
Evaluating Opportunistic Delivery of Large Content
with TCP over WiFi in I2V Communication

Shreyasee Mukherjee, Kai Su, Narayan B. Mandayam, K. K. Ramakrishnan, Dipankar Raychaudhuri and Ivan Seskar
WINLAB, Rutgers University

671 Route 1 South, North Brunswick, New Jersey 08902
Email: {shreya, kais, narayan, kkrama, ray, seskar}@winlab.rutgers.edu

Abstract—With the increasing interest in connected vehicles,
it is useful to evaluate the capability of delivering large content
over a WiFi infrastructure to vehicles. The throughput achieved
over WiFi channels can be highly variable and also rapidly
degrades as the distance from the access point increases. While
this behavior is well understood at the data link layer, the
interactions across the various protocol layers (data link and
up through the transport layer) and the effect of mobility may
reduce the amount of content transferred to the vehicle, as it
travels along the roadway.

This paper examines the throughput achieved at the TCP
layer over a carefully designed outdoor WiFi environment and
the interactions across the layers that impact the performance
achieved, as a function of the receiver mobility. The experimental
studies conducted reveal that impairments over the WiFi link
(frame loss, ARQ and increased delay) and the residual loss seen
by TCP causes a cascade of duplicate ACKs to be generated. This
triggers large congestion window reductions at the sender, leading
to a drastic degradation of throughput to the vehicular client.
To ensure outdoor WiFi infrastructures have the potential to
sustain reasonable downlink throughput for drive-by vehicles, we
speculate that there is a need to adapt how WiFi and TCP (as well
as mobility protocols) function for such vehicular applications.

I. INTRODUCTION

There has been a growing interest in having connected
vehicles, with the ability to communicate wirelessly at all
times. While much of the focus has been on Intelligent
Transport Systems (ITS) to develop services for traffic alerts
and safety applications [1], [2], there is also a significant
interest in delivering large entertainment oriented content and
other information to the vehicle. Much of this communication
is likely to occur with the vehicle communicating with infras-
tructure nodes, in what is known as Vehicle-to-Infrastructure
(V2I) Communications. While the adoption of cellular com-
munications in the connected vehicle is beginning, it has been
slow to grow because of the current, high cost of cellular
data communication to the consumer. On the other hand,
delivering the desired information over a WiFi infrastructure
that may already exist or can be deployed at a minimal cost
on roadways, may be an attractive alternative. However, it is
important to achieve sufficiently high throughput for the data
transfer because a moving vehicle is likely to be associated
with any given access point (AP) only for short periods of
time.

There have been a large number of efforts to provide public
WiFi infrastructure in urban areas in the United States in
recent years. The primary focus has been to provide ubiquitous
Internet access through these WiFi APs. When deploying
Municipal WiFi networks [3], for example, “Google WiFi”
in Mountain View, California [4], access points are mounted
on roadside lampposts. Such outdoor WiFi AP deployments
are designed primarily for pedestrian Internet access. The V2I
infrastructures may enhance these capabilities by having WiFi
APs operate at points more suited to vehicular traffic, such as
being deployed at intersections, possibly at higher elevation
(on traffic lights) etc. So, if there is a significant amount of
WiFi deployed via a combination of Municipal WiFi, V2I, and
other ‘freely’ accessible WiFi hotspots, the question then to
be addressed is: how useful will all these WiFi deployments
be also for delivering information to moving vehicles. In
[5], it was shown through repeated experiments of measuring
WiFi throughput over a 9-mile drive that 60% of the time
when speed was within 20km/h, vehicles could intermittently
achieve approximately 2Mbps throughput when downloading
content over WiFi networks.

It is well-known that the throughput achieved over WiFi
channels can be highly variable and also rapidly degrades as
the distance from the AP increases. While this behavior is well
understood at the data link layer, the interactions across the
various protocol layers (data link, network layer as a result
of mobility and transport layer) may eventually result in a
substantially lower amount of aggregate content transferred to
the vehicle as it travels along the roadway.

