
ECE 541

Stochastic Signals and Systems

Problem Set 8 Solutions

Problem Solutions : Yates and Goodman, 8.1.2 8.1.6 8.2.8 8.2.10 8.3.1 8.3.4 8.3.9 and
8.4.3

Problem 8.1.2 Solution

(a) We wish to develop a hypothesis test of the form

P [|K − E [K] | > c] = 0.05 (1)

to determine if the coin we’ve been flipping is indeed a fair one. We would like to
find the value of c, which will determine the upper and lower limits on how many
heads we can get away from the expected number out of 100 flips and still accept our
hypothesis. Under our fair coin hypothesis, the expected number of heads, and the
standard deviation of the process are

E [K] = 50, σK =
√

100 · 1/2 · 1/2 = 5. (2)

Now in order to find c we make use of the central limit theorem and divide the above
inequality through by σK to arrive at

P

[ |K − E [K] |
σK

>
c

σK

]

= 0.05 (3)

Taking the complement, we get

P

[

− c

σK
≤ K − E [K]

σK
≤ c

σK

]

= 0.95 (4)

Using the Central Limit Theorem we can write

Φ

(

c

σK

)

− Φ

(−c

σK

)

= 2Φ

(

c

σK

)

− 1 = 0.95 (5)

This implies Φ(c/σK) = 0.975 or c/5 = 1.96. That is, c = 9.8 flips. So we see that
if we observe more then 50 + 10 = 60 or less then 50 − 10 = 40 heads, then with
significance level α ≈ 0.05 we should reject the hypothesis that the coin is fair.

(b) Now we wish to develop a test of the form

P [K > c] = 0.01 (6)

Thus we need to find the value of c that makes the above probability true. This value
will tell us that if we observe more than c heads, then with significance level α = 0.01,
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we should reject the hypothesis that the coin is fair. To find this value of c we look
to evaluate the CDF

FK (k) =

k
∑

i=0

(

100

i

)

(1/2)100. (7)

Computation reveals that c ≈ 62 flips. So if we observe 62 or greater heads, then
with a significance level of 0.01 we should reject the fair coin hypothesis. Another
way to obtain this result is to use a Central Limit Theorem approximation. First, we
express our rejection region in terms of a zero mean, unit variance random variable.

P [K > c] = 1 − P [K ≤ c] = 1 − P

[

K − E [K]

σK
≤ c − E [K]

σK

]

= 0.01 (8)

Since E[K] = 50 and σK = 5, the CLT approximation is

P [K > c] ≈ 1 − Φ

(

c − 50

5

)

= 0.01 (9)

From Table 3.1, we have (c − 50)/5 = 2.35 or c = 61.75. Once again, we see that we
reject the hypothesis if we observe 62 or more heads.

Problem 8.1.6 Solution

Since the null hypothesis H0 asserts that the two exams have the same mean and variance,
we reject H0 if the difference in sample means is large. That is, R = {|D| ≥ d0}.

Under H0, the two sample means satisfy

E [MA] = E [MB ] = µ, Var[MA] = Var[MB ] =
σ2

n
=

100

n
(1)

Since n is large, it is reasonable to use the Central Limit Theorem to approximate MA and
MB as Gaussian random variables. Since MA and MB are independent, D is also Gaussian
with

E [D] = E [MA] − E [MB] = 0 Var[D] = Var[MA] + Var[MB ] =
200

n
. (2)

Under the Gaussian assumption, we can calculate the significance level of the test as

α = P [|D| ≥ d0] = 2 (1 − Φ(d0/σD)) . (3)

For α = 0.05, Φ(d0/σD) = 0.975, or d0 = 1.96σD = 1.96
√

200/n. If n = 100 students take
each exam, then d0 = 2.77 and we reject the null hypothesis that the exams are the same
if the sample means differ by more than 2.77 points.

Problem 8.2.8 Solution

Given hypothesis H0 that X = 0, Y = W is an exponential (λ = 1) random variable. Given
hypothesis H1 that X = 1, Y = V + W is an Erlang (n = 2, λ = 1) random variable. That
is,

fY |H0
(y) =

{

e−y y ≥ 0,
0 otherwise,

fY |H1
(y) =

{

ye−y y ≥ 0,
0 otherwise.

