
1

Inter-Domain Routing with Cut-Through Switching
for the MobilityFirst Future Internet Architecture

Adrian Lara† , Shreyasee Mukherjee††, Byrav Ramamurthy‡, Dipankar Raychaudhuri†† and K. K.

Ramakrishnan‡‡

† University of Costa Rica, San Jose, Costa Rica, adrian.lara@ecci.ucr.ac.cr
†† WINLAB, Rutgers University, New Brunswick, NJ 08901-8541, USA, {shreya, ray}@winlab.rutgers.edu

‡ University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA, byrav@cse.un.edu
‡‡ University of California-Riverside, Riverside, CA 92521-9800, USA, kk@cs.ucr.edu

Abstract—Future Internet projects such as MobilityFirst and
Named Data Networking have proposed novel mechanisms to
replace the Internet Protocol to better support content delivery
and mobility. However, the problem of efficient data transfer
across the network core has not been adequately investigated. We
tackle the challenge of inter-domain cut-through switching using
software-defined networking (SDN). First, we propose and solve
an optimization problem that minimizes the total transfer time
using inter-domain tunnels. Second, we propose an SDN-based
routing framework for the MobilityFirst architecture capable
of dynamically creating such tunnels. The main novelty of this
framework is to name tunnels as network objects to simplify how
tunnels are created and maintained. To validate our framework,
we implement on the GENI (Global Environment for Network
Innovations) testbed a prototype for the MobilityFirst archi-
tecture. Our experiments with the optimization problem show
that the inter-domain latency between controllers plays a key
role on how tunnels are setup. Furthermore, our implementation
experiments show that the control plane delay can be reduced
by 75% when using inter- domain tunnels. Finally, we show how
our framework needs fewer messages than current protocols such
as label distribution protocol (LDP) to setup intra- domain and
inter-domain tunnels.

I. INTRODUCTION

Future Internet Architectures (FIAs) redesign the narrow
waist (IP layer) of the Internet to better support mobility,
efficient content delivery and trustworthiness. For example,
MobilityFirst [1] embraces several key concepts centered
around secure global identifiers that inherently support mobil-
ity and trustworthiness. This includes a hop-by-hop segmented
data transport based on a globally unique identifier (GUID)
and a global name resolution service (GNRS), as well as
name/address-based hybrid routing. Similarly, in Named Data
Networking (NDN) [2], IP addresses are replaced by content
requests and responses to allow users to focus on data rather
than sources and destinations.

These FIA networks face a challenge that has not been
solved yet. While significant attention has been paid to edge-
awareness and in-network caching, very little attention has

This material is based upon work supported by the National Science Foun-
dation under Grants No. CNS-1345277, CNS-1345295 and CNS-1455815.

been focused on efficient transmission of data across the
network core. Indeed, an efficient technique to traverse one
or many autonomous systems (ASes) is as important as edge-
awareness to ensure efficient content delivery. To address this,
we propose using cut-through switching tunnels to bypass
the routing mechanisms for certain flows that benefit from
such fast paths. To realize this, we leverage software-defined
networking (SDN) as a key technology to make the network
programmable and more flexible.

To motivate the need for inter-domain cut-through switching
in SDN, we first model the dynamic creation of inter-domain
tunnels as a linear optimization problem. Particularly, we
describe this problem in the context of inter-domain SDN. The
problem minimizes the total transfer time while considering
the costs of creating inter-domain tunnels. Using this problem
formulation, we demonstrate how inter-domain controller la-
tency plays a key role on how tunnels are created. Indeed, we
show how inter-domain tunnels are better when the latency is
small, but intra-domain tunnels are better otherwise. To the
best of our knowledge, this paper is the first one to formulate
and solve the creation of inter-domain tunnels in an SDN-
controlled network.

After that, we propose an routing framework for Mobility-
First that enables dynamic inter-domain cut-through switching.
The framework is based on the following design requirements:
inter-domain topology visibility, naming the tunnels as net-
work objects and per-flow traffic engineering. To demonstrate
the feasibility of the proposed framework, we develop a
prototype for MobilityFirst using the GENI testbed. The results
show that in-transit packet in messages can be reduced by
75% using inter-domain tunnels. Furthermore, naming tunnels
as network objects scales better than current protocols such as
LDP to setup tunnels.

