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Abstract—Current work in routing protocols for delay and
disruption tolerant networks leverage epidemic-style algorithms
that trade off injecting many copies of messages into the network
for increased probability of message delivery. However, such
techniques can cause a large amount of contention in the network,
increase overall delays, and drain each mobile node’s limited
battery supply. We present a new DTN routing algorithm, called
Encounter-Based Routing (EBR), which maximizes delivery ra-
tios while minimizing overhead and delay. Furthermore, we
present a means of securing EBR against black hole denial-
of-service attacks. EBR achieves up to a 40% improvement in
message delivery over the current state-of-the-art, as well as
achieving up to a 145% increase in goodput. Also, we further
show how EBR outperforms other protocols by introduce three
new composite metrics that better characterize DTN routing
performance.

I. I NTRODUCTION

Delay and disruption tolerant networks (DTNs) transport ap-
plication data by creating a “store and forward” network where
no infrastructure exists. Although end-to-end connectivity may
not be available between two nodes, DTN routing protocols in-
stead take advantage of temporal paths created in the network
as nodes encounter their neighbors and exchange messages
they have been asked to forward. Since there are no guarantees
that a route will ever be available, many current DTN routing
protocols apply epidemic-style techniques [19], leveraging the
fact that an increased number of copies of a particular message
in the network should improve the probability that the message
will reach its intended destination. However, such techniques
come at a high price in terms of network resources, resulting
in the rapid deletion of buffer space and energy on resource-
limited devices, the rapid depletion of available bandwidth,
and the potential to greatly increase end-to-end delay.

A number of routing protocols have been proposed to enable
data delivery in such challenging environments [2], [4], [7],
[11], [14], [17], [18], [20], [21], [6], [5]. However, many of
these protocols trade overhead and computational complexity
for increased successful delivery. This overhead expresses
itself as more traffic in the network creating more contention
in clusters of high connectivity and increased energy consump-
tion for nodes exchanging messages. Furthermore, many DTN
protocols make routing and forwarding decisions based on
advertised contact information, allowing for denial-of-service
attacks over the already intermittently connected network. All
of these effects can decrease overall network performance.

One method to mitigate this overhead is to identify key
properties in the network that allow for more intelligent
forwarding and message replication decisions. For example,
in environments targeted by DTNs, such as disaster scenarios

and certain vehicular networks, different classes of nodes
naturally tend to have more node encounters than others.
The main contribution of our research capitalizes on this
network property to design a DTN routing protocol that uses
local observations about a node’s environment. Our protocol,
Encounter-Based Routing (EBR), uses an encounter-based
metric for optimization of message passing that maximizes
message delivery ratio while minimizing overhead both in
terms of extra traffic injected into the network and control
overhead, as well as minimizing latency as a second order
metric. Furthermore, we present a security component to our
protocol that protects against denial-of-service attacksaimed at
eliminating copies of messages in the system. To fully evaluate
EBR, we propose the use of three composite metrics, which
clearly illustrate the interplay between fundamental metrics
like message delivery ratio, goodput, and end-to-end delay.
We then use these metrics to evaluate EBR and compare it to
the major protocols developed for DTNs, showing improved
performance and overhead. EBR achieves up to a 40% im-
provement in message delivery over the current state-of-the-
art, as well as achieving up to a 145% increase in goodput.

The rest of this paper is as follows. Section II presents a tax-
onomy of current DTN routing protocols. Section III presents
our Encounter-Based Routing protocol EBR. Section IV shows
how to secure EBR against black hole denial-of-service at-
tacks. Section V describes our evaluation methodology and
presents results. Finally, Section VI presents conclusions and
future research directions.

II. DTN ROUTING PROTOCOL TAXONOMY

DTN routing protocols can be classified as either
forwarding-based or replication-based. Forwarding-based
protocols keep one copy of a message in the network and
attempt to forward that copy toward the destination at each en-
counter. In contrast,replication-basedprotocols insert multiple
copies, or replicas, of a message into the network to increase
the probability of message delivery. Essentially, replication-
based protocols leverage a trade-off between resource usage
(e.g., node memory and bandwidth) and probability of message
delivery. Although all replication-based protocols take advan-
tage of this trade-off, these protocols can be further separated
into two classes based on the number of replicas created:
quota-basedandflooding-based.