(1)
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The probability of a decoding error is minimized by the MAP rule. Since P [H0] = P [H1] =
1/2, the MAP rule is

y ∈ A0 if
fY |H0

(y)

fY |H1
(y)

=
e−y

ye−y
≥ P [H1]

P [H0]
= 1; y ∈ A1 otherwise. (2)

Thus the MAP rule simplifies to

y ∈ A0 if y ≤ 1; y ∈ A1 otherwise. (3)

The probability of error is

PERR = P [Y > 1|H0] P [H0] + P [Y ≤ 1|H1]P [H1] (4)

=
1

2

∫ ∞

1
e−y dy +

1

2

∫ 1

0
ye−y dy (5)

=
e−1

2
+

1 − 2e−1

2
=

1 − e−1

2
. (6)

Problem 8.2.10 Solution

The key to this problem is to observe that

P [A0|H0] = 1 − P [A1|H0] , P [A1|H1] = 1 − P [A0|H1] . (1)

The total expected cost can be written as

E
[

C ′
]

= P [A1|H0]P [H0] C
′
10 + (1 − P [A1|H0])P [H0]C

′
00 (2)

+ P [A0|H1] P [H1] C
′
01 + (1 − P [A0|H1])P [H1]C

′
11. (3)

Rearranging terms, we have

E
[

C ′
]

= P [A1|H0]P [H0] (C
′
10 − C ′

00) + P [A0|H1] P [H1] (C
′
01 − C ′

11)

+ P [H0] C
′
00 + P [H1] C

′
11. (4)

Since P [H0]C
′
00 +P [H1]C

′
11 does not depend on the acceptance sets A0 and A1, the decision

rule that minimizes E[C ′] is the same decision rule that minimizes

E
[

C ′′
]

= P [A1|H0]P [H0] (C
′
10 − C ′

00) + P [A0|H1] P [H1] (C
′
01 − C ′

11). (5)

The decision rule that minimizes E[C ′′] is the same as the minimum cost test in Theorem 8.3
with the costs C01 and C10 replaced by the differential costs C ′

01 − C ′
11 and C ′

10 − C ′
00.

Problem 8.3.1 Solution

Since the three hypotheses H0, H1, and H2 are equally likely, the MAP and ML hypothesis
tests are the same. From Theorem 8.8, the MAP rule is

x ∈ Am if fX|Hm
(x) ≥ fX|Hj

(x) for all j. (1)
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Since N is Gaussian with zero mean and variance σ2
N , the conditional PDF of X given Hi

is

fX|Hi
(x) =

1
√

2πσ2
N

e−(x−a(i−1))2/2σ2

N . (2)

Thus, the MAP rule is

x ∈ Am if (x − a(m − 1))2 ≤ (x − a(j − 1))2 for all j. (3)

This implies that the rule for membership in A0 is

x ∈ A0 if (x + a)2 ≤ x2 and (x + a)2 ≤ (x − a)2. (4)

This rule simplifies to

x ∈ A0 if x ≤ −a/2. (5)

Similar rules can be developed for A1 and A2. These are:

x ∈ A1 if −a/2 ≤ x ≤ a/2 (6)

x ∈ A2 if x ≥ a/2 (7)

To summarize, the three acceptance regions are

A0 = {x|x ≤ −a/2} A1 = {x| − a/2 < x ≤ a/2} A2 = {x|x > a/2} (8)

Graphically, the signal space is one dimensional and the acceptance regions are

X
s

0
s

1
s

2

A
0

A
1

A
2

-a 0 a

Just as in the QPSK system of Example 8.13, the additive Gaussian noise dictates that the
acceptance region Ai is the set of observations x that are closer to si = (i − 1)a than any
other sj.

Problem 8.3.4 Solution

Let Hi denote the hypothesis that symbol ai was transmitted. Since the four hypotheses
are equally likely, the ML tests will maximize the probability of a correct decision. Given
Hi, N1 and N2 are independent and thus X1 and X2 are independent. This implies

fX1,X2|Hi
(x1, x2) = fX1|Hi

(x1) fX2|Hi
(x2) (1)

=
1

2πσ2
e−(x1−si1)2/2σ2

e−(x2−si2)2/2σ2

(2)

=
1

2πσ2
e−[(x1−si1)

2+(x2−si2)
2]/2σ2

(3)
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From Definition 8.2 the acceptance regions Ai for the ML multiple hypothesis test must
satisfy

(x1, x2) ∈ Ai if fX1,X2|Hi
(x1, x2) ≥ fX1,X2|Hj

(x1, x2) for all j. (4)

Equivalently, the ML acceptance regions are

(x1, x2) ∈ Ai if (x1 − si1)
2 + (x2 − si2)

2 ≤ (x1 − sj1)
2 + (x2 − sj2)

2 for all j (5)

In terms of the vectors x and si, the acceptance regions are defined by the rule

x ∈ Ai if ‖x − si‖2 ≤ ‖x− sj‖2 (6)

Just as in the case of QPSK, the acceptance region Ai is the set of vectors x that are closest
to si.

