
16:332:541 Stochastic Signals and Systems Midterm Exam
Solution

November 9, 2005

You have 100 minutes to complete the first three problems of this exam. You
are invited to complete Problem 4 at home and to submit your solution in class on
Monday. The take home component must be completed alone without collaboration or
assitance from other people. Items with unspecified point values are worth ten points.
Put your name and your Rutgers netid (but no part of your SSN) on each exam book
(10 points). Please read both sides of the exam carefully and ask the instructor if you
have any questions.

1. 40 points At time t = 0, the price of a stock is a constant k dollars. At time
t > 0 the price of a stock is a Gaussian random variable X with E[X] = k and
σ2

X = t. At time t, a Call Option at Strike k has value

V = (X − k)+

where the operator (·)+ is defined as (z)+ = max(z, 0).

(a) 20 points Find the moments E[V ] and E[V 2].

Let Y = X − k. At time t, Y is a Gaussian (0,
√

t) random variable and
since V = Y +,

E[V ] = E
[
Y +

]
=

∫ ∞

0

yfY (y) dy =
1√
2πt

∫ ∞

0

ye−y2/2t dy.

With the variable substitution w = y2/2t, we have dw = (y/t) dy and

E[V ] =
t√
2πt

∫ ∞

0

e−w dw =

√
t

2π
.

For the second moment of V ,

E
[
V 2

]
= E

[
(Y +)2

]
=

∫ ∞

0

y2fY (y) dy.

However, fY (y) is an even function satisfying fY (y) = fY (−y), g(y) =
y2fY (y) is also an even function. This implies

E
[
V 2

]
=

1

2

∫ ∞

−∞
y2fY (y) dy =

1

2
E

[
Y 2

]
=

1

2
σ2

Y =
t

2
.

(b) Suppose you can buy the call option for d dollars at time t = 0. At time
t, you can sell the call the call for V dollars and earn a profit (or loss
perhaps) of R = V − d dollars. Let d0 denote the value of d such that
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P{R > 0} = 1/2. Let d1 denote the value of d such that E[R] = 0. Find
d0 and d1.

P{R > 0} = P{V − d > 0} = P{V > d}.
Since V is nonnegative, P{V > d} = 1 for d < 0. Thus d0 ≥ 0 and for
d = d0 ≥ 0,

P{R0 > 0} = P
{
(X − k)+ > d0

}
= P{X − k > d0} = P

{
X − k√

t
>

d0√
t

}
= Q

(
d0√

t

)
.

Note that Q(0) = 1/2 and thus d0 = 0. Finding d1 is even simpler:

E[R] = E[V − d1] = E[V ] − d1 = 0.

Thus,

d1 = E[V ] =

√
t

2π
.

(c) Suppose t = 30 (days) and this experiment is repeated every month. At
the start of a 30 day month, the stock price is k and you can buy a call
option at strike k. However, since the price d of the call fluctuates every
month, you decide to buy the call only if the price is no more than a
threshold d∗. How should you choose your threshold d∗? Use probability
theory to justify your answer.

Suppose the price d is a random variable D. Every month, we peroform
the same experiment: we buy the option at the beginning of the month if
D ≤ d∗ and we sell at the end of the month for price V . In month n, our
return will be a random variable Rn. After n months, our average return
would be (R1 + · · ·+Rn)/n. Since each month’s experiment is independent,
the Rn are an iid random sequence. By the weak law of large numbers, our
time average monthly return (R1 + · · ·+Rn)/n will converge to E[R]. Note
that this assumes that σ2

R is finite, however, this is straightforward to show.
This justifies that we should choose the threshold d∗ to maximize E[R].

To proceed, we require a few additional assumptions. We will suppose that
D and V are independent and that D has PDF fD (d). This assumption
is not unreasonable because it assumes that the expected return E[V ] is
embedded in the expected option price E[D]. Using τ to denote the threshold
d∗, at the end of the thirty days, the return is

R =

{
V − D D ≤ τ
0 D > τ

Thus the conditional expected return is

E[R|D = x] =

{
E[V ] − x x ≤ τ
0 x > τ
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It follows that the expected return is

E[R] =

∫ ∞

−∞
E[R|D = x]fD (x) dx =

∫ τ

−∞
(E[V ] − x) fD (x) dx

To find the value of the threshold τ that maximizes E[R], we calculate

dE[R]

dτ
= (E[V ] − τ)fD (τ) .

We see that dE[R]/dτ ≥ 0 for all τ ≤ E[V ] and that the derivative is
zero at τ = E[V ]. Hence E[R] is maximized at τ = d∗ = E[V ] = d1. In
fact, this answer can be found by intuition. When the option has price
d < E[V ], your choice is either to reject the option and earn 0 reward
or to earn a reward R with E[R] > 0. On an expected value basis, it’s
always better to buy the call whenever d < E[V ]. Hence we should set the
threshold at d∗ = E[V ].

2. 40 points A remote sensor transmits measurement packets as a Poisson pro-
cess of rate λ packets/sec to a data collection receiver through a random radio
channel. The packets are very short so that we can asssume the sensor always
completes the transmission of a packet well before a new packet is created. The
radio channel alternates between good and bad states G and B. Good channel
periods have an exponential duration with a mean value of 1/γ = 0.8 sec while
the duration of a bad period is exponential with mean 1/µ = 0.4 sec. The
lengths of good and bad periods are all independent. At time 0, the system
has been running for a long time and we start to count R(t) the number of
succesfully received packets in the interval [0, t], Please complete the following
parts:

(a) Sketch a two state continuous time Markov chain for the radio channel.
In steady state, what is the probability PG that the channel is good at an
arbitrary random time?

