of mes-
sages in the system.

To fully evaluate EBR, we propose the use of three composite metrics, which clearly illustrate
the interplay between fundamental metrics like message delivery ratio, goodput, and end-to-end
delay. We then use these metrics to evaluate EBR and compare it to the major protocols devel-
oped for DTNs, showing improved performance and overhead. EBR achieves up to a 40% im-
provement in message delivery over the current state-of-the-art, as well as achieving up to a 145%

increase in goodput.

1.2 Disaster Modeling Challenges

One major issue for developing DTN routing protocols is the lack of a realistic, parameterizable

mobility model in which to evaluate the protocols over. To this end, we present a disaster mobility



model that characterizes the high-level movement properties of different roles in a disaster sce-
nario. Multiple parties, or organizations, make up the communicating nodes in a disaster recovery
network. These organizations include police officers, ambulance, firefighters and other first respon-
ders, and civilians. The behavior of most of these organizations is driven by the need to respond
to events and participate in those events based on the particular role of the organization. Since
this type of behavior is very specific to emergency and disaster response scenarios, understand-
ing communication patterns in such networks is critical to understanding how to improve the cur-
rent state of emergency response. However, current mobility models for wireless networks do not
capture the complexity of either the behavior of the different components of such networks or the
specifics of the expected communication patterns. Realistic mobility and communication models
can enable more effective evaluation via simulation and eventually lead to more effective solutions.

One of the biggest challenges faced by communication in disaster recovery networks comes
from the high expectation of network partitions and dynamic object behavior. The high potential
for object failure further complicates matters. Intuition says that, since objects react differently to
different events, the variance in density of the communication graph will change and cause strain
on current routing protocols. Due to this unique behavior, disaster recovery networks present chal-
lenging environments.

One of the fundamental aspects of simulating disaster recovery networks is realistically mod-
eling the movement patterns of the mobile objects. Modeling mobility enables testing the effec-
tiveness of current routing protocols as well as provides insight into how routing protocols can be
improved. Disaster environments present unique challenges in that environmental events and roles
directly affect a node’s movement patterns. Intuitively, events act as stimuli for mobile nodes in
the network, causing them to react in ways according to the predefined roles they take on. Many
roles in disaster networks must react to multiple events by fleeing or approaching in a realistic
fashion.

Many ad hoc network mobility models have been developed and analyzed [9, 4, 11, 19, 22, 25].
Models based on random movement are particularly popular and heavily studied [5, 6, 28, 16].
These models, while adequate to study environments for which they were designed, do not allow
for groups of objects to react differently to environmental events. Therefore, a higher-level, more
general mobility model is needed to incorporate the different roles objects play in disaster scenar-
ios.

In this thesis, we present an event- & role-based mobility paradigm that effectively character-



izes the movement patterns of objects in a disaster scenario. Different sets of these patterns are
embedded into different object roles. By attaching actions to roles and not directly to objects,
movement patterns are organized and objects can quickly shift from one pattern to another by
assuming different roles. To the best of our knowledge, this is the first disaster mobility paradigm
that is reactive, in a role-based fashion, to environmental events and their associated parameters.
The main contribution of this part of the thesis is the classification of a generic event- & role-
based mobility paradigm that completely defines movement patterns given a series of environmen-
tal events for a set of characteristic roles. Additionally, we present a low-level physics-based grav-
itational mobility model that “plugs in” to our event-driven, role-based paradigm allowing objects
to react to the presence of numerous disaster events based on the particular role of the node. This
allows objects to flee from or approach multiple, unrelated events. To evaluate the effect of our
comprehensive model on communication patterns in disaster recovery networks, we discuss a new
set of relevant metrics that help characterize the changes in topology as disaster events unfold. Fi-
nally, we have developed a set of tools to realistically construct a mobility scenario and trace files

of our disaster mobility model for the ns2 network simulator [1].

1.3 Map

The remainder of this thesis is organized as follows. Section 2 motivates EBR and presents a tax-
onomy of current DTN routing protocols. Section 3 presents encounter-based routing (EBR). Sec-
tion 4 presents our event-driven, role-based mobility model for disaster recovery networks, and
illustrates key property differences between our model and other mobility models. Section 5 dis-
plays an evaluation of EBR over multiple mobility models, including the disaster mobility model.

Section 6 presents a security extension to EBR. Finally, Section 7 concludes.



Chapter 2

DTN Routing Protocol Taxonomy

It is challenging to route data through DTNs due to the inherent lack of end-to-end paths in the
network. Although ad hoc routing protocols [20, 26] were designed to deal with the infrastructure-
less nature of many wireless networks, they only operate correctly when there exists a path from
the source to the destination at the time the messages need to be sent. These protocols fail in
DTN, since instantaneous end-to-end paths are not typically available. Instead of waiting for
such paths to become available, current DTN routing protocols aggressively store and forward
messages in hopes that the nodes will eventually encounter the messages’ destinations. Such DTN
routing protocols exploit the mobility of nodes [15], which leads to nodes encountering other nodes
and so creating end-to-end paths that only exist in discrete segments of the time domain.

DTN routing protocols can be classified into two high-level approaches [3]: forwarding-based
protocols and replication-based protocols. Forwarding-based protocols only keep one copy of a
message in the network and attempt to forward that copy toward the destination at each encounter.
In contrast, replication-based protocols insert multiple copies, or replicas, of a message into the
network to increase the probability of message delivery. Essentially, replication-based protocols
leverage a trade-off between resource usage (e.g., node memory and bandwidth) and probabil-
ity of message delivery. Although all replication-based protocols take advantage of this trade-off,
these protocols can be further separated into two classes based on the number of replicas created:
quota-based and flooding-based.

Flooding-based protocols attempt to send a replica of each message to as many nodes as pos-
sible, whereas quota-based protocols intentionally limit the number of replicas. Assume that m;
indicates the maximum number of unique messages (excluding replicas) that have been created
prior to some time ¢. Then, an upper bound on the total number of messages (including replicas)
in the network at time ¢ is m; - L, where L is the maximum number of replicas for any given mes-
sage. L can be a probabilistic or discrete variable. Given these definitions, a quota-based routing

protocol can be defined as follows:



Classification Previous Work
Forwarding Jain et al. [18], DSR [20],
AODV [26]
Flooding-based Replication | Epidemic, Prophet [23],
MaxProp [8], RAPID [3]
Quota-based Replication Spray and Wait [33],
Spray and Focus [34]

Table 2.1: Taxonomy of DTN routing protocols

A replication-based routing protocol is quota-based if and only if L is independent of the
number of nodes in the network (assuming the characteristic of the network, such as storage,

bandwidth, and mobility, allow for every node to have a replica of every message).

Conversely, any replication-based protocol where L is dependent on the number of nodes in the
network is defined to be flooding-based.

These definitions allow us to classify routing protocols into three groups (see Table 2.1). Tra-
ditional Internet routing protocols (e.g., IP [31]) and ad hoc routing protocols (e.g., AODV [26],
DSR [20]) are forwarding-based, since nodes along a route forward the message toward the desti-
nation without storing the message or creating extra replicas of the message. Forwarding-based
approaches for DTNs have been proposed [17, 32], but are limited in their effectiveness due the
instability or even non-existence of routes from any particular node to the destination. When a
single copy of a message exists in the network, a single route break is sufficient to cause delivery
to fail. One forwarding-based approach, proposed by Jain et al. [18], utilizes future knowledge
about node mobility and specific node encounters to improve the protocol (e.g., knowledge that a
node will encounter a bus at noon that will have access to the Internet). However, the availability
of such future knowledge constitutes a special class of DTNs and such approaches will not work
in general environments. Given the unpredictability of many DTN environments, it is important
avoid requiring such information for successful routing.

Epidemic routing is an obvious example of a flooding-based protocol, since the number of repli-
cas in the network is directly dependent on the number of nodes in the network. One of the major
flooding-based protocols for DTNs is MaxProp [8]. At its core, a MaxProp router prioritizes mes-
sage replicas in decreasing order of estimated likelihood of delivery. Messages with higher priority
are transmitted first, and messages with lower priority are dropped first. Furthermore, many use-
ful, complimentary mechanisms, such as message acknowledgments, are incorporated. MaxProp

is flooding-based, since, if resources and mobility allow, it is possible for every node in the net-



work to have a replica of the same message. Other examples of flooding-based DTN protocols in-
clude Prophet [23], RAPID [3] and PREP [27]. Prophet attempts to use information about the
likelihood of nodes encountering particular destinations to optimize the exchange of messages.
RAPID orders messages through the use of utility functions, with the goal of intentionally max-
imizing specific metrics (e.g., delay). PREP, a variant of Epidemic Routing, assigns priority to
messages based on costs to destination, source and expiration time, and uses this priority to de-
termine which messages should be deleted or transmitted when buffer or bandwidth is constrained
respectively.

Recent work by Erramilli et. al recognizes similar problems with current DTN routing pro-
tocols and proposes techniques to utilize properties of nodes, such as contact rate, when making
forwarding decisions [13, 12]. They are concerned with choosing the best node(s) to forward mes-
sages to based on utility values. This technique, however, can result in flooding-like behavior if
many encountered nodes have high utility values. On the other hand, if many encountered nodes
have low utility value, messages may never leave the source nodes.