In this paper, we evaluate the effectiveness of I2V con-
tent delivery. We present measurement results from a set
of carefully designed outdoor WiFi experiments emulating a
variety of vehicular movement scenarios. For example when a
client moves at various speeds (including a pedestrian walking
speed), is stationary or stopped at different locations with
respect to the AP. Our goal with these experiments is to
understand and identify the unique challenges mobility poses
to I2V communications over WiFi. This takes on particular
significance when the actions taken by the 802.11 MAC
protocol and TCP interact in unpredictable ways. The concern
with content delivery over a V2I infrastructure is that a vehicle
is likely to be associated with a given AP for a brief period of
time. Maximizing the amount of data delivered to the client978-1-4799-4894-9/14/$31.00 © 2014 IEEE

2

during this short interval is key to the success of content de-
livery in the vehicular context. From our experimental results,
we observe that a packet loss that is not related to congestion
has the consequence of causing TCP to prematurely drop
the congestion window size substantially and correspondingly
degrading the throughput achieved. While there are several
reasons for TCP to drop its window size to the initial value,
including timeouts, one of the characteristics we observed was
the generation of a large number of DupAcks by the receiver
after a packet was irrecoverably lost by the data link layer
(e.g., after the number of link layer ARQs exceed the limit
set in the 802.11 implementation). The sender, after seeing a
large number of DupAcks, drops the window to the minimum
value of 1, and the throughput in turn degrades substantially
even though the channel is uncongested. While this effect is
tolerable in a continuous, and long-lived static connection, it
is mandatory that this be avoided in I2V content delivery, as
each vehicle’s connection time is limited, often of the order
of a few tens of seconds.

In what follows, we first briefly introduce previous work
on vehicular WiFi access. We then describe the physical
setup and methodology of our experimental study of I2V data
delivery performance over WiFi. We present our results in
section IV, focusing on dissecting 802.11 MAC and TCP’s
respective mechanisms especially with regard to their reaction
to loss, and analyze the impact on overall throughput for
content delivery. After that, we discuss the implications of our
experimental observations, and the possible network design
choices to improve vehicular WiFi content delivery.

II. RELATED WORK

There exist a body of previous work on experimental study
of vehicular WiFi access performance, from a variety of
perspectives.

Most prior work, such as [6], [7] focus primarily on the
feasibility and performance characteristics of V2I communica-
tion at different speeds and environments. In [8], Hadler et al.
provide experimental study results of a static AP transmitting
to a drive-by vehicle moving at a speed of 80km/h. They show
that the current protocol stack achieves half of the available
bandwidth, and focus on analyzing the overhead which causes
throughput underutilization during connection establishment
and data delivery. The topology adopted in our experiments
involves the data sender as a third node, such that the interplay
of TCP’s end-to-end performance and the AP’s 802.11 MAC
layer reliability mechanisms can be studied. In a vehicular
environment, clients possibly move at different speeds, and
frequently lose association with a currently connected AP
and need to re-associated with a new one. The study in [9]
showed that by allowing the mobile client to opportunistically
associate with multiple APs, one could avoid the overhead
related to handoffs. This reduces connection disruptions and
improves user experience. This approach would be another
way of prolonging the vehicular WiFi connection time, which
is beneficial for I2V communications. Recent works [10] and
[11] have also studied using multiple 3G interfaces to improve

data delivery to vehicular clients by splicing data over multiple
3G interfaces. While this is useful for V2I communication, it
is somewhat orthogonal to our focus of delivering content over
WiFi. We seek to more carefully understand the effectiveness
of delivering content over a single TCP connection over the
WiFi interface.

There has also been a significant amount of work in the
ITS community to use Dedicated Short Range Communication
(DSRC) for delivering small amounts of data with minimum
delay [12]. However, our focus in this study is to analyze
the ability of the network to sustain high throughput for large
content delivery services. A number of papers also compare
and contrast WiFi and cellular access from vehicles, and
consider offloading cellular data to WiFi so as to reduce usage
cost. In [13], an experimental study of network performance,
in terms of TCP throughput and loss rate, was carried out for
both WiFi and 3G. The authors concluded that the median
downlink WiFi throughput is less than half of 3G’s, and WiFi
has significantly higher loss rate than 3G. This paper suggests
that WiFi’s high data rate could be utilized to deliver delay-
tolerant flows, thus reducing cellular data usage. In this work,
we seek to first understand what are the causes for vehicular
TCP over WiFi throughput degradation, so that future designs
can take them into account.

