
ECE 541

Stochastic Signals and Systems

Problem Set 9 Solutions

Problem Solutions : Yates and Goodman, 9.1.4 9.2.2 9.2.6 9.3.2 9.4.2 9.4.6 9.4.7 and
9.5.3

Problem 9.1.4 Solution

The joint PDF of X and Y is

fX,Y (x, y) =

{
6(y − x) 0 ≤ x ≤ y ≤ 1
0 otherwise

(1)

(a) The conditional PDF of X given Y is found by dividing the joint PDF by the marginal
with respect to Y . For y < 0 or y > 1, fY (y) = 0. For 0 ≤ y ≤ 1,

fY (y) =

∫ y

0
6(y − x) dx = 6xy − 3x2

∣
∣
y

0
= 3y2 (2)

The complete expression for the marginal PDF of Y is

fY (y) =

{
3y2 0 ≤ y ≤ 1
0 otherwise

(3)

Thus for 0 < y ≤ 1,

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

{
6(y−x)

3y2 0 ≤ x ≤ y

0 otherwise
(4)

(b) The minimum mean square estimator of X given Y = y is

X̂M (y) = E [X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y) dx (5)

=

∫ y

0

6x(y − x)

3y2
dx =

3x2y − 2x3

3y2

∣
∣
∣
∣

x=y

x=0

= y/3 (6)

(c) First we must find the marginal PDF for X. For 0 ≤ x ≤ 1,

fX (x) =

∫ ∞

−∞
fX,Y (x, y) dy =

∫ 1

x
6(y − x) dy = 3y2 − 6xy

∣
∣
y=1

y=x
(7)

= 3(1 − 2x + x2) = 3(1 − x)2 (8)

The conditional PDF of Y given X is

fY |X (y|x) =
fX,Y (x, y)

fX (x)
=

{
2(y−x)

1−2x+x2 x ≤ y ≤ 1

0 otherwise
(9)
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(d) The minimum mean square estimator of Y given X is

ŶM (x) = E [Y |X = x] =

∫ ∞

−∞
yfY |X (y|x) dy (10)

=

∫ 1

x

2y(y − x)

1 − 2x + x2
dy (11)

=
(2/3)y3 − y2x

1 − 2x + x2

∣
∣
∣
∣

y=1

y=x

=
2 − 3x + x3

3(1 − x)2
. (12)

Perhaps surprisingly, this result can be simplified to

ŶM (x) =
x

3
+

2

3
. (13)

Problem 9.2.2 Solution

The problem statement tells us that

fV (v) =

{
1/12 −6 ≤ v ≤ 6,
0 otherwise.

(1)

Furthermore, we are also told that R = V + X where X is a Gaussian (0,
√

3) random
variable.

(a) The expected value of R is the expected value V plus the expected value of X. We
already know that X has zero expected value, and that V is uniformly distributed
between -6 and 6 volts and therefore also has zero expected value. So

E [R] = E [V + X] = E [V ] + E [X] = 0. (2)

(b) Because X and V are independent random variables, the variance of R is the sum of
the variance of V and the variance of X.

Var[R] = Var[V ] + Var[X] = 12 + 3 = 15. (3)

(c) Since E[R] = E[V ] = 0,

Cov [V,R] = E [V R] = E [V (V + X)] = E
[
V 2
]

= Var[V ]. (4)

(d) The correlation coefficient of V and R is

ρV,R =
Cov [V,R]

√

Var[V ] Var[R]
=

Var[V ]
√

Var[V ] Var[R]
=

σV

σR
. (5)

The LMSE estimate of V given R is

V̂ (R) = ρV,R
σV

σR
(R − E [R]) + E [V ] =

σ2
V

σ2
R

R =
12

15
R. (6)

Therefore a∗ = 12/15 = 4/5 and b∗ = 0.

(e) The minimum mean square error in the estimate is

e∗ = Var[V ](1 − ρ2
V,R) = 12(1 − 12/15) = 12/5 (7)
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Problem 9.2.6 Solution

The linear mean square estimator of X given Y is

X̂L(Y ) =

(
E [XY ] − µXµY

Var[Y ]

)

(Y − µY ) + µX . (1)

To find the parameters of this estimator, we calculate

fY (y) =

∫ y

0
6(y − x) dx = 6xy − 3x2

∣
∣
y

0
= 3y2 (0 ≤ y ≤ 1) (2)

fX (x) =

∫ 1

x
6(y − x) dy =

{
3(1 + −2x + x2) 0 ≤ x ≤ 1,
0 otherwise.