The main problem with flooding-based protocols is their high demand on network resources,
such as storage and bandwidth. This fact led to some work in developing quota-based protocols.
Spray and Wait [33] is a quota-based protocol with a fixed upper bound on the number of repli-
cas allowed in the network. Spray and Wait breaks routing into two phases: a spray phase, where
message replicas are disseminated, and a wait phase, where nodes with single-copy messages wait
until a direct encounter with the respective destinations. A follow-up protocol called Spray and
Focus [34] calls for a similar spray phase, followed by a focus phase, where single copies can be
forwarded to help maximize a utility function. The authors were able to show that the focus phase
allowed for smaller message delays. While both Spray and Wait and Spray and Focus succeed in
limiting some of the overhead of flooding-based protocols, their delivery ratios still suffer.

While quota-based protocols are much better stewards of network resources than their flooding-
based counterparts, one possible criticism is their inability to successfully deliver a comparable
amount of messages. In this thesis, we show that quota-based protocols are not always so hand-
icapped by developing a quota-based protocol using an encounter-based routing metric that has
extremely low routing overhead, while maintaining delivery ratios better than or comparable to
current flooding-based protocols. The next section presents the design of EBR, our quota-based

DTN routing protocol.



Chapter 3

Encounter-based Routing (EBR)

The primary goal of a DTN routing protocol is to obtain high message delivery ratio and good
latency performance, while maintaining low overhead. However, current flooding-based proto-
cols (e.g., MaxProp [8], RAPID [3]) achieve high delivery ratios at the expense of excessive net-
work resource usage, and current quota-based protocols ((e.g., Spray And Wait [33], Spray and
Focus [34]) that reduce this overhead are not able to achieve comparable delivery rates.

In response, we present Encounter-based Routing (EBR), which is a quota-based DTN routing
protocol that achieves high delivery ratios comparable to flooding-based protocols, while main-
taining low network overhead. This improvement in delivery ratio is accomplished by taking ad-
vantage of the following observed mobility property of certain networks: the future rate of node
encounters can be roughly predicted by past data. This property is useful because nodes that expe-
rience a large number of encounters are more likely to successfully pass the message along to the
final destination than those nodes who only infrequently encounter others. Many networks experi-
ence this phenomenon; examples include disaster recovery networks, where ambulances and police
tend to be more mobile and bridge more cluster gaps than civilians, and vehicular-based networks,
where certain vehicles take popular routes.

Since EBR is a quota-based routing protocol, it limits the number of replicas of any message
in the system, minimizing network resource usage. Additionally, EBR bases routing decisions on a
measure of a node’s rate of encounters, showing preference to message exchanges with nodes that
have high encounter rates. These routing decisions result in higher probability of message deliv-
ery, avoiding routes that may never result in delivery and so reducing the total number of message
exchanges.

In EBR, information about a node’s rate of encounter is a purely local metric and can be tracked
using a small number of variables. Therefore, EBR is able to maintain very low state overhead, as
compared to other protocols that can require up to O(n) routing messages exchanged during ev-

ery contact connection, and O(n?) routing state locally stored (e.g., MaxProp [8], Prophet [23]).



A further strength of EBR is that its message replication rules are simple to understand and im-
plement, as opposed to complex rules found in many protocols, minimizing the chance of bugs and
reducing computational complexity (e.g., the resources in terms of CPU cycles required to operate

the protocol).

3.1 Algorithm

Every node running the EBR protocol is responsible for maintaining their past rate of encounter
average, which is used to predict future encounter rates. When two nodes meet, the relative ratio
of their respective rates of encounter determines the appropriate fraction of message replicas the
nodes should exchange. The primary purpose of tracking the rate of encounter is to intelligently
decide how many replicas of a message a node should transfer during a contact opportunity.

To track a node’s rate of encounter, it maintains two pieces of local information: an encounter
value (EV), and a current window counter (CWC). EV represents the node’s past rate of encoun-
ters as an exponentially weighted moving average, while CWC is used to obtain information about
the number of encounters in the current time interval. EV is periodically updated to account for
the most recently CWC in which rate of encounter information was obtained. Updates to EV are
computed as follows:

EV —a-CWC+(1—a)-EV.

This exponentially weighted moving average places an emphasis proportional to « on the most
recent complete CWC. Updating CWC is straightforward: for every encounter, the CWC is incre-
mented. When the current window update interval has expired, the encounter value is updated
and the CWC is reset to zero. In our experiments, we found an « of 0.85 and update interval of
around 30 seconds allow for reasonable results. These parameter choices are further elaborated
upon in Section 5.

Since EV represents a prediction of the future rate of encounters for each node per time inter-
val, the node with the highest EV represents a higher probability of successful message delivery.
Therefore, when two nodes meet, they compare their EVs. The number of replicas of a message
transferred during a contact opportunity is proportional to the ratio of the EVs of the nodes. For

two nodes A and B, for every message M;, node A sends

.. EVB
! EVjs+ EVp
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replicas of M;, where m; is the total number of M; replicas stored at node A. For example, as-
sume node A has 4 replicas of a message M; and 8 replicas of a message M. Furthermore, as-

sume node A, with EV,4 = 5, comes in contact with node B, with EVy = 15. Node A sends

15

515 = % of the replicas of each message. Therefore, node A transmits 3 replicas of message M

and 6 replicas of message Ms.
Algorithm 1 presents the basic form of the EBR protocol, where W; represent the current win-

dow update interval parameter.

Algorithm 1 EBRRouting

if time > nextUpdate then
EV—a-CWC+(1—a)-EV
CWC +—0
nextUpdate «— time + W;
end if
if Contact C available then
for All messages M; in local buffer do
m; «— M;.numO f Replicas
Msend < [Mi - %J
Send Msena replicas of M; to node C
end for
end if

3.2 Generalizing EBR

In this section, we prove that EBR adheres to the definition of a quota-based protocol and show
the relevant bounds, both for the simple version, where L, the maximum number of replicas of a
message, is discrete, and for a more general version, allowing the use of probabilistic L values.

For discrete L values, it is easy to show that EBR is quota-based. Along with its data, every
message contains a value indicating the maximum number of replicas into which this current mes-
sage is allowed to be split. As an example, assume an application at node A creates a message
with the maximum allowable replicas set to 10. Assume node A encounters node B and, based on
the EBR protocol described in Section 3.1, wishes to transmit 8 replicas. Then, A creates a copy
of the message for node B and assigns B’s maximum allowable replicas to 8. Furthermore, A re-
sets its maximum allowable replicas to 2. Continuing this procedure in a recursive fashion main-
tains the bound set by the initial message.

However, L values are not limited to a discrete maximum number of replicas. The discrete
structure can easily be relaxed into a probabilistic structure, while maintaining meaningful (yet

probabilistic) bounds. Probabilistic L values can allow for less sensitivity to exact network condi-

11



tions. When using discrete L values, changes to the initial number of message replicas allows for a
fundamental tradeoff between MDR, goodput, and average latency (see Section 5). Using proba-
bilistic L values and increasing or decreasing variance and mean can allow applications to compro-
mise and not require exact decisions about the number of allowable replicas.

While any distribution may be used in this probabilistic model, the Gaussian distribution al-
lows for immediate, eloquent properties that help establish the bound on the number of messages
in the network. In this case, the application specifies the mean and variance of the distribution,
instead of a discrete number. Assume a node A wishes to split the message M into two replicas,
M4 and Mp. Node A must follow the following EBR message splitting rule:

If M ~ N(u,o0?), then it can only be split into Mg ~ N(ua,0%) and Mg ~ N(up,0%) such
that u = pa + pp and 02 = 0% + 0%.

For example, a message with mean 10 and variance 5 may be split into two messages, one with
mean 8 and variance 4, and one with mean 2 and variance 1. It may not, however, be split into a
message of mean 8 and variance 4, and one with mean 7 and variance 1. As a further note, EBR
maintains the ratio of mean to variance for all message splits.

This message splitting rule preserves the Gaussian distribution for the two newly created repli-

cas. This is due to a result from statistics known as Cramer’s Theorem:

o f X +Y ~ N(pa + piy, 03 + 03),
then X ~ N(uy,02) and Y ~ N(py,07).

We now demonstrate that this general version of EBR is a quota-based replication protocol,

and establish an upper bound, by proving the following theorem:

Theorem 3.2.1 Let S be a schedule of future message creations. Let t be an arbitrary future
time. Assume

My, Ms,...,M; € S are all the messages created before time t. Assume each message M; has a
Gaussian random variable (for notational ease, we refer to this directly as the message M;), with
mean p; and variance o2, that represents the mazimum number of replicas the current message is
allowed to be split into.

The upper bound on the mazximum number of message replicas in the system is:
i i
oo (S 2o
j=1  j=1

12



Proof:
Let U be the sum of all message replicas in the system. Assuming messages never split, there
will be i messages in the system, each with mean p; and variance 0. We utilize the following rule

of linearity for Gaussian distributions (the converse of Cramer’s Theorem):
o If X ~ N(pa,02) and Y ~ N(py,07), then X +Y ~ N (o + 1y, 02 + 07).

