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Stochastic Signals and Systems

Problem Set 11 Solution

Problem Solutions : Yates and Goodman, 11.1.4 11.2.7 11.3.3 11.4.3 11.8.3 and 11.8.10

Problem 11.1.4 Solution

Since E[Y 2(t)] = RY (0), we use Theorem 11.2(a) to evaluate RY (τ) at τ = 0. That is,

RY (0) =

∫ ∞

−∞
h(u)

∫ ∞

−∞
h(v)RX (u− v) dv du (1)

=

∫ ∞

−∞
h(u)

∫ ∞

−∞
h(v)η0δ(u− v) dv du (2)

= η0

∫ ∞

−∞
h2(u) du, (3)

by the sifting property of the delta function.

Problem 11.2.7 Solution

There is a technical difficulty with this problem since Xn is not defined for n < 0. This
implies CX [n, k] is not defined for k < −n and thus CX [n, k] cannot be completely inde-
pendent of k. When n is large, corresponding to a process that has been running for a long
time, this is a technical issue, and not a practical concern. Instead, we will find σ̄2 such
that CX [n, k] = CX [k] for all n and k for which the covariance function is defined. To do
so, we need to express Xn in terms of Z0, Z1, . . . , Zn1

. We do this in the following way:

Xn = cXn−1 + Zn−1 (1)

= c[cXn−2 + Zn−2] + Zn−1 (2)

= c2[cXn−3 + Zn−3] + cZn−2 + Zn−1 (3)

... (4)

= cnX0 + cn−1Z0 + cn−2Z2 + · · ·+ Zn−1 (5)

= cnX0 +

n−1∑

i=0

cn−1−iZi (6)

Since E[Zi] = 0, the mean function of the Xn process is

E [Xn] = cnE [X0] +

n−1∑

i=0

cn−1−iE [Zi] = E [X0] (7)

Thus, for Xn to be a zero mean process, we require that E[X0] = 0. The autocorrelation
function can be written as

RX [n, k] = E [XnXn+k] = E





(

cnX0 +

n−1∑

i=0

cn−1−iZi

)

cn+kX0 +

n+k−1∑

j=0

cn+k−1−jZj









(8)
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Although it was unstated in the problem, we will assume that X0 is independent of Z0, Z1, . . .
so that E[X0Zi] = 0. Since E[Zi] = 0 and E[ZiZj ] = 0 for i 6= j, most of the cross terms
will drop out. For k ≥ 0, autocorrelation simplifies to

RX [n, k] = c2n+k Var[X0] +

n−1∑

i=0

c2(n−1)+k−2i)σ̄2 = c2n+k Var[X0] + σ̄2ck 1− c2n

1− c2
(9)

Since E[Xn] = 0, Var[X0] = RX [n, 0] = σ2 and we can write for k ≥ 0,

RX [n, k] = σ̄2 ck

1− c2
+ c2n+k

(

σ2 − σ̄2

1− c2

)

(10)

For k < 0, we have

RX [n, k] = E





(

cnX0 +

n−1∑

i=0

cn−1−iZi

)

cn+kX0 +

n+k−1∑

j=0

cn+k−1−jZj







 (11)

= c2n+k Var[X0] + c−k
n+k−1∑

j=0

c2(n+k−1−j)σ̄2 (12)

= c2n+kσ2 + σ̄2c−k 1− c2(n+k)

1− c2
(13)

=
σ̄2

1− c2
c−k + c2n+k

(

σ2 − σ̄2

1− c2

)

(14)

We see that RX [n, k] = σ2c|k| by choosing

σ̄2 = (1− c2)σ2 (15)

Problem 11.3.3 Solution

The sequence Xn is passed through the filter

h =
[
h0 h1 h2

]′
=
[
1 −1 1

]′
(1)

The output sequence is Yn. Following the approach of Equation (11.58), we can write the
output Y =