The remaining of this paper is organized as follows. We
first survey the related work in Section II. Next we describe
the optimization problem in Section III and we describe the
routing framework in Section IV. After that, we evaluate our
work in Section V and conclude in Section VI.



2

II. BACKGROUND AND RELATED WORK

A. Overview of MobilityFirst

The MobilityFirst architecture uses flat names as identifiers
and separates the naming of entities (identifiers) from their
addressing (location). As shown in Fig. 1, every object at-
tached to the network is assigned a flat 160 bit globally unique
identifier (GUID) by one of several name certification services
(NCS). These GUIDs serve as self-certifying consistent names
for not only individual devices such as ‘John’s laptop’ or
‘Sensor XYZ,’ but also for groups of devices (‘all of Sue’s
devices’), a context (‘taxis in Lincoln’) or even more abstract
entities such as ‘all OpenFlow capable routers in a network’
or ‘all routers along path ABC.’ The mapping of GUIDs
to their network attachment points (NAs) is maintained by
a dynamic mapping entity that is globally distributed but
logically centralized called the global name resolution service
(GNRS) [3]. Every time a network entity changes its point
of attachment to the Internet, the mapping in the GNRS is
updated. Furthermore, routers have the capability of querying
the GNRS for up-to-date GUID-NA mappings.

Host 
Naming 
Service

Taxis in NYCJohn’s laptop

Sue’s mobile

Sensor XYZ
Media file ABC

Server 1234

Global name Resolution Service (GNRS)

Sensor 
Naming 
Service

Content 
Naming 
Service

Context 
Naming 
Service

Globally Unique Identifier (GUID)

NetworkStorage-aware 
routing

Hop by hop file 
transportNetwork address

Net1.local_ID
Network address

Net2.local_ID

Fig. 1: Overview of the MobilityFirst architecture and its
components
B. Intra-domain cut-through switching in MobilityFirst using
SDN

To explore how MobilityFirst can benefit from cut-through
switching, we implemented a prototype MobilityFirst using an
SDN-based control plane [4]. In this work we demonstrated the
gain in performance between having an end-to-end tunnel and
forwarding on a hop-by-hop basis and the benefits of aggre-
gating multiple flows in a single tunnel at intra-domain scale.
The performance gain achieved motivated us to investigate if
such benefits are possible at inter-domain scale as well.

C. Multi-domain optimization

Existing studies have considered inter-domain routing as
an optimization problem [5], [6], [7]. Tomaszewski et al. [5]
consider the problem of bandwidth reservation on inter-domain
links for different traffic classes. Roughan et al. [6] tackle
the problem of traffic engineering with limited information
shared across domain. Finally, Chamania et al. [7] explore

how to achieve IP routing stability through dynamic creation
of tunnels at the WDM layer. Our model of tunnels, described
in the next section, is based on the formulation proposed by
this work.

III. DYNAMIC CREATION OF INTER-DOMAIN TUNNELS

In this section, we model the dynamic creation of inter-
domain tunnels as an optimization problem. The objective
function minimizes the total transfer time, including control
plane delays, while considering the different costs of creating
and maintaining inter-domain tunnels.

Fig. 2: Sample network with two domains and two cut-through
tunnels (3-6 and 4-7).
A. Assumptions

We make the following assumptions in the formulation
of this problem. First, we assume that the computation of
the tunnels is being performed by the controller of one of
the domains. Moreover, we assume that such controller has
visibility into the bandwidth of all links, including those
belonging to other domains. In the framework described in
Section IV we propose a way to achieve this. Second, we
assume that, when the optimization begins, no tunnels exist
and there is no traffic flowing. We leave studying the steady-
state scenario for future work. Third, we assume that the cost
of inter-domain tunnels is computed based on the individual
cost of each link traversed by the tunnel. Fourth, we assume
that the flow rate and duration between each source and
destination node are known. Finally, we assume that only one
tunnel can exist between two routers, but the tunnel can carry
more than one flow between different sources and destinations.