III. EXPERIMENTAL METHODOLOGY

We consider a simple setup of an outdoor, open, 802.11g
WiFi Access Point delivering content to a vehicular client in
a variety of conditions. We assume that content is delivered
using TCP as the transport protocol. We examine the per-
formance in such situations by transferring large amounts of
data between a node (‘sender’) connected to the AP and the
mobile client (‘receiver’), as shown in Fig. 1. We evaluate the
performance in this environment by using Iperf [14] to transfer
large (1300) byte packets from the sender to the receiver. The
sender is an ‘Iperf client’, connected to the AP with Gigabit
Ethernet (so as to ensure that link is not a bottleneck) and
the receiver is the ‘Iperf server’ running on the mobile client.
Both the sender and receiver nodes are specially built high
performance nodes with an Intel dual core 2.8Ghz processor
configured with ample memory so as to be able to sustain full
link rate transmission/reception and have enough processing
capability to support wireshark/tcpdump/tcpprobe at line rate.
The AP is also a node with the same processor. The WiFi AP
and link are configured using hostapd to run 802.11g with a
nominal link rate of 54 Mbps. We ran experiments by having
the IEEE 802.11 auto-rate rate adaptation algorithm turned off.
The AP was set to operate on channel 11, after ensuring that
there were no other APs in the vicinity operating on that same
channel. Since the AP is purposely built for experimental use,
it was possible to increase the output power to examine the
effectiveness of the outdoor AP to deliver content to a vehicle
at larger distances (greater than 100 meters). We began our
experiments with the AP configured to deliver 500 milliwatts
of transmit power and report a first set of measurements.

After positioning the AP on the side of the road, we

3

AP
CPU: Intel(R) Core(TM)2, 2.80 GHz

Antenna: Omni-directional 6 dbi dipole
Wifi Driver: AR922X Wireless Network Adapter

Sender CPU: Intel(R) Core(TM)2, 2.80 GHz

Receiver
CPU: Intel(R) Core(TM)2, 2.80 GHz

Antenna: Omni-directional 6 dbi dipole
Wifi Driver: AR922X Wireless Network Adapter

TABLE I

AP Sender

Receiver

Gigabit Ethernet Link

Fig. 1. Experimental Topology

conducted several tests, the results of which we report in this
paper.

• With the receiver moving at the speed of a typical
pedestrian

• The receiver moving slowly towards and past the AP, and
going around a building that blocks the line of sight to
the AP

• The receiver moving from position to position, with a
long stop at each position (to measure Iperf throughput)

The specifications of the nodes are summarized in table I.
The sender and receiver were running TCP-Reno (changed

from the default setting of TCP-Cubic on Linux). Iperf was set
to transmit continuously throughout each of the experiments,
sending TCP packets with 1300 bytes as payload. TCP-SACK
was enabled and the receive socket buffer was set to 64 Kbytes.
The AP kernel buffer was set by default to have a 1000 frame
buffer.

The sender and receiver TCP behavior was monitored using
a variety of tools that all relate to tcpdump. TCP Probe, a
Linux kernel module was run on the sending node to record the
state of the TCP connection. In addition, the driver at another
Ubuntu machine, used as a ‘sniffer’ was configured to create
a virtual interface that logged tcpdump at the AP throughout
each experiment. Tcpdump was also run on the Ethernet port at
the sender. We post-processed these packet dumps with tshark
to obtain 802.11 MAC header, TCP headers, received signal
strength, physical layer data rate along with timestamps for
the experiments. We also logged the receiver position using
GPS so as to relate the physical location as well as the speed
of the receiver as it was driven in the various ways described
above.

IV. EXPERIMENTAL RESULTS

We present experimental results, focusing primarily on the
three scenarios described earlier: (i) pedestrian walking from
one end of a road to the other end, until the receiver loses
line of sight (shown as “Route 1” in Fig. 2); (ii) receiver
driving slowly around a parking lot; it loses line of sight with
the AP for an interval (shown as “Route 2” in Fig. 2); (iii)
receiver remains stationary (at the point “B” in Fig. 2). For
the first two experiments, at the starting point, the receiver
performs association and authentication with AP, and obtains

AP

Route 1

Route 2

A

C

D

E

G

F
H B

Fig. 2. Physical routes followed by the receiver during the experiments

an IP address assigned by DHCP. Only then the receiver starts
an Iperf server to listen on the default port of 5001. After
that, the receiver starts moving. For all three experiments we
record the statistics for the experiment after all the initial TCP
connection is setup, to correctly estimate the TCP throughput.