(3)

The moments of X and Y are

E [Y ] =

∫ 1

0
3y3 dy = 3/4 E [X] =

∫ 1

0
3x(1 − 2x + x2) dx = 1/4 (4)

E
[
Y 2
]

=

∫ 1

0
3y4 dy = 3/5 E

[
X2
]

=

∫ 1

0
3x2(1 + −2x + x2) dx = 1/10 (5)

The correlation between X and Y is

E [XY ] = 6

∫ 1

0

∫ 1

x
xy(y − x) dy dx = 1/5 (6)

Putting these pieces together, the optimal linear estimate of X given Y is

X̂L(Y ) =

(
1/5 − 3/16

3/5 − (3/4)2

)(

Y − 3

4

)

+
1

4
=

Y

3
(7)

Problem 9.3.2 Solution

From the problem statement we know that R is an exponential random variable with ex-
pected value 1/µ. Therefore it has the following probability density function.

fR (r) =

{
µe−µr r ≥ 0
0 otherwise

(1)

It is also known that, given R = r, the number of phone calls arriving at a telephone
switch, N , is a Poisson (α = rT ) random variable. So we can write the following conditional
probability mass function of N given R.

PN |R (n|r) =

{
(rT )ne−rT

n! n = 0, 1, . . .
0 otherwise

(2)

(a) The minimum mean square error estimate of N given R is the conditional expected
value of N given R = r. This is given directly in the problem statement as r.

N̂M (r) = E [N |R = r] = rT (3)
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(b) The maximum a posteriori estimate of N given R is simply the value of n that will
maximize PN |R(n|r). That is,

n̂MAP (r) = arg max
n≥0

PN |R (n|r) = arg max
n≥0

(rT )ne−rT /n! (4)

Usually, we set a derivative to zero to solve for the maximizing value. In this case,
that technique doesn’t work because n is discrete. Since e−rT is a common factor in
the maximization, we can define g(n) = (rT )n/n! so that n̂MAP = arg maxn g(n). We
observe that

g(n) =
rT

n
g(n − 1) (5)

this implies that for n ≤ rT , g(n) ≥ g(n− 1). Hence the maximizing value of n is the
largest n such that n ≤ rT . That is, n̂MAP = brT c.

(c) The maximum likelihood estimate of N given R selects the value of n that maximizes
fR|N=n(r), the conditional PDF of R given N . When dealing with situations in which
we mix continuous and discrete random variables, its often helpful to start from first
principles. In this case,

fR|N (r|n) dr = P [r < R ≤ r + dr|N = n] (6)

=
P [r < R ≤ r + dr,N = n]

P [N = n]
(7)

=
P [N = n|R = r]P [r < R ≤ r + dr]

P [N = n]
(8)

In terms of PDFs and PMFs, we have

fR|N (r|n) =
PN |R (n|r) fR (r)

PN (n)
(9)

To find the value of n that maximizes fR|N (r|n), we need to find the denominator
PN (n).

PN (n) =

∫ ∞

−∞
PN |R (n|r) fR (r) dr (10)

=

∫ ∞

0

(rT )ne−rT

n!
µe−µr dr (11)

=
µT n

n!(µ + T )

∫ ∞

0
rn(µ + T )e−(µ+T )r dr (12)

=
µT n

n!(µ + T )
E [Xn] (13)

where X is an exponential random variable with expected value 1/(µ+T ). There are
several ways to derive the nth moment of an exponential random variable including
integration by parts. In Example 6.5, the MGF is used to show that E[Xn] = n!/(µ+
T )n. Hence, for n ≥ 0,

PN (n) =
µT n

(µ + T )n+1
(14)
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Finally, the conditional PDF of R given N is

fR|N (r|n) =
PN |R (n|r) fR (r)

PN (n)
=

(rT )ne−rT

n! µe−µr

µT n

(µ+T )n+1

(15)

= (µ + T )
[(µ + T )r]ne−(µ+T )r

n!
(16)

The ML estimate of N given R is

n̂ML(r) = arg max
n≥0

fR|N (r|n) = arg max
n≥0

(µ + T )
[(µ + T )r]ne−(µ+T )r

n!
(17)

This maximization is exactly the same as in the previous part except rT is replaced
by (µ + T )r. The maximizing value of n is n̂ML = b(µ + T )rc.

