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Abstract—The widespread availability of mobile wireless de-
vices offers growing opportunities for the formation of tem-
porary networks with only intermittent connectivity. These
intermittently-connected networks (ICNs) typically lack stable
end-to-end paths. In order to improve the delivery rates of
the networks, new store-carry-and-forward protocols have been
proposed which often use message replication as a forwarding
mechanism. Message replication is effective at improving delivery,
but given the limited resources of ICN nodes, such as buffer
space, bandwidth and energy, as well as the highly dynamic
nature of these networks, replication can easily overwhelm node
resources. In this work we propose a novel node-based replication
management algorithm which addresses buffer congestion by
dynamically limiting the replication a node performs during
each encounter. The insight for our algorithm comes from a
stochastic model of message delivery in ICNs with constrained
buffer space. We show through simulation that our algorithm
is effective, nearly tripling delivery rates in some scenarios, and
imposes no or little overhead.

I. INTRODUCTION

The proliferation of wireless-enabled mobile devices has
vastly increased the opportunities for spontaneous communica-
tion between devices. However, in many cases the spontaneous
networks formed between these devices are unstable and prone
to partitioning and extended periods of disconnectivity [1], [2].
To overcome these network constraints and support both delay-
and disruption-tolerant applications, a new class of routing
protocols for these intermittently-connected networks (ICNs)
has emerged that forward messages using a store-carry-and-
forward approach. Given the lack of stable end-to-end paths,
message replication is commonly used to increase delivery
[3]–[9]. However, the limited resources available to the mobile
nodes can quickly be overwhelmed by too much replication
which leads to congestion and ultimately to reduced delivery
rates. Given the dynamic nature of such networks, dynamic
replication management, in terms of when, which and how
many messages to replicate at a given encounter, can be used
to find a balance between over- and under-replication, both of
which reduce the effectiveness of the network.

The goal of replication management is to maximize mes-
sage delivery by avoiding congestion. However, the point at
which congestion occurs is not static in an ICN because
the network size, density and message generation rates often
change frequently. Any static replication management will
either over-replicate, causing excessive message drops and
reducing message delivery when congestion is high, or under-
replicate, missing potential delivery opportunities and under-

delivering when congestion is low. Existing ICN protocols
attempt to avoid congestion either by capping replication
with a fixed quota [7], [8], intelligently filtering replication
opportunities [3]–[6] or, sometimes in conjunction with the
other mechanisms, flushing already delivered messages from
the network with acks [3], [4], [10]. While these approaches
have proven to be effective in different scenarios, all of these
replication management approaches are static and so cannot
react to changes in network congestion.

The main challenge to effective replication management is
the accurate detection of congestion in the ICN. In general,
congestion can be defined as the point where network-wide
delivery rate decreases due to an overload of network resources
such as buffer space or bandwidth. In ICNs, buffer space is
often overwhelmed by aggressive replication. While buffer
management and flow-based feedback have been successful at
preventing Internet congestion [11], [12], the lack of stable or
even any end-to-end paths in ICNs eliminates the use of flow-
based or end-to-end mechanisms. However, observations about
global and local network conditions can be used to effectively
reduce congestion and increase delivery rates.

An ideal ICN congestion detection scheme would monitor
the entire network to learn the current congestion level and
feed that information back to all nodes. However, because
of high and variable message delays and unreliable delivery
in ICNs, a global algorithm is impractical. Instead, a more
attainable approach is to have each node act autonomously,
using only local metrics to adapt its replication rate. A local
congestion detection algorithm is still able to cope with spatial-
diversity in congestion and can respond quickly to temporal
congestion changes. The hard part of this approach is to
determine which local metrics can be used to capture the
congestion state of the network.

The goal of our research is to gain an understanding
of the global behavior of congestion in ICNs and develop
effective local congestion control, ultimately leading to in-
creased message delivery in ICNs. Given these goals, the
main contributions of our research are two-fold. First, we
present a comprehensive study of the effect of diverse network
conditions and limited buffer space on message delivery in
ICNs. The model presented in this paper enables the track-
ing of relevant global network metrics over diverse network
scenarios, exposing which metrics indicate congestion in the
network. Although not directly implementable as a replication
management scheme in ICNs, our model leads directly to an
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20 2 2 2 3 3 4
40 2 3 4 5 6 9
60 3 3 4 6 11 11
80 2 5 7 9 13 18
100 2 5 8 10 18 20
120 3 6 11 16 20 20
200 4 12 14 20 20 20
300 9 18 18 20 20 20
400 9 20 20 20 20 20