B. Settings

Consider a network of V nodes (OpenFlow-compliant
routers) belonging to at least two different domains. The path
between all pairs of nodes is known and the optimization
problem explores all combinations of using links individually
or in tunnels.

We consider the following parameters:
• λs,d: Bit rate in Mbps between source s and destination
v ∈ V ;

• δs,d: Duration in ms of flow between source s and
destination v ∈ V ;

• ci,j : Capacity in Mbps of link i, j;
• ψi,j

x,y: Link i, j ∈ L is used when a tunnel between x,
y ∈ L is setup (boolean);

• φi,js,d: Link i, j ∈ L belongs to the path between s and
d ∈ V (boolean);



3

• bi,j : Time in ms needed to setup inter-domain tunnel
when link i, j is used;

• mi,j : Maintenance cost due to inter-domain messages to
maintain a tunnel when link i, j is part of it;

• lx: Latency in ms between switch x ∈ V and the
controller it is connected to;

• sx: Time in ms needed by the controller to handle a
packet in message sent by switch x ∈ V ;

• ux: Time in ms needed by the initiating domain controller
to compute a tunnel path;

• wx,y: Inter-domain latency in ms between domain con-
trollers to setup a tunnel between switches x and y ∈ V ;

• T : Maximum number of tunnels allowed;
• M : Maximum maintenance cost allowed per domain;
• D: A flow duration must be at least D times longer than

the time needed to create a tunnel in order to be routed
through that tunnel. This parameter is used in constraint
6 and is explained below in more detail.

Likewise, we consider the following decision variables:
• tx,y: A tunnel between nodes x, y ∈ V is created.
• fs,dx,y : Flow between s, d ∈ V is routed through a tunnel

between nodes x, y ∈ V .
• ri,js,d: Flow between s, d ∈ V is routed through direct link
i, j.

We also use use two additional parameters to simplify the
objective function:
• τx,y: Time needed to setup a tunnel between switches
x and y ∈ V . This parameter is computed as τx,y =
ψi,j
x,y × lx + ux +wx,y (i.e. the sum of the switch to link

latencies, the inter-domain controller latency and the time
needed by the initiating controller to calculate the path).

• ιi,j : Time needed by the domain controller to handle a
packet in message when a flow is routed through the
direct link i, j ∈ V . This parameter is computed as
ιi,j = 2 × lj + sj (i.e. the round-trip latency between
the switch and the controller added to the time needed
by the controller to handle the packet in message).

C. Problem formulation

For each flow, there is a known transfer time δs,d. However,
additional delays happen every time a packet in message is
received a rule is inserted in the flow table of the switch.
Similarly, the flow can be delayed if a cut-through tunnel is
being created. The goal of this problem is to minimize the total
transfer time for all flows combined with the delays caused by
the control plane.

Objective function: Minimize∑
s,d∈V

δs,d +
∑

x,y,i,j∈V
ri,js,d × ιi,j + fs,dx,y × τx,y (1)

Subject to:

∀i, j ∈ V,
∑

x,y,s,d∈V

λ× (φi,js,d× r
i,j
s,d+ψ

i,j
x,y × fs,dx,y) ≤ ci,j (2)

∀i, j, s, d ∈ V, φi,js,d × r
i,j
s,d +

∑
x,y∈V

ψi,j
x,y × fs,dx,y = 1 (3)

∀x, y, s, d ∈ V, tx,y ≥ fs,dx,y (4)

∀x, y ∈ V,
∑

tx,y ≤ T (5)

∀s, d ∈ V,D ×
∑

x,y∈V
fs,dx,y × τx,y ≤ δs,d (6)

∀x, y ∈ V,
∑

tx,y(
∑
i,j∈V

mi,j × ψi,j
x,y) ≤M (7)

The minimization objective function of this problem (Equa-
tion 1) uses the τ and ι parameters to take into account all the
delays. For each direct link used, the ι delay is considered.
Similarly, for each tunnel, the τ delay is counted. By adding
these delays to the duration of each flow δs,d, the problem
minimizes the total transfer time.