Therefore,
U= N (T3
j=1 j=1 j=1

Now assume a message, M; ~ N(j;,07) is split into Mj1 ~ N(uj1,0%) and Mz ~ N(jj2,07%)
such that p; = pj;1 + pj2 and UJQ- = J2-1 + 0?-2 (the message splitting rule of EBR). Then by the
same linearity rules, M; = Mj; + M2, leaving U unchanged. QED

One minor issue to address is that the statistical rules and theorems each assume true Gaus-
sian distributions. However, it does not make sense in our system for a message M to hold a nega-
tive value. The probability of this occurring can be made sufficiently small by forcing the applica-

tion to choose sufficiently low variances for corresponding means (which can never be below zero).
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Chapter 4

Disaster Network Mobility Model

In order to properly evaluate EBR, we present an event-driven, role-based mobility model for dis-
aster recovery networks. First, we discuss the properties of objects in disaster recovery scenarios
that affect their mobility patterns. Next, we present the details of our event- and role-based mo-
bility paradigm. Following this, we present a gravity-based low-level mobility model that can be
used with our high-level paradigm. Finally, we present a methodology used to study the properties

of our model as well as simulation results that help characterize their properties.

4.1 Modeling Object Behavior

Modeling the movement behavior of mobile objects has been heavily studied. Due to its simplicity
and effectiveness, the Random Walk [16] model is widely used to model such object behavior. In
this model, a node randomly chooses a direction in [0, 27) along with a speed, and moves accord-
ing to those choices for a set amount of time. After this time has expired, the node repeats the
process. A recent model by Jardosh et al. [19] takes polygon-shaped objects into account by using
Voronoi diagrams to build walks. While many of these models are adequate for their particular
environments, all objects generally act in the same way and, therefore, do not give the flexibility
required for modeling disaster scenarios. This is because real people and vehicles take on roles,
allowing them to react to events in a distinct fashion.

Mobility in disaster recovery scenarios is fundamentally driven by environmental events. These
events act as stimuli towards objects and directly cause them to change their movement patterns.
While some current models, including [19], could be extended to react to external stimuli, truly
capturing the complex interactions between more than one environmental event requires building
new mobility models with event-driven actions as the primitive concept. Furthermore, while all
objects react to relevant events, different classes of objects react in different ways. In other words,

object behavior changes over time and is not uniform across all nodes. Objects also must react to
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multiple events in a realistic and smooth fashion. There is currently no adequate mobility model
that takes into account these observations.

To illustrate this idea with an example, consider an apartment fire in a populated neighbor-
hood. There are, intuitively, at least three different classes of behavior that objects can assume:
(1) fleeing from the event, as is the case with civilians, (2) approaching the event with the intent
of staying, as is the case with police and firefighters, and (3) oscillating from the event to a pre-
determined location, as is the case with ambulances. These high-level behavior classes, which we
refer to as roles, help give general but clear mobility patterns, which are realistic and relatively
easy to simulate.

Roles, however, need not be limited to specific movement patterns during a disaster scenario.
It is easy to extend the concept of a role to cause an object to react differently during different
stages of an event. For example, cleanup crews may want to react to disaster events by approach-
ing them long after the event has occurred, whereas police may instead want to approach the
event immediately.

In response to the need for unique behavior modeling in disaster scenarios, we have developed
a high-level, role-based, event-driven mobility paradigm in which different roles take on different
mobility patterns in reaction to specific events. Our paradigm is high level in the sense that an
object may take on multiple mobility patterns over the course of some time period. For instance,
a civilian may first be modeled by Random Walk. After some time, an event, such as a fire, may
trigger the civilian to change its model to one of fleeing from the fire. By modeling mobility as a
series of event-driven, role-based actions, we can properly select which specific mobility model to
use for a given object and situation. While the specific rules for reaction should be based on ob-
servational studies, our paradigm is sufficiently general enough to allow future, accurate movement
patterns to be used.

Our paradigm allows for different objects to react to events in unique ways by attaching a mo-
bility pattern for each possible (event, role) combination. These lower level mobility patterns can
be any of the previously developed mobility models, including Random Walk. To further capture
the behavior of certain roles in a disaster scenario, we have developed a low level physics-based
gravitational model that allows objects to flee or approach disaster events in an intuitively realis-
tic fashion. It is important to note that our high level, event- & role-based paradigm is not tied to
the gravitational model in any way, and can support any of the previously defined low level mobil-

ity models.
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Our gravitational model captures the effect-distance relationship between events and objects,
allowing events to act on objects via forces. Objects closer to events are affected more than ob-
jects farther away. Additionally, each event has an event horizon, defined as the maximum dis-
tance at which an event affects objects, which allows events to have a defined radius of effect. Fi-
nally, there is a communication threshold, which defines the time until emergency vehicles are no-
tified of an event. Until this time, emergency vehicles outside the event horizon do not respond
to the event; however, after the threshold time has passed, those emergency vehicles begin to con-
verge on the event. It is possible that multiple events could take place in a single scenario. Addi-
tionally, these events may or may not be simultaneous. One of the major benefits of the gravita-
tional model is that it easily captures the interactions between multiple events.

The classification of behavior into roles can also play a part in establishing realistic communi-
cation patterns. For instance, civilians are most likely in contact only with police and other civil-
ians, police are in contact with all roles, firefighters are in contact with police and other firefight-
ers, and ambulances are in contact with police. These communication patterns, along with the
mobility, can simplistically model an entire disaster scenario. For this thesis, however, we concen-

trate solely on modeling mobility,

4.2 Disaster Mobility Paradigm

We now formally describe our high-level mobility paradigm that incorporates external, environ-
mental events along with role-based reaction. By classifying objects with roles, which define reac-
tions to events, our paradigm can realistically obtain a set of (role, event, action) triples that de-
fine the overall movement patterns of objects in disaster recovery scenarios. A single triple can be
read as follows: “Role r reacts to event e by taking action a”. Then, by instantiating the triples
with the characteristics for different agents operating in a disaster scenario, a mobility pattern can
be generated for the scene.

Three entities, and their relationships to one another, help define our high level mobility paradigm:
objects, roles, and events. Objects are nodes in the system that provide movement and commu-
nication. Each object assumes a role, or set of roles, that indicate what movement pattern the
object should assume in response to external stimuli. The specific areas of interest that provide
external stimuli to objects are referred to as events. The event-based response a role dictates to

an object is an action, which is generally a low-level mobility model, such as Random Walk or the
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gravitational model presented in Section 4.3.1.
We now elaborate on these three entities and their relationships to one another.
Objects are the critical components of the scenario, including people, buildings, and vehicles,

and are defined by the following parameters:
e Location: The (x,y,z) location of the object.
e Role: The role, or set of roles, associated with the object.

e Velocity: The current velocity of the object (in vector form).

Roles dictate how objects react to events. We define four main categories of roles, although
it is possible to define any number of them. First, the repelling category causes objects to be re-
pelled from events. The low-level mobility models that support this role should allow objects to
move away from events in a realistic and easy-to-use fashion. The most common use of this role
is to model normal civilians in a disaster scenario. An attribute of this role is curiosity, which
dictates how likely it is for an object to stop at the event horizon, simulating curious on-lookers.
Second, the attraction role causes objects to converge on events. Low-level mobility models that
support this role should cause objects to quickly approach an event or events. Common uses of
this role are to model police and firefighters. Third, the oscillating role models objects that first
approach an event and then, upon reaching the event, travel immediately to a predefined location.
This movement pattern is then repeated continuously. Low-level mobility models that support
this role should allow this action to be as realistic as possible. One use of this role is to model an
emergency response system in which ambulances oscillate between the event and a hospital. Fi-
nally, the immobile role models any object that remains stationary for the duration of the simula-
tion or until the object takes on a new role. This role can be supported by the lack of a low-level
mobility model, since it does not perform any movement. This role is useful to model both natu-
rally static objects, such as hospitals, as well as event-caused immobility.

We anticipate that the default action dictated by many roles is Random Walk, since it simply
models motion when movement patterns are unknown or seem random. It is important to note,
however, that any mobility pattern, such as one that accounts for navigating around buildings or
objects, can be used.

Events act as the stimuli for mobility changes in the scenario. In a real disaster scenario, an
object’s proximity to an event is a major factor in how it reacts. Therefore, it is important to

clearly mark distinct areas of an event. Our paradigm captures this type of behavior by defining
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the Disaster Radius, the Event Horizon, and the Relevant Radius. Reaction to an event is also de-
pendent on time, which is modeled by the Start Time and the Radio Contact Time. The following

defines the full set of parameters for an event.

e Location: The (x,y,z) location of the event.

e Start Time: Time when the event occurs.

e End Time: Time when the event ends.

e Radio Contact Time: Time when radio contact outside of the event horizon occurs.
e Disaster Radius: Area inside which all objects become immobile.

e Event Horizon: Area inside which all objects react to the event, even before radio contact

occurs.

e Relevant Radius: Area inside which objects, based on their role, react to the event after ra-
dio contact occurs, assuming they are not already reacting. Some roles, such as the civilian

role, may not react when inside this radius but outside the event horizon.

e Intensity: A numeric representation of the event’s current intensity.