TABLE I
THE NUMBER OF COPIES FOR SPRAY AND WAIT WHICH GIVES THE BEST

DELIVERY RATE FOR THE GIVEN MESSAGE PERIOD AND BUFFER SIZE.

understanding of which local metrics can be used by individual
nodes to approximate the relevant global metrics, and so be
used effectively in replication management algorithms. Sec-
ond, we design an algorithm for congestion control in ICNs,
including congestion detection and replication management.
Based on the insight from our model, our ICN congestion
control algorithm adjusts replication rates at individual nodes
to maximize delivery rates. By allowing each node to react
independently, our algorithm is responsive to both spatial and
temporal fluctuations in congestion. Additionally, our conges-
tion control is protocol-independent. It does not interfere with
the forwarding decisions of the underlying routing protocol
about which messages to send. Instead, it limits the number of
messages a node is allowed to replicate during each encounter.
We show through simulation over a diverse set of mobility
scenarios that our approach is effective at improving network-
wide delivery rates and does so with little overhead.

In the next section, we further elaborate on the challenges
of congestion control in ICNs. Following that, in Sec. III,
we develop a model to provide insight into the behavior of
ICNs under congestion conditions. The results from analysis
of our model are then used to inspire our design of our
local congestion control algorithm described in Sec. IV and
evaluated in Sec. V.

II. CONGESTION IN ICNS

Congestion in ICNs is caused by over-replication in the
network, which leads to buffer overflow at individual nodes
and ultimately to reduced delivery rates in the network.
While it is intuitive to approach the problem from a sender’s
perspective, allowing the sender to regulate replication for its
messages, two problems arise. First, intermittent connectivity,
path diversity, high loss rates and long response times make
it difficult for the sender to react to congestion in a timely
and effective manner. Second, replication is performed at
every node that has a replica of the message. Therefore,
a sender cannot know how every node that will receive a
replica of its messages should react. These challenges make
it ineffective to apply flow-based and end-to-end congestion
control approaches from the Internet [12]. Instead, congestion
control in ICNs becomes a problem of managing replication
at every node in the network.

Effective replication management requires firmly limiting
the number of replications allowed. Existing quota-based
ICN protocols perform message-based replication management

where each message sender gives a static initial quota for the
maximum number of replicas of a message [7], [8], [10]. As
messages are replicated, the quota is divided between the new
and old replica until each replica has no quota left. While using
quotas certainly limits replication, the message sender does not
know the congestion levels in other parts of the network or at
later times when the message will be replicated. In dynamic
networks, the best choice of initial quota can vary significantly
depending on congestion conditions. For example, consider a
simple network with 100 nodes, each using random waypoint
mobility and routing with Spray and Wait [8]. By varying the
maximum quota from 2 to 20 and varying the message rate
and node buffer size from 1000KB to 10000KB in simulation,
the initial quota that achieves the highest delivery rate varies
dramatically, ranging from 2 to 20 as shown in Table I.
Compared to a fixed initial quota of 8, which offers a nice
balance of low delay versus low overhead in a network of this
size [8], the performance improvement by selecting the best
quota value is on average 7% with a maximum improvement
of 20%. Even in this simple network, it is clear that the quota
that maximizes delay depends on the state of the network.

Given the limitations of message-based replication, we
explore the use of dynamic node-based replication manage-
ment in ICNs where individual nodes determine how many
messages they can replicate at each encounter. The novelty of
our node-based replication management is that it is performed
locally, independent of the routing protocol used. Essentially,
a routing protocol orders the messages that it wants to trans-
fer at each encounter and the congestion control algorithm
determines how many of them are actually sent. To determine
such local replication limits, nodes must observe the current
level of congestion in the network. In the next section, we
answer the question as to which metrics are most effective to
detect congestion in ICNs and then present and evaluate our
measurement-based local congestion control algorithm in the
remainder of the paper.

Although buffer management has proven effective for avoid-
ing congestion in the Internet [11], [13], [14], those approaches
are not applicable for controlling congestion in ICNs since
they assume some interaction with end-to-end transport pro-
tocols. However, some existing ICN protocols do use buffer
management in ICNs for dropping and forwarding according
to a given policy [3]–[6]. While policies can reduce the amount
of replication in the network, in all of these protocols if
every message in the buffer matches the policy, then every
message will be replicated. Without knowing a firm limit
of allowable replications, it will be difficult to avoid over-
replication in congestion situations. Although not entirely
orthogonal to the decision about replication limits, combining
replication management with effective buffer management can
dramatically improve delivery rates. In our evaluations, we
demonstrate the benefits of such a combination using a routing
protocol with policy-based buffer management and our repli-
cation management. However, we leave the full exploration of
different policies for future work.
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Fig. 1. Markov chain representing the spread of a single message through
the network. Each state represents the number of replicas of the message.
Special states represent delivery of the message and the pre-creation state.
State transitions occur on message drop, replication and delivery.

