
16:332:541 Stochastic Signals and Systems Midterm Exam
November 5, 2008

SOLUTION

You have 90 minutes to complete the first three problems of this exam. Find the limiting state
probabilities. Items with unspecified point values are worth ten points. Please read both sides of
the exam carefully and ask the instructor if you have any questions.
Preliminary: (10 points) Put your name and your Rutgers netid on the front of each exam
bluebook. Write your random but memorable personal code (from the first quiz) on the upper left
corner of the inside front cover of your first bluebook.

1. 40 points Ten runners compete in a race starting at time t = 0. The runners’ finishing times
R1, . . . , R10 are iid exponential random variables with expected value 1/µ = 10 minutes.

(a) What is the probability that the last runner will finish in less than 20 minutes?
The last runner’s finishing time is L = max(R1, . . . , R10) and

P [L ≤ 20] = P [max(R1, . . . , R10) ≤ 20]
= P [R1 ≤ 20, R2 ≤ 20, . . . , R10 ≤ 20]
= P [R1 ≤ 20]P [R2 ≤ 20] · · ·P [R10 ≤ 20]

= (P [R1 ≤ 20])10

=
(
1− e−20µ

)10 =
(
1− e−2

)10 ≈ 0.234

(b) What is the PDF of X1, the finishing time of the winning runner?
At the start at time zero, we can view each runner as the first arrival of an independent
Poisson process of rate µ. Thus, at time zero, the arrival of the first runner can be viewed
as the first arrival of a process of rate 10µ. Hence, X1 is exponential with expected value
1/(10µ) = 1 and has PDF

fX1 (x1) =
{
e−x1 x1 ≥ 0,
0 otherwise.

(c) Find the PDF fY (y) of Y = R1 + · · ·+R10.
We can view Y as the 10th arrival of a Poisson process of rate µ. Thus Y has the Erlang
(n = 10, µ) PDF

fY (y) =

{
µ10y9e−µy

9! y ≥ 0,
0 otherwise.

(d) Let X1, . . . , X10 denote the runners’ interarrival times at the finish line. Find the joint
PDF fX1,...,X10 (x1, . . . , x10).
We already found the PDF of X1. We observe that after the first runner finishes, there
are still 9 runners on the course. Because each runner’s time is memoryless, each runner
has a residual running time that is an exponential (µ) random variable. Because these
residual running times are independent, X2 is exponential with expected value 1/(9µ) =
1/0.9 and has PDF

fX2 (x2) =
{

9µe−9µx2 x2 ≥ 0,
0 otherwise,

=
{

0.9e−0.9x2 x2 ≥ 0,
0 otherwise.
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Similarly, for the ith arrival, there are 10− i+1 = 11− i runners left on the course. The
interarrival time for the ith arriving runner is the same as waiting for the first arrival
ofa Poisson process of rate (11− i)µ. Thus Xi has PDF

fXi (xi) =
{

(11− i)µe−(11−i)µxi xi ≥ 0
0 otherwise

Finally, we observe that the memeoryless property of the runners’ exponential running
times ensures that the Xi are independent random variables. Hence,

fX1,...,X10 (x1, . . . , x10) = fX1 (x1) fX2 (x2) · · · fX10 (x10)

=
{

10!µ10e−µ(10x1+9x2+···+2x9+x10) xi ≥ 0,
0 otherwise.

2. 40 points The Gaussian random vector X =
[
X1 X2

]′ has expected value E[X] = 0 and
covariance matrix

CX =
[
2 1
1 1

]
.

(a) Find the PDF of W = X1 + 2X2.
Since X is Gaussian, W is also Gaussian. THus we need only compute the expected
value

E[W ] = E[X1] + 2E[X2] = 0

and variance

σ2
W = E

[
W 2
]

= E
[
(X1 + 2X2)2

]
= E

[
X2

1 + 4X1X2 + 4X2
2

]
= C11 + 4C12 + 4C22 = 10.

Thus W has the Gaussian (0,
√

10) PDF

fW (w) =
1√
20π

e−w
2/20.

(b) Let V = 2X1. Find the conditional PDF fV |W (v|w).
This is somewhat tricky to derive from scratch so this problem is mostly a reward for
those with carefully constructed cheat sheets. In this case, we first calculate

E[V ] = 0, σ2
V = 4σ2

X1
= 8,

E[W ] = 0, σ2
W = 10,

and that V and W have correlation coefficient

ρVW =
E[VW ]√
σ2
V σ

2
W

=
E[2X1(X1 + 2X2)]√

80
=

2C11 + 4C12√
80

=
8√
80

=
2√
5
.