Flooding-based protocols send a replica of each message
to as many nodes as possible, whereas quota-based protocols
intentionally limit the number of replicas. Assume thatmt

indicates the maximum number of unique messages (excluding
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replicas) that have been created prior to some timet. Then,
an upper bound on the total number of messages (including
replicas) in the network at timet is mt · L, whereL is the
maximum number of replicas for any given message.L can
be a probabilistic or discrete variable. Given these definitions,
a quota-basedrouting protocol can be defined as follows:

A replication-based routing protocol isquota-basedif and
only if L is independent of the number of nodes in the
network (assuming the characteristics of the network, such
as storage, bandwidth, and mobility, allow for every node
to have a replica of every message).

Conversely, any replication-based protocol whereL is de-
pendent on the number of nodes in the network is defined to
be flooding-based.

These definitions allow us to classify routing protocols
into three groups. Traditional Internet routing protocols(e.g.,
IP [15]) and ad hoc routing protocols (e.g., AODV [13],
DSR [10]) are forwarding-based, since nodes along a route
forward messages toward the destination without storing or
creating extra replicas of the messages. Forwarding-based
approaches for DTNs have been proposed [8], [16], but are
limited in their effectiveness due the instability or even non-
existence of routes from any particular node to the destination.
One forwarding-based approach, proposed by Jainet al. [9],
utilizes future knowledge about node mobility and specific
node encounters to improve the protocol (e.g., knowledge
that a node will encounter a bus at noon that will have
access to the Internet). However, the availability of such future
knowledge constitutes a special class of DTN networks and
such approaches will not work in general.

Epidemic routing is an obvious example of a flooding-based
protocol, since the number of replicas in the system is directly
dependent on the number of nodes in the system. One of
the major flooding-based protocols for DTNs is MaxProp [4].
MaxProp is flooding-based, since, if resources and mobility
allow, it is possible for every node in the network to have
a replica of the same message. Other examples of flooding-
based DTN protocols include Prophet [11], RAPID [2] and
PREP [14]. Prophet attempts to use information about the
likelihood of nodes encountering particular destinationsto
optimize the exchange of messages. RAPID orders messages
through the use of utility functions, with the goal of inten-
tionally maximizing specific metrics (e.g., delay). PREP, a
variant of Epidemic Routing, assigns priority to messages
based on costs to destination, source and expiration time,
and uses this priority to determine which messages should be
deleted or transmitted when buffer or bandwidth is constrained
respectively. In an attempt to mitigate the inherent resource
burden from flooding-based protocols, many of these protocols
specify complex optimizations, making implementation harder
and error-prone, that are tuned and tweaked for performance
in different environments.

Recent work by Erramilliet. al recognizes similar problems
with current DTN routing protocols and proposes techniques
to utilize properties of nodes, such as contact rate, when
making forwarding decisions [6], [5]. They are concerned with

choosing the best node(s) to forward messages to based on
utility values. This technique, however, can result in flooding-
like behavior if many encountered nodes have high utility
values. On the other hand, if many encountered nodes have
low utility value, messages may never leave the source nodes.

The main problem with flooding-based protocols is their
high demand on network resources, such as storage and band-
width. This led to work in developing quota-based protocols.
Spray and Wait [17] is a quota-based protocol where an upper
bound on the number of replicas allowed in the network is
fixed during message creation. Spray and Wait breaks routing
into two phases: aspray phase, where message replicas are
disseminated, and await phase, where nodes with single-copy
messages wait until a direct encounter with the respective
destinations. A follow-up protocol called Spray and Focus [18]
uses a similar spray phase, followed by a focus phase, where
single copies can be forwarded to help maximize a utility
function. While both Spray and Wait and Spray and Focus
succeed in limiting some of the overhead of flooding-based
protocols, their delivery ratios suffer.

While quota-based protocols are much better stewards of
network resources than their flooding-based counterparts,one
possible criticism is their inability to successfully deliver a
comparable amount of messages. In this paper, we show this
to be false by developing a quota-based protocol using an
encounter-based routing metric that has extremely low routing
overhead, while maintaining delivery ratios better than or
comparable to current flooding-based protocols.

III. E NCOUNTER-BASED ROUTING (EBR)

The primary goal of a DTN routing protocol is to obtain
high message delivery ratio and good latency performance,
while maintaining low overhead. However, current flooding-
based protocols (e.g., MaxProp [4], RAPID [2]) achieve high
delivery ratios at the expense of excessive network resource
usage, and current quota-based protocols ((e.g., Spray And
Wait [17], Spray and Focus [18]) that reduce this overhead
are not able to achieve comparable delivery rates.