III. GLOBAL CONGESTION BEHAVIOR

Before we can achieve our goal of developing a local con-
gestion control algorithm, we must first understand the behav-
ior of the network under congestion. Given an understanding
of the high-level global behavior, local approximations can be
developed. The purpose of our study is to find metrics that can
track the change in delivery rates due to buffer congestion.
Given the large number of dynamic network metrics, the
challenge lies in determining which network metrics are the
most informative. In any type of network, a decrease in the
number of successful or duplicate deliveries or acknowledged
messages could indicate an increase in congestion. Similarly,
a rise in message drops and buffer usage can also indicate an
increase in congestion. In ICNs, the number of message repli-
cations or total message copies might also be indications of
network congestion. The relation of these metrics to delivery
rate depends on complicated interactions of different network
parameters. Therefore, as an analytical tool to reason about
global congestion behavior, we develop a simple stochastic
model that simulates the delivery of messages in networks
with constrained buffers. The model is an approximate repre-
sentation of an ICN and provides interesting insights into the
effects of congestion that inspire the design of our congestion
control algorithm in Sec. IV.

An effective approach for modeling ICNs is to treat the
spread of a message as the spread of a disease [15]. When two
nodes have an encounter, they “infect” one another with new
messages. While this modeling approach has been used be-
fore [16], [17], the models either do not account for the effects
of buffer overload and message drops in the network, or are
asymptotic and do not capture per-encounter behavior which
we use to track metrics. Other analytical models [3], [18] do
not consider delivery rates and therefore cannot quantify the
effects of congestion on successful delivery. In comparison,
our model computes the network delivery rate based on the
spread of messages throughout the network in response to
changes in the input parameters network size, buffer size,
contact rate, message generation rate and replication rate, each
of which effect delivery and therefore are key to our model.

Our model tracks message replicas using a Markov chain.
Each state in the chain denotes the number of message replicas

present in the network. Therefore, the Markov chain starts with
potential states {0, ..., (N − 1)}, where N is the number of
nodes in the network. A special state SUCCESS represents
the successful delivery of a message. When a message is
first created it always enters the state 1. The final states of
a message are either SUCCESS, for successful delivery, or 0,
for no replicas remaining. State transitions occur as message
replicas are copied, dropped or delivered. The probability of
each state transition depends on the model input parameters
and will be given in detail below.

Even after successful delivery, some message replicas will
remain in the network. Therefore, our model includes special
states {−1, ...,−(N−1)}, where state s ∈ {−1, ...,−(N−1)}
indicates that there are |s| replicas of the message remaining
in the system after delivery. The final state −1 transitions into
SUCCESS instead of 0 when the last message copy is dropped,
since the message has already been delivered.

To accurately model drops the state of all messages must
be known. The above model can be modified to include super-
states which encapsulate the current states of every message.
The probability to transition between a state is the probability
that each message transitions into the new super-state. Mes-
sages are created sequentially during the simulation depending
on the message generation period. The state UNBORN is added
to signify that a message has not yet been created. Fig. 1
illustrates the complete Markov chain for a single message.

A. System Model

The network consists of N nodes and M messages created
over time. Every node has the same size message buffer,
capable of holding BS messages. Messages are all the same
size. Because we are only concerned with high-level network
behavior, our data and mobility models are simplified to
ease modeling. New messages are generated periodically with
sources and destinations selected uniformly at random from
the entire network. We also assume that encounters occur
globally at a fixed period with each participating node selected
uniformly at random from the network.

A random drop policy is implemented, so that when a node
must drop a message, it selects one at random to be removed.
All nodes follow a basic Epidemic forwarding policy [9],
where each node replicates to the other node messages it has
that the other node does not have. In our model, messages are
transferred instantaneously so that a message enqueued to be
sent to the other node is not dropped by incoming messages
before it can be sent. We do not model the effect of limited
contact duration, focusing instead on buffer space. Our later
simulations do include limited contact duration between nodes.