4.3 A Disaster Mobility Model

With the high-level disaster mobility paradigm formalized, we now describe a disaster mobility
model that we believe intuitively models simple disaster scenarios. For implementation purposes,
we have made some simplifying assumptions. First, we assume events are stationary, have a con-
stant intensity, and, after their start, persist for the remainder of the simulation. Furthermore,
objects assume a single initial role and do not change it for the duration of the simulation, unless
changing to the immobile role. Finally, all roles except the Immobile role default to the Random
Walk action. At the end of this section, we discuss how to capture events that are mobile and

change intensity, as well as events that are not best represented by a single point.

4.3.1 Gravitational Model

Intuitively, many roles react to disaster events by either fleeing from or approaching them. To

model these actions in the presence of multiple events, we use a physics-based gravitational model

18



to define the “Flee” and “Approach” actions. Gravitation has been used to model group mobility
dynamics, particularly in [29], but not event-based mobility. We designed this model based on the
observation that objects, in general, either gravitate towards or away from disaster events.

Physics states that the gravitational force between two objects with masses my and mo at a
distance d from each other is:

e G- 7212 Mo

where G is the gravitational constant. The total resulting vector force on an object in the vicinity
of multiple objects is calculated by the vector sum of all forces on the object. The resulting force
directly affects the object’s acceleration.

We borrow the concepts of gravity and force from physics to model the flee and approach ac-
tions. By letting ms be the “mass” of a given event, and assuming m; is negligible, the force on
an object by that event can be described as F' = I/d?, where I, the intensity, encompasses G and
ma. Mobile objects can then be repelled or attracted to events (or multiple events) by assigning a
particular intensity to every event.

To calculate the motion trajectories of objects as a result of multiple forces, we sway from
physics slightly to allow for a more intuitively realistic movement pattern. Physics states that
forces directly affect an object’s acceleration. However, humans are more concerned with main-
taining a particular velocity at a given time than maintaining a particular acceleration. We gen-
erally do not maintain a constant acceleration, but rather accelerate quickly to a desired velocity
and then hold an acceleration of zero. Therefore, it is intuitively more correct to say that humans
will adjust their speed, not their acceleration, according to how far they are from a disaster event
(of course, they will adjust their acceleration to obtain that speed, but only for a short period of
time). Therefore, in our gravitational model, forces act directly on velocity, not acceleration, to
account for this phenomenon. The benefit of taking a gravitational-based approach to model mo-
bility is that it allows the reaction of objects to be intuitive and easy to compute for multiple, un-

synchronized, dynamic events.

4.3.2 Disaster Model

Let M be the set of (role, event, action) triples that define our mobility model. M is populated
by adding triples to cover all components or the desired scenario. All mobile nodes initially start
using the Random Walk Model to either walk or drive, with speeds appropriately bounded. For-

mally, there are a set of initial (role, event, action) triples for each role as follows:
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{(r, No Event, Random Walk) : r € R},

where R is the set of all possible roles. The “No Event” event is simply the default event every
role assumes when there are no relevant events in the network.

If a disaster event occurs, two areas are immediately formed. The first area is ground-zero, as
defined by the disaster area parameter, within which objects are immediately immobilized. We
model this by simply immobilizing all nodes within a set radius of the disaster event. We formally

model this by the inclusion of the following triples into M:
{(r, DE1 - At Ground-Zero, Switch to Immobile) : r € R}

The “DE1 - At Ground-Zero” event is a disaster event (with the label "DE1” representing dis-
aster event #1) that has occurred when the object was within the disaster radius of the event.
Once an object is immobile, it stays immobile for the remainder of the simulation. To accomplish
this, the action “Switch to Immobile” instructs the object to immediately switch roles to the “Im-

mobile” role. This role is defined in M as follows:
(Immobile, No Event, Stay Still)

It is important to note that this should be the only entry for the immobile role, since it should
always default to staying still. Static objects, such as a hospital, are also assigned the immobile
role.

The second area is defined by the event horizon. All objects within the event horizon react to
the event by either gravitating towards it or fleeing from it, at a speed dependent on the object’s
proximity to the event. The inclusion of a set of triples into M formally models this phenomenon.
For instance, the following triples define the area within the event horizon for a simple disaster

scenario:
(Civilian, DE1 - In Event Horizon, Flee)
(Police, DE1 - In Event Horizon, Approach)

(Firefighter, DE1 - In Event Horizon, Approach)
(Ambulance, DE1 - In Event Horizon, Oscillate)

The event “DE1 - In Event Horizon” event refers to the situation that the object is within the
event horizon radius of a disaster event. Notice that while all the events beginning with “DE1”

are technically the same event, to incorporate proximity into the action taken by a role, we break
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the event into multiple areas (or regions), in which roles reacting to the same event may respond
differently based on which area of the event they are in.

After the radio contact time of the event expires, the relevant radius of the event is formed.
Roles with radio contact in this region, but outside the event horizon, should react to the event.

Continuing from the previous example, the following tuples in M formally define this area:
(Police, DE1 - In Relevant Radius, Approach)

(Firefighter, DE1 - In Relevant Radius, Approach,)
(Ambulance, DE1 - In Relevant Radius, Oscillate)

An object may have multiple applicable triples at any given instance. This would occur, for
example, if a civilian were in the radii of two different events. Our gravitational model easily ac-
commodates scenarios of this type.

It is possible to extend our model to account for events of different shapes and sizes, as well
as mobile events. Currently, events provide forces from a central point within the event, and have
different radii that allow for a circular (or spherical) shape. Elongated event shapes, such as floods,
can be simulated by placing multiple events close to each other at varying intensities. Further-
more, there is nothing prohibiting the changing of intensity or location of an event, as forces can
be quickly recomputed at every object’s location based only on current information. The natural

memoryless computation of forces allows for highly dynamic events.

4.4 Analyzing Mobility Models

The benefits of an effective mobility model come from its ability to capture and expose the char-
acteristics of the network and the behavior of nodes in the network. This information can then
be used by network designers to understand how to design protocols that are suitable for the spe-
cific scenarios. In this section, we first discuss the metrics necessary to describe network behavior
in disaster scenarios. Although most evaluations focus on simple network characteristics, such as
node density and path length, the unique behavior of nodes in a disaster scenario results in more
interesting network conditions that require us to look at more complex parameters, such as aver-
age node density and partitioning. We then present a set of tools that we implemented to gener-
ate ns2 mobility scenario files. In the next section, we present our evaluation of a number of these

metrics using our tools.
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Figure 4.1: Network snapshots at time 0, 200, 400, and 1400 seconds

4.4.1 Metrics

When discussing mobility models, it is important to understand how a model affects different
topological network metrics. Two standard metrics are average node density and average path
length. Average node density, as defined by the average number of neighbors per node, can be
used to help characterize the potential connectivity of a network, since a network with low density
will likely be partitioned. Average path length, as defined by the average number of hops from
source to destination, captures the distance between sources and destinations. However, due to
the highly dynamic nature of networks under disaster scenarios, it is important to not only con-
sider these metrics but also those that show how the structure of the network progresses over
time. For an event-driven, role-based mobility model, the following network parameters highlight

how the network is changing over time.
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Partitioning over Time: The average path length metric is meaningless when the graph is
partitioned, which is likely in many disaster scenarios. Therefore, tracking whether or not

the graph is partitioned is critical to understanding the flux in network topology.

Clustering Coefficient over Time: The clustering coefficient of a particular node is the num-
ber of that node’s neighbors that are connected to each other divided by the total possible
links between them [37]. The higher the value of this metric, the more clustered the graph

is.

Average Node Density over Time: Although node density is an important metric, in an event-
driven mobility model, it is important to capture how density changes in reaction to differ-

ent events, which indicates churn.

Maximum Node Density over Time: Maximum node density gives insight into the poten-
tial cluster sizes, which can provide insight into potential bottlenecks. Although it would be
useful to track actual cluster sizes, maximum node density provides a much cheaper, though

quite effective, heuristic.

Variance of Node Density over Time: Since some parts of the network may be more stable
than others, the variance in node density gives insight into the amount of variance in cluster

sizes as a result of different events.

4.4.2 Tools

To evaluate the impact of our model on the metrics described above, we have implemented two

tools for the ns2 simulator. The first tool is a parameters file generator that creates a properly

formatted parameters file appropriately choosing random values when necessary. This tool prompts

the user for the following input: size of the network (in terms of meters squared), number of civil-

ians, number of ambulances, and number of police. Since both the police and firefighter roles are

similar, we have chosen to omit firefighters and simply add more police to simulate firefighters.