A. Pedestrian scenario
In order to emulate a pedestrian walking, the receiver moves

at an average speed of 6 mph on the route A-B-C-D (Route 1,
as highlighted in Fig 2). In Fig. 3(a), we see the throughput
increases as the receiver moves closer to the AP, then drops
as it moves away. The connection finally breaks at around 350
seconds, when it moves out of line-of-sight of the AP. Between
0 and 100s, the congestion window, cwnd, suffers 2 sudden
drops as seen in Fig 3(b), e.g., at around 30 and 40 seconds,
respectively. cwnd’s drop adversely affects the throughput (see
Fig. 3(a)). To trace the cause of window drop, note that from
Fig. 3(c), we see there are more ARQ retransmissions around
the times the window drops, compared to times when the
window (and throughput) is high (e.g., at around time 100s).
Moreover, in spite of the link layer’s frequent ARQ attempts,
end-to-end losses are still seen by TCP sender, as indicated
by the two bursts of duplicate acknowledgements (DupAck)
from the receiver, shown in Fig. 3(e). These occur around the
time instants when cwnd drops. Specifically, the number of
DupAcks at time 30s and 40s are 48 and 40, respectively.
TCP Reno governs the sender’s reaction to DupAcks: when it
sees three DupAcks, a fast retransmission of the lost packet
takes place (seen in Fig. 3(d)). In this simple topology (sender
to AP over a GigE link, AP to receiver is a 802.11g WiFi link),
the retransmitted frame from the sender node has to wait in
the transmit queue of the AP, until all the buffered frames
at the AP are delivered. Each of those frames draining out
of the queue to the receiver on the WiFi link again result
in an additional DupAck being sent upstream. Because the
sender has transmitted as many packets as the outstanding
window allowed, during this period when the WiFi link drains
the queue, the sender essentially has stopped sending and
waits until the new acknowledgement is received. Unlike

4

the specification on the fast retransmit, the typical Linux
implementation of TCP reduces the window (cwnd) first by
half on receiving the 3 DupAcks, and then continues to reduce
cwnd further by one for every 2 additional DupAcks (thus
preventing transmission of new data, as we observe from the
pcap traces). When the retransmitted packet is received, its
Ack, acknowledging all the outstanding data will enable the
sender to begin sending packets. But with the cwnd ‘deflation’
rule, from [15] that is meant to avoid a burst of data being
sent into the network due to sudden growth of the congestion
window, the sender reduces cwnd down to 1 and performs
a slow start (by the implementation in Linux again, a more
conservative choice than recommended in [16]). This causes
a significant throughput penalty as the window then recovers
through slow start. We will look at this window recovery
process again in the next subsection. While some of this
behavior may be attributed to the phenomenon of ‘buffer bloat’
[17], we observe that the buffering of 50-60 packets at the AP
is not unusual when it is the ‘bridge’ between the GigE link
on one side and a WiFi link with highly variable bandwidth.

B. A Slow-Drive Scenario
In this experiment, we performed a set of experiments with

the receiver in a car driven at a speed of 10mph along E-F-G-
H-D (Route 2 in Fig. 2), emulating a car going through a traffic
intersection. We also chose this route in order to analyze the
consequences of losing line-of-sight from the AP during an
ongoing I2V transmission. The throughput 4(a), initially starts
out by increasing quickly and being stable, i.e. staying around
17Mbps from 0s to 20s. As the car moves further into the
parking lot and the line of sight to the AP begins to be blocked
by the building, throughput drops significantly. Fig. 4(c) shows
that ARQ retransmissions in this interval are relatively sparse
and the retransmit count for each link layer frame does not
exceed 1 prior to 20s; subsequently, the number of ARQ
retransmits increases substantially. As a consequence, the TCP
layer observes residual loss, and at a time just after t = 40s,
two packets are lost. From t = 30s to 50s, multiple DupAcks
are received at the sender (see Fig. 4(d)), causing the sender
to reduce the congestion window size. This occurs multiple
times as TCP packets are lost in quick succession (and the
cwnd has not built up to the larger value (see Fig. 4(b)). The
sending TCP uses fast retransmit in response to the DupAcks
(see Fig. 4(f)), but because of the burst of DupAcks the cwnd
value drops down to 1 anyway. Starting from time = 50s,
the sender is not able to receive any acknowledgements from
the receiver (loss of line-of-sight), and the TCP connection
does not make progress. The sender experiences repeated TCP
timeouts and retransmits the packets unsuccessfully, as seen
in Fig. 4(f). During this interval, the retransmission timeout
value grows exponentially. Eventually, when the vehicle moves
back within sight of the AP, the TCP connection (which did
not drop during this nearly 40-second period) continues and
data transfer throughput begins to build back up (with the
congestion window building up) after the sender receives the
expected Ack at around 88s. Note though that there is one

more episode of a residual loss resulting in a cascade of
DupAcks, reduction in cwnd and a ‘hit’ to the throughput
around 90s as the vehicle continues to move.