Problem 8.3.9 Solution

(a) First we note that

P1/2X =







√
p1

. . . √
pk













X1
...

Xk






=







√
p1X1
...√

pkXk






. (1)

Since each Si is a column vector,

SP1/2X =
[

S1 · · · Sk

]







√
p1X1
...√

pkXk






=

√
p1X1S1 + · · · + √

pkXkSk. (2)

Thus Y = SP1/2X + N =
∑k

i=1

√
piXiSi + N.

(b) Given the observation Y = y, a detector must decide which vector X =
[

X1 · · · Xk

]′

was (collectively) sent by the k transmitters. A hypothesis Hj must specify whether
Xi = 1 or Xi = −1 for each i. That is, a hypothesis Hj corresponds to a vector
xj ∈ Bk which has ±1 components. Since there are 2k such vectors, there are 2k

hypotheses which we can enumerate as H1, . . . ,H2k . Since each Xi is independently
and equally likely to be ±1, each hypothesis has probability 2−k. In this case, the
MAP and and ML rules are the same and achieve minimum probability of error. The
MAP/ML rule is

y ∈ Am if fY|Hm
(y) ≥ fY|Hj

(y) for all j. (3)

Under hypothesis Hj, Y = SP1/2xj +N is a Gaussian (SP1/2xj , σ
2I) random vector.

The conditional PDF of Y is

fY|Hj
(y) =

1

(2πσ2)n/2
e−

1

2
(y−SP1/2xj)′(σ2I)−1(y−SP1/2xj) =

1

(2πσ2)n/2
e−‖y−SP1/2xj‖2

/2σ2

.

(4)
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The MAP rule is

y ∈ Am if e−‖y−SP1/2xm‖2
/2σ2 ≥ e−‖y−SP1/2xj‖2

/2σ2

for all j, (5)

or equivalently,

y ∈ Am if
∥

∥

∥
y − SP1/2xm

∥

∥

∥
≤

∥

∥

∥
y − SP1/2xj

∥

∥

∥
for all j. (6)

That is, we choose the vector x∗ = xm that minimizes the distance
∥

∥y − SP1/2xj

∥

∥

among all vectors xj ∈ Bk. Since this vector x∗ is a function of the observation y,
this is described by the math notation

x∗(y) = arg min
x∈Bk

∥

∥

∥
y − SP1/2x

∥

∥

∥
, (7)

where arg minx g(x) returns the argument x that minimizes g(x).

(c) To implement this detector, we must evaluate
∥

∥y − SP1/2x
∥

∥ for each x ∈ Bk. Since
there 2k vectors in Bk, we have to evaluate 2k hypotheses. Because the number of
hypotheses grows exponentially with the number of users k, the maximum likelihood
detector is considered to be computationally intractable for a large number of users
k.

Problem 8.4.3 Solution

With v = 1.5 and d = 0.5, it appeared in Example 8.14 that T = 0.5 was best among the
values tested. However, it also seemed likely the error probability Pe would decrease for
larger values of T . To test this possibility we use sqdistor with 100,000 transmitted bits by
trying the following:

>> T=[0.4:0.1:1.0];Pe=sqdistor(1.5,0.5,100000,T);

>> [Pmin,Imin]=min(Pe);T(Imin)

ans =

0.80000000000000

Thus among {0.4, 0.5, · · · , 1.0}, it appears that T = 0.8 is best. Now we test values of T in
the neighborhood of 0.8:

>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);

>>[Pmin,Imin]=min(Pe);T(Imin)

ans =

0.78000000000000

This suggests that T = 0.78 is best among these values. However, inspection of the vector
Pe shows that all values are quite close. If we repeat this experiment a few times, we obtain:
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>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);

>> [Pmin,Imin]=min(Pe);T(Imin)

ans =

0.78000000000000

>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);

>> [Pmin,Imin]=min(Pe);T(Imin)

ans =

0.80000000000000

>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);

>> [Pmin,Imin]=min(Pe);T(Imin)

ans =

0.76000000000000

>> T=[0.70:0.02:0.9];Pe=sqdistor(1.5,0.5,100000,T);

>> [Pmin,Imin]=min(Pe);T(Imin)

ans =

0.78000000000000

This suggests that the best value of T is in the neighborhood of 0.78. If someone were
paying you to find the best T , you would probably want to do more testing. The only
useful lesson here is that when you try to optimize parameters using simulation results, you
should repeat your experiments to get a sense of the variance of your results.
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