However, it is quite simple to include firefighters, or other responders, and give them appropriate

behaviors. The output parameters file contains the following information:

e Grid size and simulation runtime

e Randomized coordinates for all objects and events, and coordinates for four hospitals located

at the corners of the grid
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Minimum and maximum speeds for objects

Percentage of curious civilians

Random Walk parameters
e Randomized trigger times and radio contact times for four events

e Randomized intensities for events, which determine radii for event horizons and damage

zones

The specific parameters generated for the experiments are detailed in Section 4.5.1. For any given
input, this tool produces unique output since many parameters are randomly chosen. Usage for

this tool is as follows:
Usage: paramGen > paramFile.

The second tool is our main event-driven simulator. This tool accepts as input the parameters
file generated by the first tool and runs a complete simulation with knowledge of Random Walk
and our physics-based gravitational model. It is important to note, however, that any mobility
model can be plugged into the tool in place of Random Walk and/or the gravitational model. The
output of this tool is an ns2-compatible mobility trace file that gives the current velocity and des-
tination of every object at every second in the simulation. All of the mobility model logic is per-
formed in this tool. For any given input, the output of this tool again produces unique output,
since Random Walks performed by objects not reacting to events may differ from one simulation

to the next. Usage for this tool is as follows:
Usage: disasterSim [-d] < paramF'ile > nsMobility Trace.

The -d flag, when passed, displays each individual step of the simulation via “ASCII art” to the

console. This is printed to standard error, so it is not written to the nsMobilityTrace file.

4.5 Evaluation

To analyze the difference in network topology changes generated by our disaster recovery mobil-
ity model, we generated numerous topologies and ran simulations with them using ns2. Using the
same initial setups, in terms of node placement and numbers, we ran the simulations using the

Random Walk model for comparison. In this section, we present results from 10 different sets of
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simulations, each with its own group of both deterministically and randomly chosen parameters.
Each of the metrics presented in Section 4.4.1 are evaluated for each of the resulting sets of trace
files. Sufficient numbers of experiments were run to minimize the 95% confidence interval.

For this thesis, we were only interested in the mobility patterns of objects in a disaster sce-
nario and the topological affects the patterns have on the network graph. Therefore, we did not
simulate communication between nodes. However, we did specify the communication range to be

150 meters to obtain information about links in the network.

4.5.1 Simulation Parameters

The simulation time runs from 0 to 1500 seconds with a grid size of 1000 m?. The communica-
tion range of every node is 150 m to simulate an urban environment. There are 75 civilians, 10
ambulances, and 15 police each randomly located. A total of 90% of civilians, randomly chosen,
are considered curious, meaning they stop at event horizons to look at the event. Furthermore, we
have chosen a minimum and maximum speed of 1 m/s and 4 m/s respectively for civilians, and

17 m/s and 20 m/s for ambulances and police. All Random Walks are done for 30 seconds.

Four events are randomly placed on the grid. The first event occurs randomly between 100 and
200 seconds, the second between 125 and 225 seconds, the third between 150 and 250 seconds, and
the fourth between 175 and 275 seconds. Radio contact for a specific event occurs randomly be-
tween 40 to 80 seconds after the event has occurred. The intensity of events are randomly chosen
between 10000 m?/s and 20000 m3/s. The event horizon for each event is 2% of the intensity and
the damage radius is 0.1% of the intensity.

We choose high intensity events to easily illuminate the differences between the topology of our
model versus the topology of the Random Walk model. We also choose to include hospitals as sta-
tionary objects, since they will most likely participate in communication with other objects (par-
ticularly ambulances and police). Therefore, there are a total of 104 objects in the system, 4 being
immobile from the beginning. Furthermore, we assumed that radio contact for all events reached
ambulance and police regardless of where they were. All responders are in either CB or cellular
radio contact at all times, meaning that the relevant radius for each event is set large enough to
encompass the entire grid.

The model we present contains a large parameter space. This is due to not knowing how the
different parameters affect communication and routing in disaster events. As future work, we plan

to explore the effects of these parameters and simplify the mobility model based on those findings.
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4.5.2 Snapshot of Topology Change
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Figure 5.1 shows a series of four snapshots during one simulation run of our disaster mobility
model. The first box shows the state of the network at the start of the simulation. Object loca-
tion at this point is random, except for the 4 hospitals located at each corner of the grid. The
second box shows the state of the network 200 seconds into the simulation. At this time, some
events have triggered but radio contact for many has not occurred. Only objects within the event
horizon have reacted at this time. The third box shows the state of the network 400 seconds into

the simulation. By this time, all events have been triggered and radio-contact has been made. All
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emergency response objects (police and ambulances) and civilians within the event horizon have
reacted to the event. It is now possible to see some of the different roles active in the system, sim-
ply by visually observing their locations. The fourth box shows the state of the network 1400 sec-
onds into the simulation. By this time, most metrics have come close to convergence and mobility
is noticeable only by ambulances and civilians who have not approached the event horizon. Civil-
ians who are not curious and have left the event horizon are mobile again.

A clear topological difference between the disaster mobility model and Random Walk is pri-
marily due to the clustering of objects around the event horizon. This separates the graph into
three primary areas: (1) areas inside event horizons, (2) areas at or near event horizons, (3) ar-
eas outside of event horizons. The first area is very sparse since all civilians able to move leave
the scene. Almost all of the concentration is in the “damage radius”, since emergency response
workers immediately move towards that zone. The only interaction between that zone and the
event horizon are the oscillators when they pass through the event horizon. The second area is
very dense since all of the civilians inside the event horizon gravitate towards its edge and civilians
that happen to stumble into the event horizon stay there. The third area contains objects who
are performing random walks and have not been notified of the event. As the simulation contin-
uously runs, the third area should slowly lose objects to the second area since they randomly hit
the event horizon.

This series of snapshots clearly shows the location of events and the formation of crowds of
people around the event horizon. It also illustrates the behavior of ambulances going to and from
events and hospitals. We would expect very similar results in a real disaster scenario, further con-

firming our implementation.

4.5.3 Metric Evaluation

Figures 4.2 through 4.6 clearly show the event-driven response of the metrics around the time of
the events. Between 0 and 100 seconds, the data sets are similar for all metrics, as expected. Be-
tween 100 and 355 seconds, during the triggering of events and radio contact time, a clear diver-
gence between the disaster mobility model and Random Walk model is readily seen as the topol-
ogy of the event-driven simulation starts to take form.

Figure 4.2 shows the average node density of the network as time progresses. The average node
density in the disaster mobility model increases in response to events. This is due to the gather-

ing of nodes around the event horizon, forcing them into a smaller area than before. An interest-
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Figure 4.5: Clustering coefficient

ing observation is that the size and frequency of the oscillations in average node density become
both smaller and less frequent in the disaster mobility model as time progresses. This is due to
the topological convergence of the disaster mobility model that does not occur in Random Walk.
The difference in average node density between the disaster mobility model and Random Walk
is important because it gives overall information as to how many neighbors a node can expect to
have at a given time and so provides hints about network connectivity.

Figure 4.3 shows the maximum node density between the two data sets as time progresses.
The maximum node density quickly increases in response to the events. There are two highly-
clustered areas for each event in the system, the area inside of the damage radius and the event
horizon. The jump in maximum node density is due to the quick response by the police to the
event, increasing the node density of nodes at the damage radius. After this, the maximum node
density remains relatively constant from around 500 to 900 seconds, as the maximum density
around the event horizon starts to catch up to the maximum density around the damage radius.
At around 900 seconds, the maximum density starts to increase as the maximum density of the
event horizon increases. The diminishing of high-frequency oscillations as time progresses is, again,
due to the convergence of the disaster mobility model not found in Random Walk.

Figure 4.4 shows the variance of node density as the simulation progresses in time. The vari-
ance of node density clearly increases as events are triggered. This is because many nodes have
either a fairly small node density (if they are being partitioned or close to partition in the graph),
or a high density (if they are clustered at the event horizon or damage radius). It is interesting
to note that the high-frequency oscillations do not seem to diminish as time progresses. This is
likely due to both the Random Walk civilians and the ambulances oscillating between hospitals

and events.
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Figure 4.5 shows the clustering coeflicient in the network as the simulation progresses in time.
The clustering coefficient of a node 7 is defined as:

2[{ejn}l

Ci = lei(l; — 1)

(v, v, € Nj,ej, € F,

where N; are the neighbors of i, E is the set of edges in the graph, and k; is the degree of node

i [37] (this definition assumes an undirected graph). This gives a general indication of how well a
node’s neighbors know each other, which in turn gives insight into how clustered the network is.
We define the clustering coefficient of a node with degree less than 2 to be 0. The average graph
clustering coefficient increases sharply in response to the events. This is again due to clustering
around the event horizon and damage radius for each event. As before, the diminishing of high-
frequency oscillations is apparent.

At any given time, a graph is either partitioned or not. If it is, we say it has a “partition value”
of 1. If not, it has a “partition value” of 0. For each data point, we have averaged the partition
value of each of the 10 simulations. Figure 4.6 shows that the average partition value in the dis-
aster mobility model increases as a result of the events. In fact, due to the high intensity of the
events, after around 200 seconds the network is always partitioned in the disaster mobility model.
This is because the nodes at the events are partitioned from the rest of the network, since the
event horizons are generally out of their communications range. The disaster mobility model con-
sistently has a partition value higher or equal to that of Random Walk, indicating a more fragile
network.