1) Some losses are worse than others: In the two ex-
periments we described so far, TCP sees packet loss and
seeks to recover through fast retransmission on receiving three
DupAcks, but the reception of a cascade of DupAcks results
in the sender’s congestion window dropping all the way down
to 1. However, we observe that some of the losses are more
harmful, in terms of impacting throughput than others. In the
‘slow-drive’ scenario, the losses causing the cwnd to drop at
around t = 32s and t = 92s (shown in Fig. 4(b)), result
in a throughput reduction of about 10Mbps and 7Mbps (see
Fig. 4(a)). On the other hand, the window drop at t = 13s,
does not cause a substantial throughput degradation. We call
these two types of loss ‘penalizing loss’ and ‘moderate loss’
respectively. In fact, the determining factor of whether a loss
event hurts throughput or not appears to be the current RTT
experienced by the TCP connection.

We plot the Smoothed RTT (SRTT) 1 estimated at the sender
when receiving each Ack packet. From Fig. 4(e) we observe
that at t = 13s, when the sender enters the slow start phase to
rebuild the window after it ‘crashes’ to 1, the SRTT value is
approximately 2ms, and only grows a little, without exceeding
10ms, till t = 20s. Further, the time it takes to build the
congestion window back up is only 1.57 seconds, and the
throughput does not fall significantly. This is the ‘moderate
loss’ case. In contrast, SRTT increases dramatically starting at
92s. At this point, the loss causes the cascade of DupAcks, the
cwnd value crashes, and the throughput also falls. Just before
this we observe that the number of link layer ARQ is also
higher, with some packets being retransmitted 10 or 11 times.
The SRTT grows to a much higher value (25ms). This in turn
slows down the congestion window growth that now takes
2.11 seconds to build back up. This penalizes the throughput
achieved - hence the term ‘penalizing loss’. We observe in all
the scenarios where the loss occurs with a large SRTT, the
hit in the throughput for such a penalizing loss is noticeable
and influential in impacting application performance. For a
static scenario (described below), we observe that the current
conservative window recovery process does not penalize the
throughput from the application’s point of view. However, in
I2V or even in pedestrian mobility scenarios, where the the
user has only a short time of association with the WiFi channel,
recovering from a ‘penalizing loss’ is detrimental to applica-
tion performance. Our current work is to find improvements
to avoid such situations.

C. Static Scenario
To further understand if movement is the cause of ‘penal-

izing loss’, we conducted the same experiment with the car
parked 52.52m away from the AP (point B in Fig. 2). Results
of this experiment are shown in Figs 5(a) - 5(c). From the cwnd

1SRTT is the sender’s smoothed estimate of RTT, a reflection of instan-
taneous link quality (loss, delay) on the end-end connection and influences
TCP’s window growth and in computing the retransmission timeout value.

5

0 100 200 300 400 500
0

5

10

15

20

Time(in sec)

T
hr

ou
gh

pu
t (

in
 M

bp
s)

(a)

0 100 200 300 400 500
0

20

40

60

Time (in sec)

C
on

ge
st

io
n

W
in

do
w

in
 M

S
S

)

178 180
0

20

40

Time (in sec)

C
W

N
D

 (
in

 M
S

S
)

(b)

0 100 200 300 400 500
0

5

10

Time(in sec)

of

 L
in

k
La

ye
r

A
R

Q
 R

eT
x

(c)

0 100 200 300 400 500
0

5

10

15

Time (in sec)

of

 T
C

P
 R

eT
x

(d)

0 100 200 300 400 500
0

10

20

30

40

50

Time index (in sec)

C
ou

nt
 fo

r
ea

ch
T

C
P

D
up

A
ck

(e)

0 100 200 300 400 500
0

10

20

30

Time (in sec)

S
m

oo
th

ed
 R

T
T

(in
 m

ill
is

ec
)

(f)

Fig. 3. Experimental results for pedestrian mobility scenario: (a) Iperf throughput in Mbps when the receiver is moving along Route 1 (in Fig. 2); (b)
Congestion window trajectory with a callout (upper right) highlighting the fall and slow-start; (c) Number of ARQ retransmissions on WiFi link for each
retransmitted ARQ frame, showing increased ARQ retries as the receiver moves away from the line-of-sight of the AP; (d) Number of TCP retransmissions
for each retransmitted TCP segment; (e) Number of DupAcks received for individual TCP packet; (f) Smoothed RTT computed by the sender for each Ack
reception.