Now we recall that the conditional PDF fV |W (v|w) is Gaussian with conditional expected
value

E[V |W = w] = E[V ] + ρVW
σV
σW

(w − E[W ]) =
2√
5

√
8√
10
w = 4w/5
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and conditional variance

σ2
V |W = σ2

V (1− ρ2
VW ) =

8
5
.

It follows that

fV |W (v|w) =
1√

2πσ2
V |W

e
−(v−E[V |W ])2/2σ2

V |W =

√
5

16π
e−5(v−4w/5)2/16.

(c) Find the PDF fY (y) of Y = AX where A =
[
1 1
1 −1

]
.

Y is a Gaussian random vector with E[Y] = AE[X] = 0 and covariance matrix

CY = ACXA′ =
[
5 1
1 1

]
.

This implies det (CY) = 4 and

C−1
Y =

1
4

[
1 −1
−1 5

]
.

It follows that

fY (y) =
1

2π[det (CY)]1/2
exp

(
−1

2
y′C−1

Y y
)

=
1

4π
e−(y21−2y1y2+5y22)/8.

(d) Does there exist a stationary Gaussian process X(t) and time instances t1 and t2 such
that X is actually a pair of observations

[
X(t1) X(t2)

]′ of the process X(t)? Explain
your answer.
The short answer is NO. If there were such a process X(t), then we would have

σ2
X(t1) = C11 = 2, σ2

X(t2) = C22 = 1.

However, this is a contradiction since a stationarity of X(t) requires σ2
X(t1) = σ2

X(t2).

3. Packets arrive at a forwarding node as a Poisson process of rate 1 per millisecond (ms). The
forwarder simply forwards (ie transmits) packets stored in its infinite capacity buffer. When
the node is working, arriving packets are queued in the buffer and packet transmission times
are independent exponential random variables with expected service time of 1/µ = 0.5 ms.
However, the forwarding node takes a break after the completion of a packet transmission.
This break has an exponential duration with expected value 1/β ms, independent of the
arrival process and packet transmission times. During the break, the forwarder discards all
arriving packets. Following the break, the node goes back to work by transmitting a previously
buffered packet.

(a) Let M1 denote the number of arriving packets during a one second interval of time. Find
E[M1] and the PMF PM1 (m) = P [M1 = m].
Since the arrival process is Poisson, the number of arrivals M1 in 1000 ms is a Poisson
random variable with E[M ] = 1000 and PMF

PM1 (m) =
{

1000me−1000/m! m = 0, 1, 2, . . .
0 otherwise.
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(b) Sketch a continuous time Markov chain for this system. Hint: the forwarder may be
Working or on Break when there are there are n buffered packets. For what values of β
is the Markov chain irreducible?
The hint should make it clear that the states are

{(0,W ), (0, B), (1,W ), (1, B), (2,W ), (2, B) . . .}

where states (n,B) and (n,W ) correspond to n queued packets and indicating whether
the server is on Break or Working. With λ = 1, µ = 2 and using n′ = n−1, the Markov
chain is

(0,W )

(0, B)

(1,W )

(1, B)

(n′,W )

(n′, B)

(n,W )

(n,B)

· · · · · ·
µ

λ λ λ λλ

µ µ µβ β β β

The Markov chain is irreducible as long as β > 0. When β = 0, each state (n,B) belongs
to its own communicating state because the process will get trapped in that state.

(c) Find the limiting state probabilities when the chain is irreducible.
Partitioning the chain between (n− 1,W ), (n− 1, B) and (n,W ), we obtain pn−1,Wλ =
pn,Wµ. This implies

pn,W =
λ

µ
pn−1,W =⇒ pn,W = ρnp0,W

where ρ = λ/µ. In addition, balancing rates in and out of state (n − 1, B) we obtain
pn−1,Bβ = pn,Wµ, or

pn−1,B =
µ

β
pn,W =

λ

β
ρn−1p0,W .

Equivalently, pn,B = (λ/β)ρnp0,W . Normalizing so that the probabilities sum to 1 yields

1 =
∞∑
n=0

(pn,W + pn,B) = p0,W

∞∑
n=0

(
ρn +

λ

β
ρn
)

= p0,W
β + λ

β

1
1− ρ.

This implies

p0,W =
β(µ− λ)
µ(β + λ)

. (1)

Note that the chain is ergodic since λ = 1 < µ = 2.

(d) After the system has been running for a long time, what is the probability P [D] that an
arriving packet is discarded?
The event D that an arrival is discarded occurs whenever the system is on break. After
the system has been running a long time, this probability is given by the limiting state
probability of being in a state (n,B). Hence,

P [D] =
∞∑
n=0

pn,B =
λ

β
p0,W

∞∑
n=0

ρn =
λ

β + λ
.
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