These results show that our mobility model produces a topology much different then that of

the popular Random Walk model. The vast difference between the topologies indicate that it is
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not sufficient to use Random Walk as a mobility model for disaster recovery networks.
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Chapter 5

Evaluation

The primary goal of our evaluation is to show that EBR achieves a high message delivery ratio
and good latency, while maintaining extremely low overhead. To demonstrate this, we first present
the metrics used in our evaluation, followed by a brief description of the mobility models. Finally,
we present a comprehensive evaluation of EBR in comparison to five other popular DTN rout-

ing protocols. To perform our evaluation, we use the Opportunistic Network Environment sim-
ulator (ONE) [2], which is a simulation environment designed specifically for disruption tolerant

networks.

5.1 Metrics

Although traditional evaluation metrics provide a good understanding of the performance of a net-
work, the evaluation of many current DTN routing protocols is hindered by the limited, and some-
times inappropriate, metrics used. Given the challenged environments and tolerant applications
targeted by DTNs, it is important to consider meaningful ways to evaluate protocols against one
another. In many cases, metrics heavily used in other environments, such as packet delivery ratio
and end-to-end latency, have been trivially ported to DTN environments. However, such an ap-
proach can result in misleading evaluations of the protocols due to the inability of the metrics to
account for the actual goals of the network. Therefore, we consider three traditional performance
metrics and introduce three composite metrics that capture the big picture performance in DTNs.

Due to the disruptive nature of DTNs, applications benefit by creating stand alone data mes-
sages that are meaningful even in the presence of other packets failures [30]. Therefore, we discuss
our evaluation metrics in terms of application messages, instead of lower layer packets. In com-
parison to such lower layer packets, messages in DTNs are generally larger with more variance in
size.

Traditional performance metrics include message delivery ratio and latency, while resource us-
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age can be captured by goodput. In a resource constrained network, effective use of available stor-
age can be captured by the number of messages dropped due to buffer overflows. We evaluated
this metric in all our scenarios; however, since it closely correlates to goodput, those results were
omitted due to space constraints.

Message Delivery Ratio (MDR): MDR is defined as the total number of messages received by
all destinations in the network divided by the total number of messages sent to all destinations in
the network. This metric is the DTN equivalent of packet delivery ratio.

Average End-to-End Latency: The end-to-end latency of a message is defined as the difference
in the time since the routing protocol on the message’s source router sent the message to the time
when the routing protocol on the message’s destination router received the message. Messages
that were not delivered are not included in this metric. Therefore, this metric is more meaning-
ful if the MDR’s of all protocols being compared are similar. This in an important metric since
many messages lose relevance after being delayed for a long period of time.

Goodput: Goodput is defined as the number of messages delivered over the total number of
messages transferred (including those transfers that did not result in a delivery). Intuitively, this
metric corresponds to the amount of extra messages transmitted and stored in the system, thereby
giving a view of resource usage and stewardship. Essentially, goodput indicates how “resource-
friendly” the protocol is in terms of bandwidth and storage. Although some protocols evaluate a
limited definition of goodput [33, 34], some recent protocols do not consider goodput at all [8, 3].

Although these three metrics provide a comprehensive view of the communication in DTN,
many protocols trade off effectiveness in one metric for effectiveness in another. Therefore, we
evaluate all of the protocols using three composite metrics that capture the relationship between
these individual metrics and provide greater insight into the individual metrics and trade-offs
made by the protocols. For example, in our experiments, we found routing protocols that perform
very well in terms of average end-to-end latency, but had poor delivery ratios. This is not uncom-
mon, since messages that only travel one-hop generally have short end-to-end latency, and if only
one-hop messages are delivered, the delivery ratio will be poor. Similarly, delivery ratios may be
high, but at the unacceptable expense of network resource drain. Composite metrics are able to
penalize protocols for performing poorly in individual primary metrics, giving a more complete
picture of protocol performance.

Composite metrics are the product of their indicated primary metrics. To maintain the stan-

dard “higher is better” approach, the average delay is always inverted when used.
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e MDR x Average Delay
e MDR x Goodput
e MDR x Average Delay x Goodput

These composite metrics illustrate the relative relationship between the primary metrics. The
MDR z Average Delay metric takes MDR and penalizes it for having a poor end-to-end delay,
allowing for a more complete picture. Similarly, the MDR z Goodput metric looks at MDR and
penalizes it for having poor goodput, giving a view of the network stewardship along with tradi-
tional MDR. Finally, the MDR z Average Delay x Goodput metric looks at MDR and penalizes it
both for poor average delay and poor goodput. It is important to note that the absolute value of
composite metrics is more or less meaningless by itself, since the metrics are artificial in nature.
Therefore, when comparing protocols using composite metrics, one should consider the protocols’

relative performance to one another.

5.2 Experimental Setup

To perform our evaluation, we use the Opportunistic Network Environment simulator (ONE) [2],
which is a simulation environment designed specifically for disruption tolerant networks. The ONE
simulator does not take into account network interference. Therefore, we added one-hop interfer-
ence code to defer transmissions until there are no neighbors transmitting. This is, of course, a
very conservative interference model, and we expect that more realistic interference models will
support our goal of reducing network resource usage.

We evaluate EBR against five other popular protocols: (1) basic epidemic [35], (2) Prophet [23],
(3) Spray and Wait [33], (4) Spray and Focus [34], and (5) MaxProp [8]. Spray and Focus extends
Spray and Wait by forwarding single-copy messages to optimize a specific utility function. To en-
able a comparison between EBR and Spray and Focus, we implemented Spray and Focus to use
an EBR-style encounter value (EV) to optimize delivery ratios in the focus phase. This version
of Spray and Focus shows that EBR is fundamentally different. When nodes running Spray and

Focus are in the focus phase, they hand-off single-copy messages to nodes with a higher EV.
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5.3 Mobility Models

Since DTNs can operate in many different environments, we use three different mobility models in
our evaluation, specifically chosen to encompass a wide variety of DTN environments: an event-
driven model simulating a disaster scenario [24], a map-driven model simulating a vehicular net-
work, and a traditional random waypoint (RWP) model. We include the RWP model to demon-
strate that protocols designed for random mobility may work well if the mobility is random, but
their performance suffers when applied to models that capture more realistic mobility patterns.

The role-based, event-driven disaster mobility model [24] captures distinct movement patterns
of roles as they react to external events. For this model, we simulate four equally spaced disas-
ter events and a hospital. 50% of the nodes are civilians that flee from the events, 25% are ambu-
lances that oscillate to and from events and a centrally located hospital, and 25% are police per-
sonnel who at first gravitate towards an event, but then react by “patrolling” the area in a ran-
dom walk fashion. An example snapshot of the model halfway through the simulation is shown in
Figure 5.1, where the four events and the hospital can be seen by the clustering of nodes. Police
and ambulances always travel between 17 and 20 m/s, unless stopped. Civilians always travel be-
tween 1 and 4 m/s, unless stopped. The dotted circles approximate the event horizons of the four
events, were civilian clustering occurs. 90% of civilians are considered “curious”, and stop at event
horizons.

To evaluate the protocols in a realistic vehicular-based DTN, we utilize the map-driven mo-

bility model implemented in the ONE simulator. This map-driven model limits node movement
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to actual streets found on an imported map, an approximate 5 km x 3 km section of downtown
Helsinki, Finland. The model can define certain nodes as Points of Interest (POI) so that they will
have a configurable probability of being selected as the next destination. Approximately 15% of
the nodes were configured to follow pre-defined routes (like tram lines) with speed between 7 and
10 m/s, the default for trams in the ONE simulator. The rest of the nodes were divided into four
groups of nodes and four groups of POIs. Each node group was assigned different probabilities of
picking the next node from a particular group of POIs to simulate the phenomenon that people
often visit certain areas of a city more frequently than others based on their profession, age and
other factors. The speed of these nodes varied between 2.7 and 13.9 m/s, the default for car simu-
lation in the ONE simulator.

Finally, we simulate the routing protocols with a traditional random waypoint model. Nodes
are initially placed uniformly at random in the simulation area. Nodes then chose a random loca-
tion and travel in a straight line to that location. After arriving and pausing for some time, the
procedure repeats. For our simulation, nodes are relatively slow moving, since the disaster sce-
nario and vehicular models are relatively fast moving. Nodes move between 0.5 and 1.5 m/s, and
stop for some time between 0 and 120 seconds.

For the disaster and random waypoint mobility models, the simulation area is 3 km by 3 km.

For all simulations, the transmission range of each node is 250 m.

5.4 Performance Results

To demonstrate the effectiveness of EBR, we perform two groups of simulations on each of the
three mobility models. To illustrate how each of the protocols reacts to changes in node density,
we vary the number of nodes in the network starting at 26, followed by 51 to 251 in increments
of 50, while keeping the area constant. The extra node represents a hospital in the middle of sim-
ulation area for the purpose of the disaster scenario mobility model. To illustrate how each pro-
tocol reacts to varying network loads, we vary the per-node offered load by adjusting the num-
ber of messages sent per minute per source from 1 (lower load), to 2 (medium load), to 4 (higher
low). Following this comparative evaluation, we evaluate how EBR reacts to changes in two local
parameters: the popularity counter weighting constant («) and the number of initial replicas per
message.