B. Transition Probabilities

We model the network as a discrete-time system with
minimum time interval ∆t. At every time step, the model
transitions into a new state with some probability based on the
current network state. Two network events can cause message
transitions: a node contact or generation of a new message. To
model these events, we first define the contact and generation
periods. The contact period is expressed as C∆t and the
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message generation period as G∆t. We assume that only one
event occurs during each interval. If two events do occur in
the same interval, one is selected with probability 1/2. The
probability of a contact event:

PC =
(

1
C
·
(

1 − 1
G

))

+
(

1
C
· 1

G

) (

1
2

)

, (1)

where the first term represents the probability that a contact
event occurs with no generation event and the second term the
probability that the contact event is selected when two events
occur simultaneously. The probability of a generation event,
PG, is defined similarly.

The state of each message mi is stored in si. When referring
to a specific message or message state, we use the subscript
mi (si). Otherwise, m and s are used to indicate a general
message. State transitions are defined by the input parameters,
BS, N, C and G. The initial state for every message is
the UNBORN state, signifying that the message has not yet
been created. A new message is created every time step
with probability PG. The probability of message mi entering
the network at a given time depends on the probability of
message mi−1 having already been created. Explicitly, m0

transitions from UNBORN to state 1 with probability PG.
For each successive message mj , the creation probability is
(1 − Pr(sj−1 = UNBORN)) ∗ PG.

Once created, a message can be delivered during any
contact, which causes the state to transition from s into −s.
The probability to deliver a message is:

Pdeliver = PC · 2
N

· s
N−1 . (2)

Essentially, a delivery happens during a contact event (PC) in
which one of the two nodes is the destination, and the other
node has a replica of m.

The only other allowable transitions from state s are into
(s + 1) upon replication, into (s − 1) or (s − 2) upon drop,
or to remain in s. The transitions from −s to states −(s + 1),
−(s − 1) and −(s − 2) are the same. For contact events, a
and b represent the two nodes involved in the contact event.
Similarly, for generation events, a represents the node that
generates the new message.

All of these transitions depend on the behavior of nodes
during arrival of new messages. The following equations
describe node behavior:

α=
∑

mi

(

si

N

)

·
(

1 − si−1
N−1

)

(3)

Pfull=
∑

mi

(

si

N

)

·
(

1
BS

)

(4)

Pdrop= Pfull ∗ ·
R·α

(BS+R·α) (5)

When two nodes encounter one another, each node has some
number of messages that the other node does not have that
might be transferred. α represents the expected number of
messages to be transferred and is calculated as the sum over all
messages of the probability that a has the message and b does
not. After an encounter, a node will have to drop messages if
its buffer is full. The probability that a node’s buffer is full,
Eq. 4, is the probability for each message that a node has the
message, over the node’s capacity. Finally, the probability of
message m being dropped, Eq. 5, is the probability of it being

one of the randomly chosen messages selected for removal
when an overflow happens.

The number of messages actually transferred from one node
to the other depends on the replication probability, R, which
captures the probability that a particular message is chosen for
replication. R ultimately determines the fraction of messages
a node is allowed to replicate so that only R ·α messages are
transferred during a given encounter. If the node’s buffer is
full, the same number of messages will have to be dropped.
Therefore, m is dropped if it is selected among the R · α
removed messages. The probability that a node keeps m after a
transfer is Pkeep = 1−Pdrop. The parameter R in Eq. 5 allows
nodes to control the replication probability and so manage
congestion. In Epidemic, R is always fixed to 1. We will later
analyze different values of R.

To transition from state s to s + 1, there must be a contact
event in which a replication occurs and both nodes keep m:

P+1 = PC · N−2
N

· ((N−1)−s)·s

(N−1

2
)

· R · (Pkeep)2 (6)

The contact must be between two nodes neither of which is
the destination, which is expressed in the first two terms of
Eq. 6. For a replication to happen, only one node can have m,
the probability of which is the number of pairs with only one
copy over all possible pairs, given in the third term. The last
two terms say that the message must be selected for transfer,
and then both nodes must keep their copy.

If, on the other hand, both nodes have m and both drop m,
then s transitions to s − 2:

P−2 = PC · N−2
N

·
(s

2
)

(N−1

2
)
· (Pdrop)

2 (7)

This transition only happens if the event is a contact event
in which neither node is the destination. If both nodes have
m, expressed as the number of pairs that both have m over
all pairs (see Eq. 7), and both nodes drop their replica then s
transitions to (s − 2).