Problem 9.4.2 Solution

From the problem statement, we learn for vectors X =
[
X1 X2 X3

]′
and W =

[
W1 W2

]′

that

E [X] = 0, RX =





1 3/4 1/2
3/4 1 3/4
1/2 3/4 1



 , E [W] = 0, RW =

[
0.1 0
0 0.1

]

(1)

In addition,

Y =

[
Y1

Y2

]

= AX + W =

[
1 1 0
0 1 1

]

X + W. (2)

(a) Since E[Y] = AE[X] = 0, we can apply Theorem 9.7(a) which states that the mini-
mum mean square error estimate of X1 is X̂1(Y) = â′Y where â = R−1

Y
RYX1 . First

we find RY.

RY = E
[
YY′

]
= E

[
(AX + W)(AX + W)′

]
(3)

= E
[
(AX + W)(X′A′ + W′)

]
(4)

= E
[
AXX′A′

]
+ E

[
WX′A

]
+ E

[
AXW′

]
+ E

[
WW′

]
(5)

Since X and W are independent, E[WX′] = 0 and E[XW′] = 0. This implies

RY = AE
[
XX′

]
A′ + E

[
WW′

]
(6)

= ARXA′ + RW (7)

=

[
1 1 0
0 1 1

]




1 3/4 1/2
3/4 1 3/4
1/2 3/4 1









1 0
1 1
0 1



+

[
0.1 0
0 0.1

]

=

[
3.6 3
3 3.6

]

. (8)

Once again, independence of W and X1 yields

RYX1 = E [YX1] = E [(AX + W)X1] = AE [XX1] . (9)
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This implies

RYX1 = A





E
[
X2

1

]

E [X2X1]
E [X3X1]



 = A





RX(1, 1)
RX(2, 1)
RX(3, 1)



 =

[
1 1 0
0 1 1

]




1
3/4
1/2



 =

[
7/4
5/4

]

. (10)

Putting these facts together, we find that

â = R−1
Y

RYX1 =

[
10/11 −25/33
−25/33 10/11

] [
7/4
5/4

]

=
1

132

[
85
−25

]

. (11)

Thus the linear MMSE estimator of X1 given Y is

X̂1(Y) = â′Y =
85

132
Y1 −

25

132
Y2 = 0.6439Y1 − 0.1894Y2. (12)

(b) By Theorem 9.7(c), the mean squared error of the optimal estimator is

e∗L = Var[X1] − â′RYX1 (13)

= RX(1, 1) −R′
YX1

R−1
Y

RYX1 (14)

= 1 −
[
7/4 5/4

]
[

10/11 −25/33
−25/33 10/11

] [
7/4
5/4

]

=
29

264
= 0.1098. (15)

In Problem 9.4.1, we solved essentialy the same problem but the observations Y were
not subjected to the additive noise W. In comparing the estimators, we see that
the additive noise perturbs the estimator somewhat but not dramatically because the
correaltion structure of X and the mapping A from X to Y remains unchanged. On
the other hand, in the noiseless case, the resulting mean square error was about half
as much, 3/52 = 0.0577 versus 0.1098.

(c) We can estimate random variable X1 based on the observation of random variable Y1

using Theorem 9.4. Note that Theorem 9.4 is a special case of Theorem 9.8 in which
the observation is a random vector. In any case, from Theorem 9.4, the optimum
linear estimate is X̂1(Y1) = a∗Y1 + b∗ where

a∗ =
Cov [X1, Y1]

Var[Y1]
, b∗ = µX1 − a∗µY1 . (16)

Since E[Xi] = µXi
= 0 and Y1 = X1 + X2 + W1, we see that

µY1 = E [Y1] = E [X1] + E [X2] + E [W1] = 0. (17)

These facts, along with independence of X1 and W1, imply

Cov [X1, Y1] = E [X1Y1] = E [X1(X1 + X2 + W1)] (18)

= RX(1, 1) + RX(1, 2) = 7/4 (19)