[
Y1 Y2 Y3

]′
as

Y =





Y1

Y2

Y3



 =





h2 h1 h0 0 0
0 h2 h1 h0 0
0 0 h2 h1 h0













X−1

X0

X1

X2

X3









=





1 −1 1 0 0
0 1 −1 1 0
0 0 1 −1 1





︸ ︷︷ ︸

H









X−1

X0

X1

X2

X3









︸ ︷︷ ︸

X

. (2)

Since Xn has autocovariance function CX(k) = 2−|k|, X has covariance matrix

CX =









1 1/2 1/4 1/8 1/16
1/2 1 1/2 1/4 1/8
1/4 1/2 1 1/2 1/4
1/8 1/4 1/2 1 1/2
1/16 1/8 1/4 1/2 1









. (3)
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Since Y = HX,

CY = HCXH′ =





3/2 −3/8 9/16
−3/8 3/2 −3/8
9/16 −3/8 3/2



 . (4)

Some calculation (by hand or preferably by Matlab) will show that det(CY) = 675/256
and that

C−1
Y

=
1

15





12 2 −4
2 11 2
−4 2 12



 . (5)

Some algebra will show that

y′C−1
Y

y =
12y2

1 + 11y2
2 + 12y2

3 + 4y1y2 +−8y1y3 + 4y2y3

15
. (6)

This implies Y has PDF

fY (y) =
1

(2π)3/2[det (CY)]1/2
exp

(

−1

2
y′C−1

Y
y

)

(7)

=
16

(2π)3/215
√

3
exp

(

−12y2
1 + 11y2

2 + 12y2
3 + 4y1y2 +−8y1y3 + 4y2y3

30

)

. (8)

This solution is another demonstration of why the PDF of a Gaussian random vector should
be left in vector form.

Comment: We know from Theorem 11.5 that Yn is a stationary Gaussian process. As a
result, the random variables Y1, Y2 and Y3 are identically distributed and CY is a symmetric
Toeplitz matrix. This might make on think that the PDF fY(y) should be symmetric in the
variables y1, y2 and y3. However, because Y2 is in the middle of Y1 and Y3, the information
provided by Y1 and Y3 about Y2 is different than the information Y1 and Y2 convey about
Y3. This fact appears as asymmetry in fY(y).

Problem 11.4.3 Solution

This problem generalizes Example 11.14 in that −0.9 is replaced by the parameter c and
the noise variance 0.2 is replaced by η2. Because we are only finding the first order filter
h =

[
h0 h1

]′
, it is relatively simple to generalize the solution of Example 11.14 to the

parameter values c and η2.
Based on the observation Y =

[
Yn−1 Yn

]′
, Theorem 11.11 states that the linear MMSE

estimate of X = Xn is
←−
h ′Y where

←−
h = R−1

Y
RYXn

= (RXn
+ RWn

)−1RXnXn
. (1)

From Equation (11.82), RXnXn
=
[
RX [1] RX [0]

]′
=
[
c 1

]′
. From the problem statement,

RXn
+ RWn

=

[
1 c
c 1

]

+

[
η2 0
0 η2

]

=

[
1 + η2 c

c 1 + η2

]

. (2)
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This implies

←−
h =

[
1 + η2 c

c 1 + η2

]−1 [
c
1

]

(3)

=
1

(1 + η2)2 − c2

[
1 + η2 −c
−c 1 + η2

] [
c
1

]

(4)

=
1

(1 + η2)2 − c2

[
cη2

1 + η2 − c2

]

. (5)

The optimal filter is

h =
1

(1 + η2)2 − c2

[
1 + η2 − c2

cη2

]

. (6)

To find the mean square error of this predictor, we recall that Theorem 11.11 is just Theo-
rem 9.7 expressed in the terminology of filters. Expressing part (c) of Theorem 9.7 in terms
of the linear estimation filter h, the mean square error of the estimator is

e∗L = Var[Xn]−←−h ′RYnXn
(7)

= Var[Xn]−←−h ′RXnXn
(8)

= RX [0]−←−h ′

[
c
1

]

(9)

= 1− c2η2 + η2 + 1− c2

(1 + η2)2 − c2
. (10)

Note that we always find that e∗L < Var[Xn] = 1 simply because the optimal estimator
cannot be worse than the blind estimator that ignores the observation Yn.