In response, we present Encounter-based Routing (EBR), a
quota-based DTN routing protocol that achieves high delivery
ratios comparable to flooding-based protocols, while maintain-
ing low network overhead. This improvement in delivery ratio
is accomplished by taking advantage of the following observed
mobility property of certain networks:the future rate of node
encounters can be roughly predicted by past data. This prop-
erty is useful because nodes that experience a large number of
encounters are more likely to successfully pass the message
along to the final destination than those nodes who only
infrequently encounter others. Many networks experience this
phenomenon; examples include disaster recovery networks,
where ambulances and police tend to be more mobile and
bridge more cluster gaps than civilians, and vehicular-based
networks, where certain vehicles take popular routes.

Since EBR is a quota-based routing protocol, it limits the
number of replicas of any message in the system, minimizing
network resource usage. Additionally, EBR bases routing
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decisions on nodes’ rates of encounters, showing preference to
message exchanges with nodes that have high encounter rates.
These routing decisions result in higher probability of message
delivery, avoiding routes that may never result in deliveryand
so reducing the total number of message exchanges.

In EBR, information about a node’s rate of encounter
is a purely local metric and can be tracked using a small
number of variables. Therefore, EBR is able to maintain very
low state overhead, as compared to other protocols that can
require up toO(n) routing messages exchanged duringevery
contact connection, andO(n2) routing state locally stored
(e.g., MaxProp [4], Prophet [11]). A further strength of EBR
is that its message replication rules are simple to understand
and implement, as opposed to complex rules found in many
protocols, minimizing the chance of bugs and reducing compu-
tational complexity (e.g., the resources in terms of CPU cycles
required to operate the protocol).

A. Algorithm

Every node running EBR is responsible for maintaining
their past rate of encounter average, which is used to predict
future encounter rates. When two nodes meet, the relative ratio
of their respective rates of encounter determines the appropri-
ate fraction of message replicas the nodes should exchange.
The primary purpose of tracking the rate of encounter is to
intelligently decide how many replicas of a message a node
should transfer during a contact opportunity.

To track a node’s rate of encounter, it maintains two pieces
of local information: an encounter value (EV), and a current
window counter (CWC). EV represents the node’s past rate
of encounters as an exponentially weighted moving average,
while CWC is used to obtain information about the number
of encounters in the current time interval. EV is periodically
updated to account for the most recent CWC in which rate
of encounter information was obtained. Updates to EV are
computed as follows:

EV ← α · CWC + (1− α) ·EV.

This exponentially weighted moving average places an em-
phasis proportional toα on the most recent complete CWC.
Updating CWC is straightforward: for every encounter, the
CWC is incremented. When the current window update inter-
val has expired, the encounter value is updated and the CWC
is reset to zero. In our experiments, we found anα of 0.85
and update interval of around30 seconds allow for reasonable
results in a variety of networks. These parameter choices are
further elaborated upon in Section V.

Since EV represents a prediction of the future rate of
encounters for each node per time interval, the node with
the highest EV represents a higher probability of successful
message delivery. Therefore, when two nodes meet, they
compare their EVs. The number of replicas of a message
transferred during a contact opportunity is proportional to the
ratio of the EVs of the nodes. For two nodesA and B, for

every messageMi, nodeA sends

mi ·
EVB

EVA + EVB

replicas ofMi, wheremi is the total number ofMi repli-
cas stored at nodeA. For example, assume nodeA has 4
replicas of a messageM1 and 8 replicas of a messageM2.
Furthermore, assume nodeA, with EVA = 5, comes in contact
with nodeB, with EVB = 15. NodeA sends 15

5+15
= 3

4
of

the replicas of each message. Therefore, nodeA transmits3
replicas of messageM1 and6 replicas of messageM2.

Algorithm 1 presents the basic form of EBR, whereWi

represents the current window update interval parameter.

Algorithm 1 EBRRouting

if time ≥ nextUpdate then
EV ← α · CWC + (1− α) ·EV
CWC ← 0
nextUpdate← time + Wi

end if
if ContactC availablethen

for All messagesMi in local bufferdo
mi ←Mi.numOfReplicas
msend ← ⌊mi ·

EVc

EVc+EV
⌋

Sendmsend replicas ofMi to nodeC
end for

end if

B. Generalizing EBR

In this section, we prove that EBR adheres to the definition
of a quota-based protocol (as described in Section II) and show
the relevant bounds, both for the simple version, whereL, the
maximum number of replicas of a message, is discrete, and
for a more general version, allowing the use of probabilistic
L values.

For discreteL values, it is easy to show that EBR is quota-
based. Along with its data, every message contains a value
indicating the maximum number of replicas into which this
current message is allowed to be split. As an example, assume
an application at nodeA creates a message with the maximum
allowable replicas set to10. Assume nodeA encounters node
B and, based on the EBR protocol described in Section III-A,
wishes to transmit8 replicas. Then,A creates a copy of the
message for nodeB and assignsB’s maximum allowable
replicas to8. Furthermore,A resets its maximum allowable
replicas to2. Continuing this procedure in a recursive fashion
maintains the bound set by the initial message.