Finally, the transition from s to s−1 is the most complicated
transition. A single drop of m can occur during a message
generation event, a contact event in which both nodes have m
or a contact in which only one node has m:

P−1= PG · s
N

· Pdrop(α = 1)+

PC · N−2
N

·

(

(s

2
)

(N−1

2
)
· (2 · Pdrop · Pkeep) +

((N−1)−s)·s

(N−1

2
)

·
(

(1 − R) · Pdrop + R · (Pdrop)
2
)

)

(8)

In a message generation event, a drop occurs if the generating
node has m and m is selected for removal because of the
new message. In a contact event between two non-destination
nodes which both have m, a single drop occurs if either node
keeps m and the other drops it. Finally, if only one node of
a contact has m, it might replicate m with probability R. s
transitions to (s − 1) if m is replicated and both nodes drop
it, or if m is not replicated and the one node drops it.

C. Solving the System

To solve the model, we repeatedly apply the above transition
probabilities between states to converge toward either the 0 or
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Algorithm 1 TRANSITION(M, states, endtime)
Require: S = M state vectors of length states
Require: T = M transition matrices size (states x states)

1: for all messages m do
2: S(m)(UNBORN) = 1
3: for t = 0 to t = endtime do
4: for all messages m do
5: T(m) = TRANSITIONMATRIX(m, S)
6: for all messages m do
7: S(m) = S(m) ∗ T(m)

the SUCCESS state for each message. A transition matrix is
created using the above equations. The current state of each
message is represented by a vector of probabilities to be in
each state. By repeatedly multiplying the transition matrix with
the state vector, the probability distribution across states after a
certain time can be found. When super-states are used to track
all messages, there are O(MN ) states which is unwieldy for
meaningful networks. Instead, to solve the system we maintain
a separate chain for each message and update the transition
matrix at every time step using the current states of the other
messages. The current state of a message is computed as
∑

state t Pr(si = t) ∗ |t|. Alg. 1 shows the process for solving
the system.

D. Detecting Congestion

The goal of our model is to discover how different metrics
change compared to the network-wide delivery rate and if
they can be used to track congestion. At first glance it
seems that an increase in network drops would be sufficient
to indicate network congestion. However, consider the case
when there is no replication at all. Drops will be very low,
but so will delivery. As replication increases delivery will
increase along with drops. This rise in drops is by itself not an
indication of over-replication, i.e. congestion, since delivery is
still increasing. Instead, the positive aspect of replication must
also be consider in conjunction with the negative (drops). We
use the model to evaluate different metrics as either positive
or negative indicators of congestion.

To generate congestion we decrease the size of the message
buffer. Because the model simulates individual node contacts,
it is possible to count drops, replications, and max buffer
consumption and track the spread of acks. The expected spread
of acks at a given time t is the probability that m has been
delivered times a(t). The function a(t) represents the copies
of an ack after time t and is computed recursively as the
probability that during a contact one of the nodes has the
ack and the other does not. The probability of having the ack
depends on a(t − 1) where a(0) = 1.

To discover the behavior of these metrics, the model was
solved using Alg. 1, as shown in Fig. 2. From the figure
it can be seen that drops and buffer consumption increase
with congestion while acks and message replications tend to
decrease with congestion. Thus, the ratio of either drops or
buffer usage over replications or acks should give a good in-
dication of network congestion by capturing both the negative
and positive aspects of message replication. Two observations
from outside the model help us determine the best metrics.

 0  10  20  30  40  50  60  70  80  90  100

Buffer Size

Delivery
Drops

Rep
Acks

Buffer Usage

Fig. 2. Change in metrics as congestion is increased by varying buffer size.

 0  10  20  30  40  50  60  70  80  90  100

Buffer Size

Delivery
Drops/Reps

Fig. 3. Change in measured congestion (ratio of drops over replications)
and delivery as congestion changes.

In most simulations, the buffer consumption is always near
100%, even in low congestion. Also, the spread of acks is
unreliable and delayed. Therefore, we use the ratio of drops
over replications to track congestion. This ratio should grow
with congestion, inverse of delivery rate, which holds in the
model as shown in Fig. 3.

E. Limiting Replication

We have left the discussion of the variable R until now.
R represents the probability of forwarding a message and is
used to limit replication. R is the only parameter that nodes
can change and therefore the means by which replication
management is done. The function for R depends on the
replication management approach. Our node-based limiting
approach specifies the maximum number of messages, L,
transferred during each contact. The probability of m being
forwarded is the probability that m is one of the L messages
selected for transfer. Assuming a random forwarding policy,
Rlimit = min

(

L
α
, 1.0

)

, where α is from Eq. 3.
By varying L and computing the delivery probability in

different scenarios, it was found that the value of L resulting
in the best delivery ranged from 1 to the maximum value.
However, because of the simplifications of our model, the
full performance impact is not captured. To fully understand
the possible impact of node-based replication management via
L, we turn to simulation. By fixing the replication limit to
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Fig. 4. The change in delivery rate as L is varied with different buffer sizes.
The best L value is marked for each scenario.

different values we can compare the delivery rates at different
levels of congestion. Choosing the wrong value of L can result
in a 10-40% change in delivery rates (see Fig. 4).

