
Stochastic Signals and Systems

Problem Set 10 Solution

Problem Solutions : Yates and Goodman, 10.7.3 10.8.1 10.8.3 10.9.4 10.10.3 10.11.2
and 10.12.1

Problem 10.7.3 Solution

First we observe that Yn = Xn−Xn−1 = X(n)−X(n−1) is a Gaussian random variable with
mean zero and variance α. Since this fact is true for all n, we can conclude that Y1, Y2, . . . are
identically distributed. By Definition 10.10 for Brownian motion, Yn = X(n)−X(n− 1) is
independent of X(m) for any m ≤ n−1. Hence Yn is independent of Ym = X(m)−X(m−1)
for any m ≤ n − 1. Equivalently, Y1, Y2, . . . is a sequence of independent random variables.

Problem 10.8.1 Solution

The discrete time autocovariance function is

CX [m, k] = E [(Xm − µX)(Xm+k − µX)] (1)

for k = 0, CX [m, 0] = Var[Xm] = σ2
X . For k 6= 0, Xm and Xm+k are independent so that

CX [m, k] = E [(Xm − µX)]E [(Xm+k − µX)] = 0 (2)

Thus the autocovariance of Xn is

CX [m, k] =

{

σ2
X k = 0

0 k 6= 0
(3)

Problem 10.8.3 Solution

In this problem, the daily temperature process results from

Cn = 16

[

1 − cos
2πn

365

]

+ 4Xn (1)

where Xn is an iid random sequence of N [0, 1] random variables. The hardest part of this
problem is distinguishing between the process Cn and the covariance function CC [k].

(a) The expected value of the process is

E [Cn] = 16E

[

1 − cos
2πn

365

]

+ 4E [Xn] = 16

[

1 − cos
2πn

365

]

(2)

(b) The autocovariance of Cn is

CC [m, k] = E

[(

Cm − 16

[

1 − cos
2πm

365

])(

Cm+k − 16

[

1 − cos
2π(m + k)

365

])]

(3)

= 16E [XmXm+k] =

{

16 k = 0
0 otherwise

(4)

1



(c) A model of this type may be able to capture the mean and variance of the daily
temperature. However, one reason this model is overly simple is because day to day
temperatures are uncorrelated. A more realistic model might incorporate the effects
of “heat waves” or “cold spells” through correlated daily temperatures.

Problem 10.9.4 Solution

Since Yn = Xkn,

fYn1+l,...,Ynm+l
(y1, . . . , ym) = fXkn1+kl,...,Xknm+kl

(y1, . . . , ym) (1)

Stationarity of the Xn process implies

fXkn1+kl,...,Xknm+kl
(y1, . . . , ym) = fXkn1

,...,Xknm
(y1, . . . , ym) (2)

= fYn1
,...,Ynm

(y1, . . . , ym) . (3)

We combine these steps to write

fYn1+l,...,Ynm+l
(y1, . . . , ym) = fYn1

,...,Ynm
(y1, . . . , ym) . (4)

Thus Yn is a stationary process.

Comment: The first printing of the text asks whether Yn is wide stationary if Xn is
wide sense stationary. This fact is also true; however, since wide sense stationarity isn’t
addressed until the next section, the problem was corrected to ask about stationarity.

Problem 10.10.3 Solution

In this problem, we find the autocorrelation RW (t, τ) when

W (t) = X cos 2πf0t + Y sin 2πf0t, (1)

and X and Y are uncorrelated random variables with E[X] = E[Y ] = 0.
We start by writing

RW (t, τ) = E [W (t)W (t + τ)] (2)

= E [(X cos 2πf0t + Y sin 2πf0t) (X cos 2πf0(t + τ) + Y sin 2πf0(t + τ))] . (3)

Since X and Y are uncorrelated, E[XY ] = E[X]E[Y ] = 0. Thus, when we expand
E[W (t)W (t + τ)] and take the expectation, all of the XY cross terms will be zero. This
implies

RW (t, τ) = E
[

X2
]

cos 2πf0t cos 2πf0(t + τ) + E
[

Y 2
]

sin 2πf0t sin 2πf0(t + τ) (4)