However,L values are not limited to a discrete maximum
number of replicas. The discrete structure can easily be relaxed
into a probabilistic structure, while maintaining meaningful
(yet probabilistic) bounds. ProbabilisticL values can allow
for less sensitivity to exact network conditions. When using
discreteL values, changes to the initial number of message
replicas allows for a fundamental tradeoff between MDR,
goodput, and average latency (see Section V). Using prob-
abilistic L values and increasing or decreasing variance and
mean can allow applications to compromise and not require
exact decisions about the number of allowable replicas.
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While any distribution may be used in this probabilistic
model, the Gaussian distribution allows for immediate, elo-
quent properties that help establish the bound on the numberof
messages in the network. In this case, the application specifies
the mean and variance of the distribution, instead of a discrete
number. Assume a nodeA wishes to split the messageM into
two replicas,MA andMB. NodeA must follow the following
EBR message splitting rule:

If M ∼ N(µ, σ2), then it can only be split intoMA ∼
N(µA, σ2

A) and MB ∼ N(µB , σ2
B) such thatµ = µA + µB

andσ2 = σ2
A + σ2

B .
For example, a message with mean10 and variance5 may

be split into two messages, one with mean8 and variance4,
and one with mean2 and variance1. It may not, however, be
split into a message of mean8 and variance4, and one with
mean7 and variance1. As a further note, EBR maintains the
ratio of mean to variance for all message splits.

This message splitting rule preserves the Gaussian distribu-
tion for the two newly created replicas. This is due to a result
from statistics known as Cramer’s Theorem:

• If X + Y ∼ N(µx + µy, σ2
x + σ2

y),
thenX ∼ N(µx, σ2

x) andY ∼ N(µy, σ2
y).

We now demonstrate that this general version of EBR is
a quota-based replication protocol, and establish an upper
bound, by proving the following theorem:

Theorem 3.1:Let S be a schedule of future message cre-
ations. Lett be an arbitrary future time. Assume
M1, M2, ..., Mi ∈ S are all the messages created before timet.
Assume each messageMi has a Gaussian random variable (for
notational ease, we refer to this directly as the messageMi),
with meanµi and varianceσ2

i , that represents the maximum
number of replicas the current message is allowed to be split
into.

The upper bound on the maximum number of message
replicas in the system is:

U ∼ N





i
∑

j=1

µj ,

i
∑

j=1

σ2
j



 .

Proof: Let U be the sum of all message replicas in
the system. Assuming messages never split, there will bei

messages in the system, each with meanµi and variance
σ2

i . We utilize the following rule of linearity for Gaussian
distributions (the converse of Cramer’s Theorem):

• If X ∼ N(µx, σ2
x) andY ∼ N(µy, σ2

y), thenX + Y ∼
N(µx + µy, σ2

x + σ2
y).

Therefore,

U =
i

∑

j=1

Mi ∼ N





i
∑

j=1

µj ,

i
∑

j=1

σ2
j



 .

Now assume a message,Mj ∼ N(µj , σ
2
j ) is split into

Mj1 ∼ N(µj1, σ
2
j1) and Mj2 ∼ N(µj2, σ

2
j2) such that

µj = µj1+µj2 andσ2
j = σ2

j1 +σ2
j2 (the message splitting rule

of EBR). Then by the same linearity rules,Mj = Mj1 +Mj2,
leavingU unchanged.

One minor issue to address is that the statistical rules and
theorems each assume true Gaussian distributions. However,
it does not make sense in our system for a messageM to
hold a negative value. The probability of this occurring can
be made sufficiently small by forcing the application to choose
sufficiently low variances for corresponding means (which can
never be below zero).

IV. SECURING EBR

The decision regarding how many replicas of a messages
a node should transmit to a contact depends completely
upon the ratio of both parties’ encounter values. Therefore,
a malicious node can convince a node following protocol to
transmit virtually any percentage of replicas to it. One of
the most worrisome results is the possibility of a denial-of-
service (DoS) attack where malicious nodes act as “black
holes”. Malicious nodes performing this attack advertise an
ultra-high encounter value, causing all contacts to send almost
all replicas to them. The malicious nodes then simply delete
these messages, attempting to stop, or at least slow, message
delivery.