In addition, using RY from part (a), we see that

Var[Y1] = E
[
Y 2

1

]
= RY(1, 1) = 3.6. (20)
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Thus

a∗ =
Cov [X1, Y1]

Var[Y1]
=

7/4

3.6
=

35

72
, b∗ = µX1 − a∗µY1 = 0. (21)

Thus the optimum linear estimate of X1 given Y1 is

X̂1(Y1) =
35

72
Y1. (22)

From Theorem 9.4(b), the mean square error of this estimator is

e∗L = σ2
X1

(1 − ρ2
X1,Y1

) (23)

Since X1 and Y1 have zero expected value, σ2
X1

= RX(1, 1) = 1 and σ2
Y1

= RY(1, 1) =
3.6. Also, since Cov[X1, Y1] = 7/4, we see that

ρX1,Y1 =
Cov [X1, Y1]

σX1σY1

=
7/4√
3.6

=

√
490

24
. (24)

Thus e∗L = 1− (490/242) = 0.1493. As we would expect, the estimate of X1 based on
just Y1 has larger mean square error than the estimate based on both Y1 and Y2.

Problem 9.4.6 Solution

For this problem, let Y =
[
X1 X2 · · · n−1

]′
and let X = Xn. Since E[Y] = 0 and

E[X] = 0, Theorem 9.7(a) tells us that the minimum mean square linear estimate of X
given Y is X̂n(Y) = â′Y, where â = R−1

Y
RYX . This implies that â is the solution to

RYâ = RYX . (1)

Note that

RY = E
[
YY′

]
=









1 c · · · cn−2

c c2 . . .
...

...
. . .

. . . c
cn−2 · · · c 1









, RYX = E















X1

X2
...

Xn−1








Xn








=








cn−1

cn−2

...
c








. (2)

We see that the last column of cRY equals RYX . Equivalently, if â =
[
0 · · · 0 c

]′
, then

RYâ = RYX . It follows that the optimal linear estimator of Xn given Y is

X̂n(Y) = â′Y = cXn−1, (3)

which completes the proof of the claim.
The mean square error of this estimate is

e∗L = E
[
(Xn − cXn−1)

2
]

(4)

= RX(n, n) − cRX(n, n − 1) − cRX(n − 1, n) + c2RX(n − 1, n − 1) (5)

= 1 − 2c2 + c2 = 1 − c2 (6)

When c is close to 1, Xn−1 and Xn are highly correlated and the estimation error will be
small.

Comment: We will see in Chapter 11 that correlation matrices with this structure arise
frequently in the study of wide sense stationary random sequences. In fact, if you read
ahead, you will find that the claim we just proved is the essentially the same as that made
in Theorem 11.10.
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Problem 9.4.7 Solution

(a) In this case, we use the observation Y to estimate each Xi. Since E[Xi] = 0,

E [Y] =
k∑

j=1

E [Xj ]
√

pjSj + E [N] = 0. (1)

Thus, Theorem 9.7(a) tells us that the MMSE linear estimate of Xi is X̂i(Y) = â′Y
where â = R−1

Y
RYXi

. First we note that

RYXi
= E [YXi] = E









k∑

j=1

Xj
√

pjSj + N



Xi



 (2)

Since N and Xi are independent, E[NXi] = E[N]E[Xi] = 0. Because Xi and Xj are
independent for i 6= j, E[XiXj ] = E[Xi]E[Xj ] = 0 for i 6= j. In addition, E[X2

i ] = 1,
and it follows that

RYXi
=

k∑

j=1

E [XjXi]
√

pjSj + E [NXi] =
√

piSi. (3)

For the same reasons,

RY = E
[
YY′

]
= E









k∑

j=1

√
pjXjSj + N





(
k∑

l=1

√
plXlS

′
l + N′

)

 (4)

=

k∑

j=1

k∑

l=1

√
pjplE [XjXl]SjS

′
l

+
k∑

j=1

√
pj E [XjN]
︸ ︷︷ ︸

=0

Sj +
k∑

l=1

√
pl E

[
XlN

′
]

︸ ︷︷ ︸

=0

S′
l + E

[
NN′

]
(5)

=

k∑

j=1

pjSjS
′
j + σ2I (6)