IV. ICN CONGESTION CONTROL

Given the disconnected and dynamic nature of ICNs, con-
gestion control must act locally while thinking globally. Our
model in Sec. III highlights which global metrics can track
congestion. In this section, we present our local congestion
control algorithm based on those observations. Each node
independently calculates a local approximation of the current
congestion level, CV . As the node samples the network,
it continually updates CV . Whenever CV is updated, the
node also adjusts the replication limit L following an additive
increase, multiplicative decrease (AIMD) algorithm.

To maintain CV , local metrics are needed to approximate
the global metrics for drops and replications. Global drops
can easily be approximated by measuring the local drops at
an individual node. On the other hand, approximating global
replications is not as straight forward. When a node replicates
a message the node does not know for certain that the other
node kept the replica. Therefore, replications are counted by
successful incoming replications. The fidelity of these two
metrics can be improved by including measurements from
other nodes. When two nodes meet they exchange their current
drop and replication counters. In addition, because a message
is replicated along each hop it travels, the hop counts of stored
messages give further replication information.

To calculate the congestion value, a node monitors the
network for a certain time, and then computes CV ′ which
is the ratio of drops and replications collected in the last
sample. The drop and replication counts are reset for each
sample period. To dampen the effects of temporary spikes in
congestion, the new congestion value is calculated using an
estimated weighted moving average (EWMA) with α = .9 so
that CV ′ = α · CVsample + (1 − α) · CV . The most recent
sample is given higher weight to keep CV fresh.

After calculating CV ′, the node adjusts the replication limit.
As CV moves up and down, the replication limit should
grow to take advantage of all available resources, but back-off
when congestion increases, similar to how TCP updates its

Algorithm 2 PROCESSEVENT(event)
Require: drops = 0
Require: reps = 0
Require: limit = 1
Require: CV = ∞

Require: ai > 0, 0 < md < 1.0

1: if event = Drop then
2: drops = drops + 1
3: else if event = Receive Message then
4: reps = reps + 1
5: else if event = Contact with node b then
6: d = drops + b.drops
7: r = reps + b.reps +

P

m∈stored messagesm (hops(m)− 1)
8: reset(drops, reps)
9: CV ′ = α · (d/r) + (1− α) · CV

10: if CV ′ ≤ CV then
11: limit = limit + ai
12: else
13: limit = limit ∗md
14: CV = CV ′

congestion window [12]. Because changes in the replication
limit propagate slowly through the network, the limit should
grow gradually so as not to overwhelm the network. If the new
congestion value CV ′ is higher than the previous value CV ,
there is growing congestion and the limit is reduced by mul-
tiplying the current CV by multiplicative factor (md < 1.0).
If, instead, CV ′ is less than CV , the limit is increased by
a fixed amount ai > 0. Experimentally, it was found that a
lower md value, i.e. stronger back-off, coupled with a low
ai, i.e. slower growth, resulted in the highest delivery rates in
congested scenarios. We use md = 0.2 and ai = 1.

The choice of time length to sample the network is im-
portant to adjust the replication limit at an appropriate pace.
CV should be updated as frequently as possible, but not too
quickly to lose meaning. The minimum time to detect change
in congestion is the minimum time for the congestion metrics
to change. As illustrated in Sec. III, replications and drops can
only occur during node contact and message generation. Since
no replication occurs in message generation, the minimum
time to detect change in both metrics is one contact. Whenever
a node contact occurs the nodes update CV . Pseudo-code for
the algorithm is shown in Alg. 2.

V. EVALUATION

The goal of the evaluation is to show the delivery im-
provement attainable using congestion control across various
degrees of congestion and in diverse network configurations.
We evaluated the effectiveness of node-based congestion con-
trol by integrating it with several different routing algorithms.
We ran each protocol with and without congestion control to
demonstrate the protocol independent property of our conges-
tion control algorithm. Epidemic [9] was the baseline protocol
with no congestion control. For policy-based congestion con-
trol, we used the Prophet protocol, which selects messages for
forwarding based on the likelihood of the contact delivering
the message [5]. For message-based congestion control, we
selected Spray and Wait which assigns a static initial quota
to each message and distributes the quota in half at each
encounter [8].
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Fig. 5. Map of calculated CV at specific points in the “Events” scenario.
Higher congestion values, indicated by darker points, are mostly clustered
around the four event locations.