Constraint 2 ensures that the link capacity limit is enforced
for all links in the network. Constraint 3 ensures that all the
links {i, j} between a source s and a destination d are used,
either as a single link (φi,js,d× r

i,j
s,d), or as part of a tunnel that

uses that link (ψi,j
x,y × fs,dx,y). By making the equation equal to

one, we also guarantee that only zero or one bypass using the
link can co-exist, thus eliminating incompatible tunnels.

Constraint 4 is used to ensure that tx,y is true if, for any
pair of source s and destination d, the tunnel fs,dx,y is used at
least once. tx,y is then used to keep track of the maintenance
cost of the system, instead of using f values that are specific
to each flow and could thus be duplicated for the same pair
of nodes.

Constraint 5 guarantees that the number of tunnels created
stays below T , the maximum number of tunnels allowed.

Finally, Constraint 6 ensures that a flow between source s
and destination d ∈ V only goes through tunnels if the time
needed to setup the tunnels is D times smaller. The goal of
this constraint is to avoid tunneling a flow that lasts 5 seconds
if creating a tunnel will take 3 seconds. Instead, a longer
flow will benefit more from the tunnel. Similarly, constraint 7
ensures that the maintenance cost of all tunnels is below the
maximum threshold M .

D. Study of sample topologies

To validate the problem formulation, we ran the optimiza-
tion for two different topologies created randomly. Topology
1 is a small topology with 11 nodes, two domains and 6
flow requests. Topology 2 has 35 nodes, two domains and
15 flow requests. In our experiments, all flow requests are
inter-domain.

First, we note that the inter-domain latency plays a key role
in how tunnels are created. We experimented using Topology
1 for different values of inter-domain controller latency across
domains (w parameter in the optimization problem). The
results in Fig. 3a show how the number of inter-domain tunnels
created decreases as the latency increases. Indeed, the benefit
of bypassing multiple hops (i.e. reducing the impact of switch
to controller latency at each hop) is only beneficial as long as
the time needed to create a tunnel is reasonable. As a result, for
a small inter-domain latency, the optimization problem tends
to create a single tunnel for each flow. However, when the



4

Fig. 3: (a) The distribution of intra-domain and inter-domain tunnels for varying inter-domain controller latency. (b) and (c)
The total delay caused by controller processing with low and high inter-controller latency for Topology 1.
value increases, the solver tends to create more edge-to-edge
intra-domain tunnels for each domain.

Such a behavior is confirmed in Fig. 3b and Fig. 3c. We
made a modification to Constraint 5 to enforce an exact
number of tunnels instead of just setting an upper bound T .
As a result, we observe the minimum delays obtained for
topologies 1 and 2, when the inter-domain controller latency
is 3 or 10 (low and high in Fig. 3a). Notice how, for a low
latency, the solver creates approximately one tunnel per flow.
In contrast, for a higher latency, on average two tunnels per
flow are created.

Finally, these experiments also show that the maximum
delay is obtained when there are no tunnels. Likewise, once
the minimum has been obtained, the increase in the delay is
slow in comparison to how it decreases before reaching the
optimal value. Therefore, we can conclude that the best way
to set up the tunnels depends on the inter-domain controller
latency and also having too many tunnels is better than not
having enough tunnels.

In a real network, several implementation challenges must
be addressed to solve the problem of inter-domain cut-through
switching. For example, we assumed a known data rate and
flow duration, as well as inter-domain link visibility. After
demonstrating the importance of inter-domain controller la-
tency in this section, next we propose a routing framework
capable of inter-domain cut-through switching that simplifies
how the tunnels are created and maintained.