Problem 11.8.3 Solution

Since SY (f) = |H(f)|2SX(f), we first find

|H(f)|2 = H(f)H∗(f) (1)

=
(

a1e
−j2πft1 + a2e

−j2πft2
)(

a1e
j2πft1 + a2e

j2πft2
)

(2)

= a2
1 + a2

2 + a1a2

(

e−j2πf(t2−t1) + e−j2πf(t1−t2)
)

(3)

It follows that the output power spectral density is

SY (f) = (a2
1 + a2

2)SX (f) + a1a2SX (f) e−j2πf(t2−t1) + a1a2SX (f) e−j2πf(t1−t2) (4)

Using Table 11.1, the autocorrelation of the output is

RY (τ) = (a2
1 + a2

2)RX(τ) + a1a2 (RX(τ − (t1 − t2)) + RX(τ + (t1 − t2))) (5)
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Problem 11.8.10 Solution

(a) Since SW (f) = 10−15 for all f , RW (τ) = 10−15δ(τ).

(b) Since Θ is independent of W (t),

E [V (t)] = E [W (t) cos(2πfct + Θ)] = E [W (t)]E [cos(2πfct + Θ)] = 0 (1)

(c) We cannot initially assume V (t) is WSS so we first find

RV (t, τ) = E[V (t)V (t + τ)] (2)

= E[W (t) cos(2πfct + Θ)W (t + τ) cos(2πfc(t + τ) + Θ)] (3)

= E[W (t)W (t + τ)]E[cos(2πfct + Θ) cos(2πfc(t + τ) + Θ)] (4)

= 10−15δ(τ)E[cos(2πfct + Θ) cos(2πfc(t + τ) + Θ)] (5)

We see that for all τ 6= 0, RV (t, t + τ) = 0. Thus we need to find the expected value
of

E [cos(2πfct + Θ) cos(2πfc(t + τ) + Θ)] (6)

only at τ = 0. However, its good practice to solve for arbitrary τ :

E[cos(2πfct + Θ) cos(2πfc(t + τ) + Θ)] (7)

=
1

2
E[cos(2πfcτ) + cos(2πfc(2t + τ) + 2Θ)] (8)

=
1

2
cos(2πfcτ) +

1

2

∫ 2π

0
cos(2πfc(2t + τ) + 2θ)

1

2π
dθ (9)

=
1

2
cos(2πfcτ) +

1

2
sin(2πfc(2t + τ) + 2θ)

∣
∣
∣
∣

2π

0

(10)

=
1

2
cos(2πfcτ) +

1

2
sin(2πfc(2t + τ) + 4π)− 1

2
sin(2πfc(2t + τ)) (11)

=
1

2
cos(2πfcτ) (12)

Consequently,

RV (t, τ) =
1

2
10−15δ(τ) cos(2πfcτ) =

1

2
10−15δ(τ) (13)

(d) Since E[V (t)] = 0 and since RV (t, τ) = RV (τ), we see that V (t) is a wide sense
stationary process. Since L(f) is a linear time invariant filter, the filter output Y (t)
is also a wide sense stationary process.

(e) The filter input V (t) has power spectral density SV (f) = 1
210−15. The filter output

has power spectral density

SY (f) = |L(f)|2 SV (f) =

{
10−15/2 |f | ≤ B
0 otherwise

(14)
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The average power of Y (t) is

E
[
Y 2(t)

]
=

∫ ∞

−∞
SY (f) df =

∫ B

−B

1

2
10−15 df = 10−15B (15)
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