A. Experimental Set-up

To perform our evaluations, we added a transport layer in
the ONE simulator [19]. The transport layer is responsible for
performing all of the congestion related functions, assigning
sequence numbers to messages and managing message acks.
Acks are used to flush already delivered message replicas
from the network. The transport layer is queried whenever the
routing layer wants to send a message. If the replication limit
has not yet been reached for the current contact, the transport
layer allows the transmission. When a message is delivered
to the final destination, a new ack is generated and inserted
into a fixed size cache. Each node stores all received acks in
its cache along with the drop and replication counts. At the
start of a contact, the transport layer sends the cache to the
other node, which merges the information with its own. Any
messages for which an ack has been received are removed.
Then the replication limit is updated for the ensuing contact.

In all simulations, new messages were generated following
a Poisson process at each node with mean message period
varying based on the simulation. Each message was 50KB and
the destination was selected at random from the network. Each
node had a buffer of 1MB. To vary the level of congestion in
the network we changed the mean per-node message period.
Each simulation had 100 nodes in a 4500 x 3400m area with
transmission range of 150m and speed of 250kbps.

To capture various network conditions, several scenarios
were used to determine nodes’ movement. In the baseline
case, random waypoint mobility was used with speeds between
2 and 15m/s The other scenarios create spatial or temporal
variations in congestion. The first scenario contains several
events in different locations. Nodes congregate around the
event locations, increasing congestion due to higher neighbor-
hood message generation rate. When nodes are near events
they also increase their generation rates, so that a node’s
message generation rate is a function of the distance to the
nearest event. This scenario, which we call “Events”, loosely
models the behavior of mobile agents in a disaster [20]. In
the second scenario, the message generation rate is changed
at regular intervals to temporally vary congestion. For the first
steps, the rate is doubled. Once the peak rate is reached, the
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Fig. 6. Change in CV over time as the message generation rate fluctuates
in the “Diurnal” scenario.

network remains in high traffic load for several steps before
returning to the original low rate by halving at each step.
This behavior simulates a day-time/night-time traffic pattern.
We call this scenario the “Diurnal” scenario. Nodes move
following random waypoint movement.

B. Accuracy of Congestion Detection

Before evaluating the effectiveness of the full congestion
control algorithm, we first validated the local congestion de-
tection component in isolation. We ran congestion control with
CV calculation, but without the replication limit. Whenever
a node updated CV , the timestamp, location of the node and
CV were recorded.

In the “Events” scenario, congestion should be higher near
areas of high node density, for example, at the event locations.
In surrounding areas the congestion should decrease. Our con-
gestion detection algorithm was able to capture this behavior,
as can be seen by the map in Fig. 5. Each point is CV at
that location in the space. Darker points indicate a higher
CV . Interestingly, although the majority of high congestion
was around the event locations, there were other areas of
congestion in the spaces between events. This underscores
the importance of dynamic, node-based congestion control
because of unpredictable congestion conditions.

In the “Diurnal” scenario, node densities are fairly uniform
due to the random waypoint movement. Changes in congestion
instead come from increasing and decreasing message gener-
ation rates. Our congestion detection algorithm successfully
captures both the increase and the decrease in congestion,
as seen in Fig. 6. The mean CV values across the network
were computed every 30 seconds. At the beginning there is a
learning period as nodes begin to sample the network. After
the initial period CV responds fairly quickly, moving both up
and down in only a few update periods.

C. Benefits of Congestion Control

We next evaluated the full congestion control algorithm
including dynamic replication limiting. We first considered the
baseline scenario with uniform congestion. Some benefit of our
algorithm comes from freeing buffer space by using acks to
flush unnecessary messages. To quantify the benefit from the
ack and congestion control components, we ran each protocol
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Fig. 8. The change in message delivery rate in the “Events” scenario as the
message period increases with congestion control (CC) and without.

with full congestion control, with only acks and by itself. By
reducing the message period, congestion was increased.