Work by Burgesset. al shows that two popular types of
denial-of-service attacks, dropping all messages (which we
refer to as black hole denial-of-service) and flooding the
network with fake messages, result in similar network degrada-
tion [3]. This degradation does not cripple the network because
malicious nodes suffer from the same level of intermittent
connectivity as non-malicious nodes. In this paper, we have
chosen to consider the case of black hole DoS attacks. This
is because EBR is a low-overhead quota-based protocol, and
hence extra flooding is not as big a concern as black holes.
In quota-based protocols, non-malicious nodes do not flood
messages, real or fake, and should simply drop messages with
a high number of copies, as they are malicious.

To determine how vulnerable EBR is to black hole DoS
attacks, we perform a series of simulations where a certain
percentage of the nodes are malicious. Malicious nodes al-
ways advertise an exceptionally high encounter value, and
immediately delete any message replicas obtained. Each data
point is the average of 10 runs, and small 95% confidence
intervals are shown. A vehicular mobility model is used,
which is explained, along with simulation parameters, further
in Section V. The results of this experiment, shown in Figure1,
indicate that network performance can be hindered with a rel-
atively small number of malicious nodes. However, matching
the work done by Burgesset. al, additional malicious nodes are
not able to cripple the network. These results indicate thatit
is necessary to provide an optional solution that prevents DoS
attacks. Users not minding the decrease in performance may
choose not to implement this solution. However, providing a
solution is necessary for those users more concerned about
maximizing network performance. The penalty for choosing
the solution is that there must exist a means of digitally signing
data as well as binding keys to indentities, such as PKI.

The insight of the solution comes from the observation that
an encounter value cannever be altered unless an external
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Fig. 2. Timestamp Protocol

event (e.g., coming in contact with another node) occurs.
Therefore, proving that the encounter value was altered only
during an external event assures other nodes that the node in
question is not individually faking the value. Now, of course,
nodes can still collude to artificially inflate their encounter
values; this case will be considered shortly. Note that the goal
is to prevent the artificial increase, not decrease, of encounter
values.

The protocol works as follows. Assume node A comes in
contact with node C, and node C wishes to send data to node
A. The goal is for node A to offer acceptable evidence to node
C that the encounter value is not forged. To give acceptable
evidence for this, node A must keep a list of transactions in
which all previously encounter nodes digitally sign a time
stamped message stating that “node A met me at time T”.
A graphical illustration of this is given in Figure 2. Node A
can then offer all of these messages to node C, and allow node
C to recompute node A’s encounter value from scratch. If the
recomputed value is equal to the value provided by node A,
then node C can confidently transmit replicas to node A.

It is possible, even probable, that inherently trustworthy
nodes are present in the network. For instance, in disaster
recovery networks, police and emergency responders can be
considered highly trustworthy entities. These nodes can be
utilized to sign, orcheckpoint, actual encounter values. This
checkpointing process allows a node to delete all previous
transactions and simply start with the new, signed encounter
value. Checkpointing nodes verify the encounter value in
the same fashion as mentioned above and then provide a
signed encounter value back to the node. Checkpointing nodes

must be trusted by all nodes in the network since previous
transaction data is deleted after a signed encounter value is
obtained (e.g., a node is checkpointed by a checkpointing
node).

It is possible for colluding nodes to artificially inflate
each other’s encounter values by signing multiple “fake”
meeting messages. This is a difficult problem, and we have
not discovered a clear-cut solution. However, using statistical
techniques, nodes diligent in looking for abnormal contact
rates can mitigate the damage, If a node legitimently meets
another node or group of nodes very frequently, it can lessen
its chances of raising a false red flag by simply not storing
some of the meetings, and not updated its encounter value for
those meetings. A more thorough investigation of this is future
work.

V. EVALUATION

The primary goal of our evaluation is to show that EBR
achieves a high message delivery ratio and good latency, while
maintaining extremely low overhead. To demonstrate this, we
first present the metrics used in our evaluation, followed bya
brief description of the mobility models. Finally, we present a
comprehensive evaluation of EBR in comparison to five other
popular DTN routing protocols. To perform our evaluation,
we use the Opportunistic Network Environment simulator
(ONE) [1], which is a simulation environment designed specif-
ically for disruption tolerant networks.

A. Metrics

Although traditional evaluation metrics provide a good
understanding of the performance of a network, the evaluation
of many current DTN routing protocols is hindered by the
limited, and sometimes misleading, metrics used. To give a
clearer, more complete picture of the evaluation, we consider
three traditional performance metrics as well as introducethree
composite metrics.