In all simulations we keep the area constant, the packet size constant at 25 KB, and the buffer
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space constant at 1 MB. Each simulation lasts for one simulated hour. Unless otherwise noted,
each data point is the average of at least 10 runs, with 95% confidence intervals displayed. Due
to the large amount of time required to simulate MaxProp, it was only evaluated fully for 26, 51,
and 101 nodes, and is the average of four runs for 151 nodes, and is not evaluated for higher num-
bers of nodes. The slow performance of MaxProp is due to the frequent calculations for the path
finding algorithms required. We believe, however, that the data obtained allows for a reasonable
evaluation and comparison at lower number of nodes. MaxProp is omitted from the evaluation

using the vehicular mobility model due to the large amount of time required to simulate it.

5.4.1 Comparative Results

In the first group of simulations, we vary the number of nodes in the system to determine how this
variable affects the protocols in relation to the three traditional metrics and the three composite
metrics. As expected, in terms of MDR, MaxProp performs the best (see Figure 5.2(a)), due to its
aggressive use of network resources. This strategy allows MaxProp to utilize as much storage and
bandwidth as possible to maximize MDR. Closely following is EBR, which is never greater than 9
percentage points away from MaxProp. This is significant since EBR is much less demanding on
network resources (as shown by the goodput metric in Figure 5.2(c)), yet can achieve a compara-
ble MDR. Spray and Wait, which performs closest to EBR in terms of goodput (yet still signifi-
cantly worse), performs noticeably worse in MDR. The reason EBR, performs much better than
Spray and Wait is due to the role-based characteristics of the disaster scenario mobility model.
Both ambulances and police are highly active, more-so than civilians, and so EBR’s assumption
about predicting the rate of encounters using past data holds true. Furthermore, the goodput is
significantly higher using EBR because if a large number of copies reach a high-encounter node,
that node will not forward many of these copies to low-encounter nodes. This helps keep the net-
work resource usages much lower than Spray and Wait. Note that both Prophet and Epidemic
collapse as the number of nodes increases. In terms of latency, MaxProp performs worst, whereas
Spray and Focus performs expectedly well (see Figure 5.2(b)).

The three composite metrics help put the total performance of the protocols into perspective.
Spray and Focus performs the best when combining MDR with average delay (see Figure 5.3(a)),
because the performance hit for MDR is not enough to offset its strong average latency perfor-
mance. Notice, however, that EBR performs substantially better than MaxProp, due to better
delay, and Prophet and Epidemic, due to better MDR. In terms of MDR with goodput, EBR per-
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forms at more than twice that of the second highest, Spray and Wait, and much greater than the
other metrics (see Figure 5.3(b)). This, again, is due to EBR’s efficient use of resources, which is
complemented by the role-based mobility pattern of the disaster model. Finally, we evaluate how
well each protocol performs when combining all three primary metrics (see Figure 5.3(c)). In this
case, again due to high MDR and goodput, EBR performs substantially better than the second
highest, Spray and Wait, which subsequently performs substantially better than the third highest,
Spray and Focus.

Next, we present the results from the vehicular mobility model. Note that MaxProp is not in-
cluded in this set of simulations due to the large amount of time necessary to simulate it on the
ONE simulator. EBR performs extremely well in terms of MDR, compared to the other quota-
based protocols, Spray and Wait and Spray and Focus (see Figure 5.4(a)). Two factors account
for this. First, the mobility model fits perfectly into the assumptions of EBR, making EBR an ap-
propriate protocol for this scenario. More specifically, past information on rate-of-encounters is
a good estimator for future rate-of-encounters. Second, the network utilization seems to be cor-
related to MDR in this scenario, most likely due to constrained buffer space. EBR is, by far, the
most resource friendly, as shown by the goodput metric (see Figure 5.4(c). While EBR seems to
have unfavorable delay, this is, in part, due to a high MDR (see Figure 5.4(b)). Since delay is
computed only over messages that have been delivered, it is deceptive to view delay alone since
many protocols quickly deliver messages that take a small number of hops, and do not deliver
most high-hop messages.

To obtain a more complete view of the protocols in light of a vehicular mobility model, the
composite metrics are considered. Due to good delay results obtained by Spray and Wait and
Spray and Focus, MDR with delay favors these protocols, with EBR following (see Figure 5.5(a)).
Note however, that when goodput is combined with MDR, EBR performs exceptionally well (see
Figure 5.5(b)). This is due to the vehicular network abiding by the assumptions of past rate of en-
counters predicting future rate of encounters, meaning that high rate of encounter nodes do not
replicate often. Furthermore, EBR’s high MDR and exceptionally high goodput allow it to per-
form the best when combining all metrics (see Figure 5.5(c)).

Finally, the random waypoint model is considered. Since EBR was designed to leverage het-
erogeneity in node mobility, it is not surprising that EBR does not perform as well for the random
waypoint model. It is interesting to note, however, that the other metrics also drop, most likely

due to the relatively slow speed at which the nodes travel. In terms of MDR (see Figure 5.6(a)),
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the gap between EBR and Spray and Wait is closer than with the disaster scenario (notice the
change in scale). However, as the number of nodes increases, the gap becomes larger. The sud-
den increase at 50 to 100 nodes is due to the density finally becoming adequate for good delivery.
Past this point, there is a minor decrease in performance for EBR, Spray and Wait and Spray and
Focus and a more dramatic decrease for Prophet and Epidemic. One interesting observation is
that MaxProp performs consistently worse than EBR, Spray and Wait, and Spray and Focus, up
to 151 nodes. We believe this is due to the relatively small amount of packets storable in a buffer
(40), and if this buffer size were to increase, MaxProp would perform better. Prophet starts out
strong, but quickly deteriorates as the number of nodes increase. In terms of latency, Spray and
Focus again performs the best (see Figure 5.6(b)); however, EBR consistently performs better
than MaxProp. As expected, the goodput metric strongly favors EBR (see Figure 5.6(c)). The
gap between EBR and Spray and Wait is significant, but not quite as significant as with the disas-
ter mobility model. This is due to EBR having to disseminate more copies of messages, as there is
a more uniform rate-of-encounter for nodes.

The composite metrics help give a more complete view for the RWP scenario. Due to Spray
and Focus’s low average latency, it is able to overcome any MDR hindrance in the MDR with av-
erage latency metric (see Figure 5.7(a)). Also note that Prophet performs better than it did in the
disaster scenario mobility model. When comparing MDR with goodput, and MDR with average
delay and goodput (see Figure 5.7(b) and Figure 5.7(c)), EBR performs significantly better than
all other metrics, seconded by Spray and Wait. These results indicate that, even in mobility mod-
els EBR is not specifically designed for, it maintains superiority in many important metrics.

In the second group of simulations, the offered load is varied from 1 to 2 to 4 messages per
source per minute. This group of simulations illustrates how the routing protocols react to in-
creased network load, while maintaining the same number of nodes. The number of nodes for all
simulations in this class is 101. For this group of simulations, we present the results for the disas-
ter mobility model and the random waypoint model.

For the disaster scenario, MaxProp and EBR perform expectedly well, with all protocols suf-
fering as the offered load increases (see Figure 5.8(a)). The average latency, however, shows Max-
Prop performing much worse than the other metrics (see Figure 5.8(b)). Furthermore, as the of-
fer load is increased from 1 to 4 messages per source per minute, EBR performs better than both
Prophet and Epidemic. This is due to EBR’s sharper drop in MDR as offer load increases. Spray

and Focus and Spray and Wait perform the best, as expected.
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Figure 5.9 shows the results of the combination metrics for this class of simulations using the
disaster scenario mobility model. In terms of MDR with average delay, there are two clear groups,
with Spray and Wait, Spray and Focus, and EBR being in the top group, and the others being in
the bottom group (see Figure 5.9(a)). Out of the top group, EBR is the only protocol that does
not suffer as load increases, but instead closes the gap between itself and the top two protocols.
In terms of MDR with goodput, EBR performs significantly better than the other protocols at
all offered loads, with the gap tightening as the load increases (see Figure 5.9(b)). Finally, when
combining all primary metrics, EBR performs significantly greater than the others, with Spray
and Wait as second best (see Figure 5.9(c)).

When the offered load is varied using the RWP mobility model, the MaxProp data is averaged
over three runs, with all other data averaged over ten runs. Due to the more uniform nature of
per node rate of encounters, EBR does not perform as well as it does in the disaster scenario mo-
bility model. However, in terms of MDR, it is still in the top tier, and performs higher than all
others with lower offered loads (see Figure 5.10(a)). In terms of latency, as the offered load in-
creases, the gaps between protocols tends to close (see Figure 5.10(b)). When combining all pri-
mary metrics, we notice that EBR performs at the highest level, primarily due to high overhead,

and reasonable MDR and latency (see Figure 5.11(a)(b)(c)).