IV. ROUTING FRAMEWORK DESCRIPTION

To implement dynamic creation of inter-domain tunnels,
three requirements must be met by the routing framework.
First, domain controllers need to be aware of at least part
of the topology from other domains (we assumed in the
formulation problem that each domain controller was aware of
the bandwidth of all links in the network). Second, the domain
controllers must be capable of exchanging messages with other
domains to setup cut-through tunnels across domains. Third,
the controllers must be capable of traffic engineering to decide
how to map flows to tunnels.

The description of this framework uses MobilityFirst ter-
minology. However, the proposed work can function in any
name-based network with a centralized global name resolution
mechanism.

A. Increased visibility between domains

In MobilityFirst, autonomous systems (ASes) have the
flexibility to expose their internal network characteristics in
terms of aggregated nodes (aNodes) and virtual links (vLinks).
Each AS has the flexibility to decide on the aggregation
granularity and hence the amount of state it wants to advertise.
State is announced and exchanged in the form of a network
state packet (nSP) similar to link state routing (see Fig. 4b).
Each domain controller is responsible of creating the virtual
topology of aNodes and vLinks and it is also responsible of
propagating link information such as bandwidth, availability,
variability and latency. The advantage of sharing information
of aNodes and vLinks through nSPs is two fold. On the
one hand, it allows each domain to customize the topology
information to be shared with other domains. On the other
hand, it provides useful information to other domains that can
now decide how to route packets to get a given bandwidth,
availability, variability and latency.

B. Dynamic creation of inter-domain tunnels using the GNRS

Next we describe a novel technique to setup cut-through
switching tunnels across multiple domains that leverages the
globally available name resolution service (GNRS). The main
advantage of having a globally available entity is that the
number of messages needed to be exchanged between domain
controllers is significantly reduced.

To take full advantage of the GNRS, the routing framework
names the tunnels. In other words, every tunnel created in a
MobilityFirst network is an object that can be identified with
a GUID (see Fig. 4a). When a domain controller initiates a
request for a inter-domain tunnel, it contacts other domain
controllers with a setup request. The request includes a label
to identify traffic, as well as the GNRS entry containing
information of the tunnel. When a neighbor domain controller
accepts the request to create a tunnel, it creates a GNRS entry
that contains information about the tunnel to be shared with
other domain controllers. As a result, once the tunnel has been
created, the domain controller that initiated the request knows
the GUID of all entries needed to collect information about
the tunnel.

Although some initial messages are needed to create the
tunnel, one advantage of this technique is that tunnel main-
tenance and tear-down do not need further messaging. First,
a domain controller can use the GNRS entry to share tunnel
attributes with other domains, such as available bandwidth or



5

Msg_Type Hop_to_Src

Neighbor_aNode#1-vLink<B,V,A,L>
Neighbor_aNode#2-vLink<B,V,A,L>

…
Neighbor_aNode#z-vLink<B,V,A,L>

AS_Num:Source_aNode

Internal Topologies:

aNode#1-vLink<B,V,A,L>-aNode#2
aNode#2-vLink<B,V,A,L>-aNode#3

…
aNode#x-vLink<B,V,A,L>-aNode#y

Neighbor Info:

Fig. 4: (a) The steps needed to setup inter-domain tunnels. (b) The structure of network state packets.
expected time before having to terminate the tunnel. Second,
terminating the tunnel is as simple as deleting the GNRS entry.
Fig. 4a, suppose AS3 deletes the GNRS tunnel (GC) entry
GT3. The initiating domain controller (AS1) notices that the
entry has been deleted and concludes that AS3 is no longer
part of the tunnel. Next, it deletes the GT entry known to
all domains members of the tunnel. Finally, AS2 notices that
the GT entry has been deleted. We evaluate the reduction of
inter-domain messages in Section V-B.

C. Dynamic traffic engineering based on flow behavior
Given the knowledge of link conditions across domains and

the ability to create inter-domain tunnels, the last responsibility
of the domain controller is to identify flows to do traffic
engineering. Indeed, the controller must find which flows will
benefit the most from a inter-domain cut-through switching
tunnel. We have developed traffic engineering techniques to
detect elephant flows and support mobility, as well as user-
requested cut-through switching, but we leave the explanation
and evaluation of these for future work due to space limita-
tions.