0 20 40 60 80 100 120
0

5

10

15

20

Time(in sec)

T
hr

ou
gh

pu
t (

in
 M

bp
s)

(a)

0 20 40 60 80 100 120
0

20

40

60

Time(in sec)

C
on

ge
st

io
n

W
in

do
w

 (
in

 M
S

S
)

(b)

0 20 40 60 80 100 120
0

2

4

6

8

10

12

Time(in sec)

of

 L
in

k
La

ye
r

A
R

Q
 R

eT
x

(c)

0 20 40 60 80 100 120
0

10

20

30

40

50

Time (in sec)

of

 D
up

A
ck

 fo
r

ea
ch

 T
C

P
 s

eg
m

en
t

(d)

0 20 40 60 80 100 120
0

10

20

30

Time (in sec)

S
m

oo
th

ed
 R

T
T

(in
 m

ill
is

ec
)

(e)

0 20 40 60 80 100 120
0

5

10

15x 10
7

Time (in sec)

S
eq

 #
 fo

r
T

C
P

 R
eT

x

Retransmission
Fast Retransmission

37 38 39 40 41

7.4

7.6

7.8
x 10

7

S
eq

 #

Time (in sec)

(f)

Fig. 4. Experimental results for a slow drive scenario along Route 2 (in Fig. 2): (a) Iperf throughput in Mbps, showing the throughput going down to zero
when the vehicle moves out of the line-of-sight of the AP and later coming back up as it moves into view; (b) Congestion window trajectory from tcp probe.
cwnd is logged for every Ack received, and no Acks were received from 48 to 87 seconds; (c) Number of ARQ retransmissions on the WiFi link, showing
that the AP stops retransmitting in-between due to loss association; (d) Number of DupAcks received for individual TCP packet; (e) Smoothed RTT computed
by the sender for each Ack reception. The plot is discontinuous when the AP loses association; (f) Sequence number of each retransmitted TCP segment,
showing that the TCP connection is not lost. The callout (on top) shows several segments getting retransmitted in a short amount of time, both due to fast
retransmits as well as RTOs. The number of TCP retransmissions for each segment is not included for brevity, but its behavior is similar to Fig. 3(d)

plot, we can see that only one TCP loss event occurs during
the course of this experiment. When the cwnd starts to recover
after dropping down to one (at around 22s), SRTT grows
moderately, not exceeding 8ms. This suggests that when the

client is static, the moderate loss event does not penalize the
throughput as much. We hope to look at the precise sequence
of events to understand the root cause for these different loss
situations, as we develop solutions to improve content delivery

6

0 20 40 60 80 100 120
0

5

10

15

20

Time(in sec)

T
hr

ou
gh

pu
t

(in
 M

bp
s)

(a)

0 20 40 60 80 100 120
0

20

40

60

Time(in sec)

C
on

ge
st

io
n

W
in

do
w

(in
 M

S
S

)

(b)

0 20 40 60 80 100 120
0

5

10

15

20

Time (in sec)

S
m

oo
th

ed
 R

T
T

(in

 m
ill

is
ec

)

(c)

Fig. 5. Experimental results for a static user scenario, with the receiver fixed at Point ‘B’ in Fig. 2: (a) Iperf throughput in Mbps showing stable throughput
in spite of cwnd drop; (b) Congestion window trajectory; (c) Smoothed RTT computed by the sender for each Ack reception

performance.
V. SUMMARY

We experimentally studied the delivery of large volume
content to vehicular clients over a 802.11 WiFi infrastructure,
using TCP. TCP’s reaction to packet loss over the WiFi link
can be particularly severe, thereby substantially reducing the
throughput achieved, even for a single packet loss. Since a
vehicular client may be associated with an AP for a short
period, it is important to not suffer this throughput penalty.