Traditional performance metrics include average message
delivery ratio and end-to-end message latency, while resource
usage, orresource friendlinesscan be captured by goodput.
Goodput is defined as the number of messages delivered
divided by the total number of messages transferred (including
those transfers that did not result in a delivery). In a resource
constrained network, effective use of available storage can be
captured by the number of messages dropped due to buffer
overflows. We evaluated this metric in all of our scenarios;
however, since it closely correlates to goodput, those results
were omitted due to space constraints.

While these three traditional metrics provide a comprehen-
sive view of the communication in DTNs, many protocols
trade off effectiveness in one metric for effectiveness in
another. Composite metrics are able to penalize protocols for
performing poorly in individual primary metrics, giving a more
complete picture of protocol performance. We consider three
composite metrics to illustrate the relative relationshipbetween
the primary metrics. TheMDR x Average Delaymetric takes
MDR and penalizes it for having a poor end-to-end delay,
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allowing for a more complete picture. Similarly, theMDR x
Goodputmetric looks at MDR and penalizes it for having
poor goodput, giving a view of the network stewardship along
with traditional MDR. Finally, theMDR x Average Delay
x Goodputmetric looks at MDR and penalizes it both for
poor average delay and poor goodput. It is important to note
that the absolute value of composite metrics is more or less
meaningless by itself, since the metrics are artificial in nature.
Therefore, when comparing protocols using composite met-
rics, one should consider the protocols’ relative performance
to one another. Further note that to maintain the standard of
“higher is better”, average delay is always inverted when used
in composite metrics.

B. Mobility Models

Since DTNs can operate in many different environments,
we use three different mobility models in our evaluation,
specifically chosen to encompass a wide variety of DTN envi-
ronments: a map-driven model simulating a vehicular network,
an event-driven model simulating a disaster scenario [12],and
a traditional random waypoint (RWP) model.

The vehicular-based map-driven model, which is part of the
ONE simulator, limits node movement to actual streets found
on an imported map, an approximate5 km x 3 km section of
downtown Helsinki, Finland. Approximately15% of the nodes
were configured to follow pre-defined routes (like tram lines)
with speed between7 and 10 m/s, the default for trams in
the ONE simulator. The rest of the nodes were divided into
four groups of nodes and four groups of “points-of-interest”
(POI). Each node group was assigned different probabilities
of picking the next node from a particular group of POIs to
simulate the phenomenon that people often visit certain areas
of a city more frequently than others based on their profession,

age and other factors. The speed of these nodes varied between
2.7 and13.9 m/s, the default for car simulation in ONE.

The role-based, event-driven disaster mobility model [12]
captures distinct movement patterns of roles as they react
to external events. For this model, we simulate four equally
spaced disaster events and a hospital.50% of the nodes are
civilians that flee from the events,25% are ambulances that
oscillate to and from events and a centrally located hospital,
and25% are police personnel who at first gravitate towards an
event, but then react by “patrolling” the area in a random walk
fashion. Police and ambulances always travel between17 and
20 m/s, unless stopped. Civilians always travel between1 and
4 m/s, unless stopped.

Finally, we simulate the routing protocols with a traditional
random waypoint model. For this simulation, nodes are rela-
tively slow moving, since the disaster scenario and vehicular
models are relatively fast moving. Nodes move between0.5
and1.5 m/s, and pause at destinations for some time between
0 and120 seconds.

For the disaster and random waypoint mobility models, the
simulation area is3 km by 3 km. For all simulations, the
transmission range of each node is250 m.

C. Performance Results

To demonstrate the effectiveness of EBR, we perform two
groups of simulations on each of the three mobility models.
To illustrate how each of the protocols reacts to changes in
node density, we vary the number of nodes in the network
starting at26, followed by 51 to 251 in increments of50,
while keeping the area constant. The extra node represents a
hospital in the middle of simulation area for the purpose of
the disaster scenario mobility model. To illustrate how each
protocol reacts to varying network loads, we vary the per-



7

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  50  100  150  200  250  300

M
es

sa
g

e 
D

el
iv

er
y

 R
at

io

Number of Nodes

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200  250  300

A
v

er
ag

e 
D

el
ay

 (
se

co
n

d
s)

Number of Nodes

Spray and Wait
Spray and Focus

EBR
Epidemic

Prophet
MaxProp

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

 0  50  100  150  200  250  300M
D

R
 x

 (
1

 /
 A

v
er

ag
e 

D
el

ay
) 

x
 G

o
o

d
p

u
t

Number of Nodes

Fig. 5. Disaster: Varying number of nodes (a) MDR, (b) Average Delay, (c) MDR x Average Delay x Goodput
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Fig. 6. RWP: Varying number of nodes (a) MDR, (b) Average Delay, (c) MDR x Average Delay x Goodput

node offered load by adjusting the number of messages sent
per minute per source from1 (lower load), to2 (medium load),
to 4 (higher low). Following this comparative evaluation, we
evaluate how EBR reacts to changes in two local parameters:
the popularity counter weighting constant (α) and the number
of initial replicas per message.