D. Implementation techniques
The current implementation of our framework is capable

of cut-through switching at Layer 2 using virtual local area
network (VLAN) tags, as described in Lara et al. [4]. However,
the cut-through tunnels can also be implemented at lower
layers, such as optical transport network (OTN) or wavelength
division multiplexing (WDM). This allows for a much smarter
bypassing technique, capable of deciding whether a bypass is
more efficient at the optical layer or at the Ethernet layer. We
will explore this in future work.

In the next section we focus on evaluating how inter-domain
tunnels reduce the delay in the network and how the proposed
framework simplifies how inter-domain tunnels are created.

V. EXPERIMENTAL EVALUATION

The evaluation section focuses on demonstrating how inter-
domain tunnels reduce the number of packets that must be
handled by domain controllers. We also compare the number
of messages needed by the framework to create tunnels against
a known protocol such as label distribution protocol (LDP)
[8]. To do so, we provide results of the implementation on the
GENI testbed [9] using the parameters shown in Table I and
the topology shown in Fig. 5a.

TABLE I: Summary of components and key parameters used
in the experiments

Type of switch Open vSwitch version 1.9.3
Controller version Floodlight 1.0

Controller host Ubuntu 12.04 LTS
Controller host processor Intel(R) Xeon(R), 2.67GHz

End-user OS Ubuntu 12.04 LTS
Link bandwidth 100 Mbps

A. Inter-domain tunneling and flow aggregation

First, we show how multiple domains agreeing on an inter-
domain label-based tunnel reduce the number of packet in
messages received by transit controllers. To do so, we ran-
domly send 25 flows between AS1 and AS3.

Figure 5b shows the number of packet in messages received
per second by the controller. When all traffic is forwarded
without using an inter-domain cut-through tunnel, the con-
troller receives a total of 128 messages (top curve). However,
when inter-domain tunnels are created for some of the flows,
the total number of messages is reduced to 33 (bottom curve),
for a 75% reduction. These results are specific to this topology
and flow demands, but our goal is just to demonstrate how the
creation of inter-domain tunnels can reduce the control plane
delay.

B. Reduction of label distribution messages

Next we demonstrate how combining SDN with tunnel
naming reduces the number of messages needed to create and
maintain inter-domain tunnels. To do this, we briefly describe
how all the functionality of LDP used in MPLS is implemented
by our framework and we compare the number of messages
needed to setup inter-domain tunnels.

Some benefits are due to using SDN. First, note that by
using SDN, the number of intra-domain messages between
peers is unnecessary. Instead, the SDN controller is responsible
for pushing forwarding rules to the switches. Therefore, there
is no need for intra-domain discovery messages. Second,
session messages exist between domain controllers as opposed
to peering routers. This reduces the number of messages
needed because the only links carrying these messages are
those between edge routers of neighbor domains. Third, ad-
vertisement messages are reduced for two reasons. On the one
hand, intra-domain advertisement is not necessary because the
domain controller is network aware. On the other hand, inter-
domain advertisement is already achieved using the network
state packets described in Section IV-A. For this reason,
advertising messages are only needed to request a new tunnel



6

Fig. 5: (a) The experimental topology. Three SDN-based domains are deployed with end-nodes on ASes 1 and 3 and traffic
going through an in-transit domain (AS2). (b) The accumulated number of packet in messages received by the AS2 domain
controller with and without inter-domain tunnels. (c) The number of messages needed to setup inter-domain tunnels using LDP
or the proposed framework.
creation, as described in Section IV-B. Table II summarizes the
key differences between messaging in LDP and the proposed
framework.

TABLE II: Message equivalency between LDP and SDN-
GNRS

Message
type

LDP SDN-GNRS (our work)

Discovery Peer-to-peer
between
routers

No additional messages required, since
this is achieved using network state
packets

Session Peer-to-peer
between
routers

A session between domain controllers
is required regardless of tunnels. No
additional messages required.