Our results suggest that I2V communication over WiFi has
the potential to support content delivery to both pedestrians
and vehicles. However, care needs to be taken. First, our
experiments suggest that the APs should be judiciously placed,
where the vehicular connection time is extended as much as
possible. For example, they could be at intersections where
vehicles often stop and wait, especially if placed at a higher el-
evation to retain line-of-sight as far as possible. Moreover, the
802.11 MAC and the TCP transport layers could be integrated
more intelligently. For example, using FEC or network coding,
TCP can be sequence number agnostic and not be ‘stuck’
on the loss of a particular packet. Possible network layer
solutions include content caching and storage at the routers
in conjunction with mobility-prediction and multihoming via
cellular and WiFi. Many of these ideas are explicit design
features of clean-slate Future Internet architectures such as
MobilityFirst [18]. It is also becoming increasingly clear that
the transport layer needs to adapt so as to not over-react to
non-congestion losses, as these occur frequently enough in our
experiments, despite the use of link layer ARQ.

REFERENCES

[1] “Vehicle-to-infrastructure (v2i) communications for safety.” [Online].
Available: http://www.its.dot.gov/factsheets/v2isafety factsheet.htm

[2] L. Figueiredo, I. Jesus, J. Machado, J. Ferreira, and J. M. de Carvalho,
“Towards the development of intelligent transportation systems,” in
Intelligent Transportation Systems, 2001.

[3] “Municipal wireless network projects map.” [Online]. Available:
http://news.cnet.com/Municipal-broadband-and-wireless-projects-map/
2009-1034 3-5690287.html

[4] “Google wifi.” [Online]. Available: http://en.wikipedia.org/wiki/Google
WiFi

[5] P. Deshpande, X. Hou, and S. R. Das, “Performance comparison of
3g and metro-scale wifi for vehicular network access,” in Proc. of
the 10th ACM SIGCOMM Conference on Internet Measurement, New
York, NY, USA, 2010. [Online]. Available: http://doi.acm.org/10.1145/
1879141.1879180

[6] J. Ott and D. Kutscher, “Drive-thru internet: Ieee 802.11 b for” auto-
mobile” users,” in Proc. of IEEE INFOCOM 2004.

[7] R. Gass, J. Scott, and C. Diot, “Measurements of in-motion 802.11
networking,” in Mobile Computing Systems and Applications, 2006.
WMCSA’06. Proceedings. 7th IEEE Workshop on, 2005.

[8] D. Hadaller, S. Keshav, T. Brecht, and S. Agarwal, “Vehicular
opportunistic communication under the microscope,” in Proc. ofACM
MobiSyS 2007. [Online]. Available: http://doi.acm.org/10.1145/1247660.
1247685

[9] A. Balasubramanian, R. Mahajan, A. Venkataramani, B. N. Levine,
and J. Zahorjan, “Interactive wifi connectivity for moving vehicles,”
SIGCOMM Comput. Commun. Rev. [Online]. Available: http://doi.acm.
org/10.1145/1402946.1403006

[10] J. Hare, L. Hartung, and S. Banerjee, “Transparent flow migration
through splicing for multi-homed vehicular internet gateways,” in Proc.
of IEEE VNC 2013.

[11] ——, “Beyond deployments and testbeds: Experiences with public usage
on vehicular wifi hotspots,” in Proc. of ACM MobiSyS 2012.

[12] D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, “De-
sign of 5.9 ghz dsrc-based vehicular safety communication,” Wireless
Communications, IEEE, 2006.

[13] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
mobile 3g using wifi,” in Proc. of ACM MobiSys 2010, 2010. [Online].
Available: http://doi.acm.org/10.1145/1814433.1814456

[14] NLANR/DAST : Iperf - the TCP/UDP bandwidth measurement tool.
[Online]. Available: http://iperf.fr/

[15] M. Allman, V. Paxson, and W. Stevens, “Rfc 2581: Tcp congestion
control,” 1999.

[16] S. Floyd and T. Henderson, “Rfc 2582,” The NewReno Modification to
TCPs Fast Recovery Algorithm, 1999.

[17] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the
internet,” Queue. [Online]. Available: http://doi.acm.org/10.1145/
2063166.2071893

[18] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “Mobilityfirst:
a robust and trustworthy mobility-centric architecture for the future
internet,” ACM SIGMOBILE Mobile Computing and Communications
Review, 2012.