In all simulations, we keep the area constant, the packet
size constant at25 KB, and the buffer space constant at1 MB.
Each simulation lasts for one simulated hour. Unless otherwise
noted, each data point is the average of at least10 runs, with
95% confidence intervals displayed. Due to the large amount
of time required to simulate MaxProp in ONE, it was only
evaluated fully for26, 51, and101 nodes, and is the average
of four runs for151 nodes, and is not evaluated for higher
numbers of nodes. MaxProp is omitted from the evaluation
using the vehicular mobility model due to the large amount of
time required to simulate it.

1) Comparative Results:We evaluate EBR against five
other popular protocols: (1) basic epidemic [19], (2)
Prophet [11], (3) Spray and Wait [17], (4) Spray and Fo-
cus [18], and (5) MaxProp [4]. To enable a comparison be-
tween EBR and Spray and Focus, we implemented Spray and
Focus to use an EBR-style encounter value (EV) to optimize
delivery ratios in the focus phase. When nodes running Spray
and Focus are in the focus phase, they hand-off single-copy
messages to nodes with a higher EV.

First, we present the results from the vehicular mobility
model. Note that MaxProp is not included in this set of simu-
lations due to the large amount of time necessary to simulateit
on the ONE simulator. EBR performs extremely well in terms
of MDR, compared to the other quota-based protocols, Spray
and Wait and Spray and Focus (see Figure 3(a)). Two factors
account for this. First, the mobility model fits perfectly into the

assumptions of EBR, namely that past information on rate-of-
encounters is a good estimator for future rate-of-encounters.
Second, the network utilization seems to be correlated to MDR
in this scenario, most likely due to constrained buffer space.
EBR is, by far, the most resource friendly, as shown by the
goodput metric (see Figure 3(c)). While EBR seems to have
unfavorable delay, this is, in part, due to a high MDR (see
Figure 3(b)). Since delay is computed only over messages that
have been delivered, it is deceptive to view delay alone since
many protocols quickly deliver messages that take a small
number of hops, and do not deliver most high-hop messages.
The composite metrics, showing a more complete picture,
further illustrate the power of EBR.

Second, we present the results from the disaster mobility
model. Due to space, we do not present all metrics. As
expected, in terms of MDR, MaxProp performs the best (see
Figure 5(a)), due to its aggressive use of network resources.
Closely following is EBR, which is never greater than 9 per-
centage points away from MaxProp. This is significant since
EBR is much less demanding on network resources, yet can
achieve a comparable MDR. Spray and Wait, which performs
closest to EBR in terms of goodput (yet still significantly
worse), performs noticeably worse in MDR. The reason EBR
performs much better than Spray and Wait is due to the role-
based characteristics of the disaster scenario mobility model.
Both ambulances and police are highly active, more-so than
civilians, and so EBR’s assumption about predicting the rate
of encounters using past data holds true. Furthermore, the
goodput is significantly higher using EBR because if a large
number of copies reach a high-encounter node, that node will
not forward many of these copies to low-encounter nodes. This
helps keep the network resource usages much lower than Spray
and Wait. Note that both Prophet and Epidemic collapse as
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Fig. 7. Disaster: Varying load (a) MDR, (b) Average Delay, (c) MDR x Average Delay x Goodput
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Fig. 8. RWP: Varying load (a) MDR, (b) Average Delay, (c) MDR xAverage Delay x Goodput

the number of nodes increases. In terms of latency, MaxProp
performs worst, whereas Spray and Focus performs expectedly
well (see Figure 5(b)).

Finally, the random waypoint model is considered. In terms
of MDR (see Figure 6(a)), the gap between EBR and Spray
and Wait is closer than with the disaster scenario (notice the
change in scale). However, as the number of nodes increases,
the gap becomes larger. The sudden increase at 50 to 100
nodes is due to the density finally becoming adequate for
good delivery. Past this point, there is a minor decrease in
performance for EBR, Spray and Wait and Spray and Focus
and a more dramatic decrease for Prophet and Epidemic.
We believe the poor performance of MaxProp is due to the
relatively small buffer size. In terms of latency, Spray and
Focus again performs the best (see Figure 6(b)); however,
EBR consistently performs better than MaxProp. As expected,
goodput strongly favors EBR. Due to space, the pure goodput
metric is not shown, in favor of the 3-composite metric.