Now we use a linear algebra identity. For a matrix S with columns S1,S2, . . . ,Sk, and
a diagonal matrix P = diag[p1, p2, . . . , pk],

k∑

j=1

pjSjS
′
j = SPS′. (7)

Although this identity may be unfamiliar, it is handy in manipulating correlation
matrices. (Also, if this is unfamiliar, you may wish to work out an example with
k = 2 vectors of length 2 or 3.) Thus,

RY = SPS′ + σ2I, (8)
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and
â = R−1

Y
RYXi

=
(
SPS′ + σ2I

)−1 √
piSi. (9)

Recall that if C is symmetric, then C−1 is also symmetric. This implies the MMSE
estimate of Xi given Y is

X̂i(Y) = â′Y =
√

piS
′
i

(
SPS′ + σ2I

)−1
Y (10)

(b) We observe that V = (SPS′ + σ2I)−1Y is a vector that does not depend on which
bit Xi that we want to estimate. Since X̂i =

√
piS

′
iV, we can form the vector of

estimates

X̂ =






X̂1
...

X̂k




 =






√
p1S

′
1V

...√
pkS

′
kV




 =






√
p1

. . . √
pk











S′
1

...
S′

k




V (11)

= P1/2S′V (12)

= P1/2S′
(
SPS′ + σ2I

)−1
Y (13)

Problem 9.5.3 Solution

The solution to this problem is almost the same as the solution to Example 9.10, except
perhaps the Matlab code is somewhat simpler. As in the example, let W(n), X(n), and
Y(n) denote the vectors, consisting of the first n components of W, X, and Y. Just as in
Examples 9.8 and 9.10, independence of X(n) and W(n) implies that the correlation matrix
of Y(n) is

R
Y(n) = E

[

(X(n) + W(n))(X(n) + W(n))′
]

= R
X(n) + R

W(n) (1)

Note that R
X(n) and R

W(n) are the n × n upper-left submatrices of RX and RW. In
addition,

R
Y(n)X = E











X1 + W1
...

Xn + Wn




X1




 =






r0
...

rn−1




 . (2)

Compared to the solution of Example 9.10, the only difference in the solution is in the
reversal of the vector R

Y(n)X . The optimal filter based on the first n observations is
â(n) = R−1

Y(n)RY(n)X , and the mean square error is

e∗L = Var[X1] − (â(n))′R
Y(n)X . (3)
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function e=mse953(r)

N=length(r);

e=[];

for n=1:N,

RYX=r(1:n)’;

RY=toeplitz(r(1:n))+0.1*eye(n);

a=RY\RYX;

en=r(1)-(a’)*RYX;

e=[e;en];

end

plot(1:N,e);

The program mse953.m simply calculates the
mean square error e∗L. The input is the vector
r corresponding to the vector

[
r0 · · · r20

]
,

which holds the first row of the Toeplitz cor-
relation matrix RX. Note that R

X(n) is the
Toeplitz matrix whose first row is the first n
elements of r.

To plot the mean square error as a function of the number of observations, n, we generate
the vector r and then run mse953(r). For the requested cases (a) and (b), the necessary
Matlab commands and corresponding mean square estimation error output as a function
of n are shown here:

0 5 10 15 20 25
0

0.05

0.1

 n

M
SE

0 5 10 15 20 25
0

0.05

0.1

 n

M
SE

ra=sinc(0.1*pi*(0:20));

mse953(ra)

rb=cos(0.5*pi*(0:20));

mse953(rb)

(a) (b)

In comparing the results of cases (a) and (b), we see that the mean square estimation error
depends strongly on the correlation structure given by r|i−j|. For case (a), Y1 is a noisy
observation of X1 and is highly correlated with X1. The MSE at n = 1 is just the variance
of W1. Additional samples of Yn mostly help to average the additive noise. Also, samples
Xn for n ≥ 10 have very little correlation with X1. Thus for n ≥ 10, the samples of Yn

result in almost no improvement in the estimate of X1.
In case (b), Y1 = X1 + W1, just as in case (a), is simply a noisy copy of X1 and the

estimation error is due to the variance of W1. On the other hand, for case (b), X5, X9, X13

and X17 and X21 are completely correlated with X1. Other samples also have significant
correlation with X1. As a result, the MSE continues to go down with increasing n.
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