Since E[X] = E[Y ] = 0,

E
[

X2
]

= Var[X] − (E [X])2 = σ2, E
[

Y 2
]

= Var[Y ] − (E [Y ])2 = σ2. (5)
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In addition, from Math Fact B.2, we use the formulas

cos A cos B =
1

2

[

cos(A − B) + cos(A + B)
]

(6)

sinA sinB =
1

2

[

cos(A − B) − cos(A + B)
]

(7)

to write

RW (t, τ) =
σ2

2
(cos 2πf0τ + cos 2πf0(2t + τ)) +

σ2

2
(cos 2πf0τ − cos 2πf0(2t + τ)) (8)

= σ2 cos 2πf0τ (9)

Thus RW (t, τ) = RW (τ). Since

E [W (t)] = E [X] cos 2πf0t + E [Y ] sin 2πf0t = 0, (10)

we can conclude that W (t) is a wide sense stationary process. However, we note that if
E[X2] 6= E[Y 2], then the cos 2πf0(2t + τ) terms in RW (t, τ) would not cancel and W (t)
would not be wide sense stationary.

Problem 10.11.2 Solution

To show that X(t) and Xi(t) are jointly wide sense stationary, we must first show that
Xi(t) is wide sense stationary and then we must show that the cross correlation RXXi

(t, τ)
is only a function of the time difference τ . For each Xi(t), we have to check whether these
facts are implied by the fact that X(t) is wide sense stationary.

(a) Since E[X1(t)] = E[X(t + a)] = µX and

RX1
(t, τ) = E [X1(t)X1(t + τ)] (1)

= E [X(t + a)X(t + τ + a)] (2)

= RX(τ), (3)

we have verified that X1(t) is wide sense stationary. Now we calculate the cross
correlation

RXX1
(t, τ) = E [X(t)X1(t + τ)] (4)

= E [X(t)X(t + τ + a)] (5)

= RX(τ + a). (6)

Since RXX1
(t, τ) depends on the time difference τ but not on the absolute time t, we

conclude that X(t) and X1(t) are jointly wide sense stationary.

(b) Since E[X2(t)] = E[X(at)] = µX and

RX2
(t, τ) = E [X2(t)X2(t + τ)] (7)

= E [X(at)X(a(t + τ))] (8)

= E [X(at)X(at + aτ)] = RX(aτ), (9)
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we have verified that X2(t) is wide sense stationary. Now we calculate the cross
correlation

RXX2
(t, τ) = E [X(t)X2(t + τ)] (10)

= E [X(t)X(a(t + τ))] (11)

= RX((a − 1)t + τ). (12)

Except for the trivial case when a = 1 and X2(t) = X(t), RXX2
(t, τ) depends on both

the absolute time t and the time difference τ , we conclude that X(t) and X2(t) are
not jointly wide sense stationary.

Problem 10.12.1 Solution

Writing Y (t + τ) =
∫ t+τ

0
N(v) dv permits us to write the autocorrelation of Y (t) as

RY (t, τ) = E [Y (t)Y (t + τ)] = E

[
∫ t

0

∫ t+τ

0

N(u)N(v) dv du

]

(1)

=

∫ t

0

∫ t+τ

0

E [N(u)N(v)] dv du (2)

=

∫ t

0

∫ t+τ

0

αδ(u − v) dv du. (3)

At this point, it matters whether τ ≥ 0 or if τ < 0. When τ ≥ 0, then v ranges from 0 to
t + τ and at some point in the integral over v we will have v = u. That is, when τ ≥ 0,

RY (t, τ) =

∫ t

0

α du = αt. (4)

When τ < 0, then we must reverse the order of integration. In this case, when the inner
integral is over u, we will have u = v at some point so that

RY (t, τ) =

∫ t+τ

0

∫ t

0

αδ(u − v) du dv =

∫ t+τ

0

α dv = α(t + τ). (5)

Thus we see the autocorrelation of the output is

RY (t, τ) = α min {t, t + τ} (6)

Perhaps surprisingly, RY (t, τ) is what we found in Example 10.19 to be the autocorrelation
of a Brownian motion process. In fact, Brownian motion is the integral of the white noise
process.

4