In the second group of simulations, the offered load is
varied from 1 to 2 to 4 messages per source per minute. Due
to space constraints, we only present results for the disaster
mobility model and random waypoint model. Additionally, we
only include the results for MDR, delay and the three-way
composite metric. For the disaster scenario, MaxProp and EBR
perform expectedly well, with all protocols suffering as the
offered load increases (see Figure 7(a)). The average latency,
however, shows MaxProp performing much worse than other
metrics (see Figure 7(b)). Furthermore, as the offer load is
increased from 1 to 4 messages per source per minute, EBR
performs better than both Prophet and Epidemic. This is due
to EBR’s sharper drop in MDR as offer load increases. Spray
and Focus and Spray and Wait perform the best, as expected.
When combining all primary metrics, EBR performs at a high

level, and the gap between EBR and Spray and Wait does not
quickly close (see Figure 7(c)).

When the offered load is varied using the RWP mobility
model, the MaxProp data is averaged over three runs, with all
other data averaged over ten runs. Due to the more uniform
nature of per node rate of encounters, EBR does not perform
as well as it does in the disaster scenario mobility model.
However, in terms of MDR, it is still in the top tier, and
performs higher than all others with lower offered loads (see
Figure 8(a)). In terms of latency, as the offered load increases,
the gaps between protocols tends to close (see Figure 8(b)).
Finally, when combining all primary metrics, we notice that
EBR performs at the highest level, primarily due to low
overhead, and reasonable MDR and latency (see Figure 8(c)).

2) EBR Parameter Results:To determine how EBR reacts
to changes in internal parameters, we evaluate EBR against
itself using different parameter settings. Due to space con-
straints, we only present results for the disaster scenario
mobility model and only vary the number of nodes in the
system. To evaluate the impact of the weight of the current rate
of encounter in the EV counter, we varyα from 0.5 to 0.85.
Additionally, to capture the tradeoff between resource usage
and delay, we vary the starting number of message copies
between5, 11, and20. Therefore, a total of6 lines are shown
per graphs. Again due to space constraints, we only present
the graphs for the primary metrics, not the composite metrics.

In terms of MDR,α does not make a substantial difference.
However, the number of initial copies does. As the number of
nodes grows larger, EBR using only5 copies starts to perform
best, with EBR using11 copies within a few percentage points
(see Figure 9(a)). However, in terms of average delay, EBR
using5 copies performs significantly worse than with both11
and20 copies (see Figure 9(b)). Again, changing the value of
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Fig. 9. Disaster: Varying number of nodes (a) MDR, (b) Average Delay, (c) Goodput

α has little effect. The goodput is significantly greater when
the number of copies is small, as expected (see Figure 9(c)).In
total, when not considering latency, a small number of copies,
such as5, allows for good performance of EBR. However,
when latency is considered, a bit of a trade off must be made.
Therefore, we have chosen to compromise and recommend a
value of11 initial copies as default to EBR.

VI. CONCLUSIONS ANDFUTURE DIRECTIONS

The ability to efficiently and effectively route data through
intermittently connected networks is of critical importance to
DTNs. Many current routing protocols utilize flooding-based
techniques to obtain relatively high message delivery ratios.
This, however, comes at the expense of overwhelming network
resources, mainly bandwidth and storage. Resource outages
then lead to reduced performance in clustered areas, due to
congestion, as well as energy strain on the devices. Filling
all available buffer space with message replicas can hinder
an application’s ability to store local data. Additionally, over-
loading the network channel hinders one-hop protocols thatdo
not rely on routing. Unfortunately, protocols that allow for low
network resource utilization generally are not able to obtain
comparable delivery ratios. In this paper, we show that basing
routing decisions on the encounter rate of a node can increase
the delivery ratio. As shown in Section V, our Encounter-
Based Routing protocol (EBR) provides comparable or better
message delivery ratios than current flooding-based protocols,
while maintaining extremely low resource utilization.

There are many interesting future directions for encounter-
based routing. First, we plan on evaluating EBR using prob-
abilistic splitting rules, as described in Section III-B. More
specifically, we plan to analyze the MDR, average latency, and
goodput tradeoffs when the variance of the number of replicas
is increased for all nodes, as well as when the variance is non-
uniform for all nodes. Following this, we plan on exploring,
both mathematically and experimentally, distributions other
than Gaussian. A second future direction is exploring the
effects of using a second order derivative in terms of number
of encounters. Currently, EBR only considers the current rate
of encounters and averages this rate using an exponentially
weighted average to account for both older and newer data.
If EBR used a second order derivative, it would consider the
changein rate of encounters over time and this trend could be
used to distribute an appropriate number of message replicas.
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