The experiment revealed several things (Fig. 7). First, at
very high congestion, acks do not improve delivery because
they do not propagate before the replicas have been dropped
(see the Base+Ack bars). As congestion lessens, there is more
benefit from acks, but the majority of delivery improvement
comes from congestion control. Second, dynamic node-based
congestion control improves delivery for each protocol in ev-
ery scenario. Also, the effectiveness of node-based congestion
control compared to policy- or message-based can be seen in
the improvement of Epidemic. Epidemic by itself is very ineffi-
cient, but with node-based congestion control (Epidemic+CC)
it generally outperforms the base policy-based (Base-Prophet)
and message-based (Base-SnW) protocols in nearly every
scenario. Despite the good performance of the basic Spray
and Wait protocol, dynamic node-based congestion control
improves delivery in all cases by at least 8%. Third, at the
highest level of message generation the network is overloaded
as seen by the low delivery rate. Newly generated messages
quickly push stored messages out before the old messages have
time to spread through the network. Even though the network
can hardly operate, congestion control improves delivery by
15-73%.

Examining the performance of the different protocols under
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Fig. 9. The percentage improvement using congestion control over the base
protocol as base message period increases in the “Diurnal” scenario.
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spatial congestion shows the benefits of node-based congestion
control even more. In the “Events” scenario, node-based
congestion control is well-suited for the changing congestion.
All protocols with congestion control perform better or as
well as all base protocols (see Fig. 8). Node-based congestion
control does especially well when coupled with policy-based
forwarding. This hints at the benefits of choosing an effective
forwarding policy to pair with congestion control.

In the “Diurnal” scenario, the relative performance of the
protocols is very similar to the “Events” scenario. Because of
our dynamic replication management, our congestion control
is always able to adapt to the current message load. This
is illustrated by the percentage improvement when using
congestion control compared to the base protocols, as shown
in Fig. 9. In low congestion levels, dynamic congestion control
is able to take advantage of the extra available resources,
increasing Epidemic by up to 280% and Prophet by 190%.

D. Overhead

Finally, to evaluate the impact that congestion control
has on the underlying protocols, we compare the change in
goodput and delivery delay when using congestion control.
Our congestion control adds overhead from acks. In addition,
because replicas remain in the system longer, each message
might be copied more often. The goodput, bytes delivered
over total bytes sent, quantifies the trade-off between overhead
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Fig. 11. CDF of message delays for delivered messages with different
protocols with congestion control (-CC) and without.

and improved delivery. When operating in high congestion
scenarios, congestion control limits the replication, thereby
lowering overhead. This leads to a higher delivery rate and
a higher goodput (see Fig. 10). As the congestion lowers,
congestion control increases the replication limit, pushing
down goodput. Used with the flooding protocols congestion
control always has better goodput. Spray and Wait, because
of its message quota, has a relatively fixed overhead and so
delivery rate grows faster than overhead. However, in high
congestion our congestion control has a significant impact on
the overhead of Spray and Wait.

By limiting replications, congestion control increases the
message delivery delay, but messages that otherwise would
not be delivered are. This behavior can clearly be seen by
examining the CDF of message delays between protocols
from one run of the baseline scenario (see Fig. 11). The
increase in delay is especially noticeable compared to Spray
and Wait which is designed to reduce delay. However, the
median increase in delay using congestion control compared
to base Spray and Wait ranged at worst from only 6% to less
that .1%. Because of some far outliers, the mean ranged from
237% in the worst case, to actually reducing delay by 10%.
For Epidemic, the median increase in delay ranged from 3% to
less than .1% and for Prophet the median increase was never
more than .1%.

VI. CONCLUSION AND DISCUSSION

There is a clear opportunity to improve the delivery rate
of ICN networks by responding directly to congestion in the
network. In this paper we have shown that congestion in
an ICN can be detected by tracking the ratio of drops over
replications. Our dynamic node-based congestion control can
increase delivery rates by up to 280% in some scenarios, out-
performing all existing congestion avoidance schemes.

One challenge in our current implementation is determining
the correct multiplicative back-off value, md. When conges-
tion is high, it is best to back-off quickly. However, at a certain
point the network quickly switches to an uncongested state and
the strong back-off in replication is too aggressive and actually
hurts delivery. As a future extension to the existing congestion
control algorithm we will investigate how to dynamically scale

md to prevent over- or under-reacting to congestion.
While our node-based congestion control is effective for

controlling congestion of buffer space, there are two other
limited resources in ICNs, energy and contact duration, which
were not studied in this paper. One approach to saving energy
is to reduce the total number of transmissions. Our congestion
control already limits the replications in the network, and could
easily be combined with an energy-focused limiting algorithm.
Effective buffer management policies are also needed to prior-
itize messages for replication at each encounter, which might
be shortened from replication limiting. Many such policies
have been proposed in the literature and, as demonstrated in
the evaluation, combining such a policy with our congestion
control can lead to even higher delivery rates.
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