5.4.2 EBR Parameter Results

To determine how EBR reacts to changes in internal parameters, we evaluate EBR against itself
using different parameter settings. Due to space constraints, we only present results for the dis-
aster scenario mobility model and only vary the number of nodes in the system. To evaluate the
impact of the weight of the current rate of encounter in the EV counter, we vary « from 0.5 to
0.85. Additionally, to capture the tradeoff between resource usage and delay, we vary the start-
ing number of message copies between 5, 11, and 20. Therefore, a total of 6 lines are shown per
graphs. Again due to space constraints, we only present the graphs for the primary metrics, not
the composite metrics.

In terms of MDR, « does not make a substantial difference. However, the number of initial
copies does. As the number of nodes grows larger, EBR using only 5 copies starts to perform best,
with EBR using 11 copies within a few percentage points (see Figure 5.12(a)). However, in terms
of average delay, EBR using 5 copies performs significantly worse than with both 11 and 20 copies

(see Figure 5.12(b)). Again, changing the value of « has little effect. The goodput is significantly
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greater when the number of copies is small, as expected (see Figure 5.12(c)). In total, when not
considering latency, a small number of copies, such as 5, allows for good performance of EBR.
However, when latency is considered, a bit of a trade off must be made. Therefore, we have cho-

sen to compromise and recommend a value of 11 initial copies as default to EBR.
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Chapter 6

Securing EBR

The decision regarding how many replicas of a messages a node should transmit to a contact de-
pends completely upon the ratio of both parties’ encounter values. Therefore, a malicious node
can convince a node following protocol to transmit virtually any percentage of replicas to it. One
of the most worrisome results is the possibility of a denial-of-service (DoS) attack where malicious
nodes act as “black holes”. Malicious nodes performing this attack advertise an ultra-high en-
counter value, causing all contacts to send almost all replicas to them. The malicious nodes then
simply delete these messages, attempting to stop, or at least slow, message delivery.

Work by Burgess et. al shows that two popular types of denial-of-service attacks, dropping all
messages (which we refer to as black hole denial-of-service) and flooding the network with fake
messages, result in similar network degradation [7]. This degradation does not cripple the network
because malicious nodes suffer from the same level of intermittent connectivity as non-malicious
nodes. In this thesis, we have chosen to consider the case of black hole DoS attacks. This is be-
cause EBR is a low-overhead quota-based protocol, and hence extra flooding is not as big a con-
cern as black holes. In quota-based protocols, non-malicious nodes do not flood messages, real or
fake, and should simply drop messages with a high number of copies, since they must be from ma-
licious nodes.

To determine how vulnerable EBR is to black hole DoS attacks, we perform a series of simula-
tions where a certain percentage of the nodes are malicious. Malicious nodes always advertise an
exceptionally high encounter value, and immediately delete any message replicas obtained. Each
data point is the average of 10 runs, and small 95% confidence intervals are shown. A vehicular
mobility model is used, which is explained, along with simulation parameters, further in Section 5.
The results of this experiment, shown in Figure 6.1, indicate that network performance can be
hindered with a relatively small number of malicious nodes. This is concluded due to the sharp
initial drop in message delivery ratio with only a small percentage of nodes being malicious. How-

ever, matching the work done by Burgess et. al, additional malicious nodes are not able to cripple
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the network. These results indicate that it is necessary to provide an optional solution that pre-
vents DoS attacks. Users not minding the decrease in performance may choose not to implement
this solution. However, providing a solution is necessary for those users more concerned about
maximizing network performance. The penalty for choosing the solution is that there must exist
a means of digitally signing data as well as binding keys to identities, such as PKI.

The insight of the solution comes from the observation that an encounter value can never be
altered unless an external event (e.g., coming in contact with another node) occurs. Therefore,
proving that the encounter value was altered only during an external event assures other nodes
that the node in question is not individually faking the value. Now, of course, nodes can still col-
lude to artificially inflate their encounter values; this case will be considered shortly. Note that the
goal is to prevent the artificial increase, not decrease, of encounter values.

The protocol works as follows. Assume node A comes in contact with node C, and node C
wishes to send data to node A. The goal is for node A to offer acceptable evidence to node C that

the encounter value is not forged. To give acceptable evidence for this, node A must keep a list
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of transactions in which all previously encountered nodes digitally sign a time stamped message
stating that “node A met me at time T”. A graphical illustration of this is given in Figure 6.2.
Node A can then offer all of these messages to node C, and allow node C to recompute node A’s
encounter value from scratch. If the recomputed value is equal to the value provided by node A,
then node C can confidently transmit replicas to node A.

It is possible, even probable, that inherently trustworthy nodes are present in the network. For
instance, in disaster recovery networks, police and emergency responders can be considered highly
trustworthy entities. These nodes can be utilized to sign, or checkpoint, actual encounter values.
This checkpointing process allows a node to delete all previous transactions and simply start with
the new, signed encounter value. Checkpointing nodes verify the encounter value in the same fash-
ion as mentioned above and then provide a signed encounter value back to the node. Checkpoint-
ing nodes must be trusted by all nodes in the network since previous transaction data is deleted
after a signed encounter value is obtained (e.g., a node is checkpointed by a checkpointing node).

It is possible for colluding nodes to artificially inflate each other’s encounter values by signing
multiple “fake” meeting messages. This is a difficult problem, and we have not discovered a clear-
cut solution. However, using statistical techniques, nodes diligent in looking for abnormal contact
rates can mitigate the damage. If a node legitimately meets another node or group of nodes very
frequently, it can lessen its chances of raising a false red flag by simply not storing some of the
meetings, and not updating its encounter value for those meetings. A more thorough investigation

of this is future work.
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Chapter 7

Conclusions and Future Directions

The ability to efficiently and effectively support communications in disaster recovery networks will
greatly help emergency responders. In this thesis, we present a disaster recovery mobility model
and use that model to develop a resource-efficient routing protocol.

We first present a means of routing in DTN, specifically geared toward the properties of disas-
ter recovery networks. The ability to efficiently and effectively route data through intermittently
connected networks is of critical importance to DTNs. Many current routing protocols utilize
flooding-based techniques to obtain relatively high message delivery ratios. This, however, comes
at the expense of overwhelming network resources, mainly bandwidth and storage. Resource out-
ages then lead to reduced performance in clustered areas, due to congestion, as well as energy
strain on the devices. Filling all available buffer space with message replicas can hinder an appli-
cation’s ability to store local data. Additionally, overloading the network channel hinders one-hop
protocols that do not rely on routing. Unfortunately, protocols that allow for low network resource
utilization generally are not able to obtain comparable delivery ratios. In this thesis, we show that
basing routing decisions on the encounter rate of a node can increase the delivery ratio. As shown
in Section 5, our Encounter-Based Routing protocol (EBR) provides comparable or better message
delivery ratios than current flooding-based protocols, while maintaining extremely low resource
utilization. Furthermore, we present a means of securing EBR against black hole denial-of-service
attacks.

There are many interesting future directions for encounter-based routing. First, we plan on
evaluating EBR using probabilistic splitting rules, as described in Section 3.2. More specifically,
we plan to analyze the MDR, average latency, and goodput tradeoffs when the variance of the
number of replicas is increased for all nodes, as well as when the variance is non-uniform for all
nodes. Following this, we plan on exploring, both mathematically and experimentally, distribu-
tions other than Gaussian.

Another future direction is exploring the effects of using a second order derivative in terms of
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number of encounters. Currently, EBR only considers the current rate of encounters and averages
this rate using an exponentially weighted average to account for both older and newer data. If
EBR used a second order derivative, it would consider the change in rate of encounters over time
and this trend could be used to distribute an appropriate number of message replicas.

Secondly, we present a generic event- & role-based mobility paradigm used to characterize
movement patterns of objects in response to environmental events, and evaluate EBR and other
DTN protocols over. We specifically concentrate on applying this to disaster recovery scenarios,
where current mobility models fail to realistically represent objects. To accurately characterize
the movement of objects in response to one or more disaster events, we have developed a gravity-
based model in which events emit forces that attract or repel objects depending on the object’s
role. Using simplified laws of physics, it is straightforward to calculate the velocity vector of an
object, even in the presents of multiple events.

Our disaster mobility model has been fully implemented in simulation form and was used to
generate ns2 mobility trace files. The resulting topology of our disaster mobility model had a
higher average node density, maximum node density, variance of node density, and clustering co-
efficient. This is due to the grouping of nodes at or near the event horizons and near the damage
radius of events. Furthermore, the partitioned value was consistently higher with our disaster mo-
bility model, indicating the network was partitioned more often.

Our event- & role-based disaster mobility paradigm realistically captures objects’ responses
to disaster events. Furthermore, our simulation results show that the topological characteristics
of the network drastically differ from that of Random Walk. As future work, we plan to perform
studies on actual disaster scenarios to develop a rich set of role-based rules and further refine our
low-level gravitational model. Furthermore, we plan to use our disaster mobility model to under-
stand the effects it has on routing protocols such as AODV [26] and DSR [20], as well as explore
security concerns with a role-based system. This will most likely lead to the development of new

DTN-style disaster routing protocols specifically tuned for disaster recovery networks.
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