Advertisement Peer-to-peer
between
routers

Controller-to-controller and controller-
to-GNRS messages are required

Notification Peer-to-peer
between
routers

Controller-to-controller messages are
required

Flow rule in-
jection

Not required Controller-to-switch messages are
needed to push forwarding rules to the
switches. Figure 5c does consider these
messages in the comparison.

Other benefits are due to naming the tunnels as network
objects. First, the GNRS provides a common platform to
exchange information between domain controllers. In Mobili-
tyFirst, the GNRS plays a key role in how packets are routed,
so we can assume that it is a highly available entity and a
session between each controller and the GNRS will exist.
This reduces the complexity of establishing sessions between
multiple domains. Second, relying on the GNRS reduces the
number of inter-domain messages needed when more than
two domains are involved. Suppose in Fig. 5a that AS3 needs
to communicate with AS1. There is no need for AS2 to be
involved in the communication and the GNRS provides a direct
way for AS1 and AS3 to exchange information.

These benefits can be appreciated in Fig. 5c. First, notice
how in LDP the number of messages grows independent of
the number of domains traversed by the tunnel, as it requires
three pairs of messages between peering routers in all cases.
In contrast, when using SDN and the GNRS, the major factor
for increase in the number of messages is the number of
domains traversed. For a single domain, there is no need
for the GNRS and the plot only includes messages needed
to insert forwarding rules in the forwarding tables of the
switches. Next, as the number of domains increases, we need
more controller-to-controller messages as well as controller-
to-GNRS messages. However, notice how the total number of
messages stays below that of LDP for tunnels with four or

more hops. A more thorough evaluation is needed to compare
our solution with LDP. We only claim that, when counting the
number of messages needed to establish a path, our solution
requires fewer messages.

VI. CONCLUSION

This paper addressed the problem of dynamic creation of
inter-domain cut-through switching tunnels in a named-based
FIA such as MobilityFirst. We first motivated the need for
inter-domain tunnels in SDN by modeling an optimization
problem that minimizes the number of flows that must be
handled by the domain controllers. To the best of our knowl-
edge, this paper is the first to model the problem of inter-
domain cut-through switching in SDN. Next, we presented a
routing framework that enables inter-domain and intra-domain
cut-through switching in the MobilityFirst architecture. The
main novelties of this framework are the increased visibility of
neighbor domains and the usage of a name resolution service
to efficiently create and maintain inter-domain tunnels. The
results show that in-transit domain controllers receive up to
75% less messages when using inter-domain tunnels. Like-
wise, our framework uses less messages than the traditional
LDP protocol.

REFERENCES

[1] D. Raychaudhuri et al., “MobilityFirst: A Robust and Trustworthy
Mobility-centric Architecture for the Future Internet,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 16, no. 3, pp. 2–13, December 2012.

[2] L. Zhang et al., “Named data networking,” SIGCOMM Comput. Commun.
Rev., vol. 44, no. 3, pp. 66–73, 2014.

[3] T. Vu et al., “DMap: A Shared Hosting Scheme for Dynamic Identifier to
Locator Mappings in the Global Internet,” in IEEE Distributed Computing
Systems (ICDCS), June 2012.

[4] A. Lara et al., “Using OpenFlow to Provide Cut-Through Switching in
MobilityFirst,” Photonic Network Communications, vol. 28, no. 2, pp.
165–177, 2014.

[5] A. Tomaszewski et al., “Distributed inter-domain link capacity opti-
mization for inter-domain IP/MPLS routing,” in Proceedings of IEEE
GLOBECOM. IEEE, 2007.

[6] M. Roughan et al., “GATEway: symbiotic inter-domain traffic engineer-
ing,” Telecommunication Systems, vol. 47, no. 1-2, pp. 3–17, 2011.

[7] M. Chamania et al., “Effective usage of dynamic circuits for IP routing,”
in Proceedings of IEEE ICC, 2010.

[8] “Label Distribution Protocol RFC,” https://tools.ietf.org/html/rfc5036.
[9] M. Berman et al., “GENI: a federated testbed for innovative network
experiments,” Computer Networks, vol. 61, pp. 5–23, 2014.