Using 0 to denote the bad state B and 1 to denote the good state G, the
two state Markov chain is

10

�

�

The stationary probabilities must satisfy

p0µ = p1γ.

This implies p1 = (µ/γ)p0. It follows from p0 + p1 = 1 that

p0 =
γ

γ + µ
=

1

3
, PG = p1 =

µ

γ + µ
=

2

3
.
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(b) The sensor transmits measurement packets without examining the channel
state. A packet will be received succesfully (without error) only if the
entire transmission of the packet occurs during a period when the channel
is good. Packets received in error are simply discarded by the receiver
and no packets are ever retransmitted. If a packet has a deterministic
transmission time t0, what is the probability P{Rd} that a measurement
packet transmitted at a random time is received successfully?

A packet transmitted at time t is received successfully if the transmission
starts in the good channel state and if the channel state stays in the good
state for time duration t0. Let X(t) denote the channel state at time t.
Given the channel is in the good state at time t, the time W until the
channel makes a transition to the bad state is an exponential (γ) random
variable. Assuming the channel state probabilities are given by the station-
ary probabilities at time t,

P{Rd} = P{X(t) = 1}P{W > t0|X(t) = 1}
=

µ

γ + µ
e−γt0 =

2

3
e−1.25t0

(c) Suppose now that the packet transmission time is an exponential random
variable T with mean value of 1/α, now what is the probability P{Re}
that a packet is received successfully?

Given that the channel is in the good state at time t, the packet is success-
fully transmitted if the packet completes transmission before the channel
goes to the bad state. That is, the packet is successful if X(t) = 1 and
T < W . This occurs with probability

P{Re} = P{X(t) = 1}P{T < W |X(t) = 1}.
Given X(t) = 1, W , the time until the next state transition is an expo-
nential (γ) random variable. Since T is exponential (α) and independent
of W , we can view the event T < W as an outcome of competing Poisson
processes. An “arrival” of the packet arrival process occurs first if T < W ;
otherwise an “arrival” of the channel state transition process occurs first.
This implies

P{Re} =
µ

γ + µ

α

α + γ
=

2

3

α

α + γ
.

(d) Assuming again that the packet transmssion times are deterministic and
short, is R(t) a Poisson process? If so, justify your answer. If not, explain
under what circumstances a Poisson model might be appropriate.

If the packet transmission time t0 is fixed and short, we can assume the
packet is always transmitted under a constant channel state. In this case,
packets are always transmitted successfully in the good state and are never
transmitted successfully in the bad channel state. To argue that the result-
ing packet delivery process is not Poisson, we have to argue that arrivals
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of the process are not memoryless. Our approach is to show that a success
at time t indicates the system is in the good state and will increase the
likelihood of a success in the next interval. For a fixed but small value of
∆, let R′(t) = R(t)−R(t−∆). Thus R′(t) = 1 indicates an arrival in the
preceding interval of length ∆ while R′(t) = 0 indicate no arrival in that
same interval.

P{R′(t + ∆) = 1|R′(t) = 1} =
P{R′(t + ∆) = 1, R′(t) = 1}

P{R′(t) = 1}
=

p1λ∆(1 − γ∆)(λ∆)

p1λ∆
= λ∆.

However,

P{R′(t + ∆) = 1|R′(t) = 0} =
P{R′(t + ∆) = 1, R′(t) = 0}

P{R′(t) = 0}
=

p0(µ∆)(λ∆) + p1λ∆(1 − λ∆)

p1(1 − λ∆) + p0

=
λ∆[p0(µ∆) + p1(1 − λ∆)]

p1(1 − λ∆) + p0

In the limit of small ∆, we neglect O(∆) terms when added to O(1) terms.
This yields

P{R′(t + ∆) = 1|R′(t) = 0} =
p1λ∆

p0 + p1

= p1λ∆

= p1P{R′(t + ∆) = 1|R′(t) = 1}
Thus, whether a packet was received in previous interval of size ∆ changes
the probability by the factor p1 that a packet is received in the next size ∆
interval. Note that when γ = 99µ the bad state has probability p0 = 0.99
and the good state has probability p1 = 0.01. In this case, the arrival in the
previous interval increases the probability of an arrival in the next interval
by a factor of 100. Hence the process is not Poisson.

However, if t0 � λ � min(γ, µ), then the channel state will change many
times between packet arrivals. In this case, the channel state probabilities
will settle to the stationary probabilities long before a packet arrives. Thus,
each packet transmission will see the channel state chosen from the station-
ary distribution, independent of the past history. A transmitted packet will
be successful with probability p1, essentially independent of the past history
of succesful transmissions. In this case, a Poisson model for R(t) is quite
reasonable.

3. 40 points A wireless communication link transmits fixed-length packets. The
transmission of a packet requires exactly one unit of time, called a “time slot.”
The wireless link is well designed so that a transmitted packet is always received
correctly. We say the link is in the idle state in slot t if it has no packets to
transmit in that slot. Here are some additional facts regarding the link:
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(a) In each time slot t, a packet arrives with probability p, independent of the
event of an arrival in any other slot and independent of the state of the
system prior to its arrival.

(b) A packet arriving in slot t can be transmitted as early as slot t + 1 if the
link was busy in slot t. However, if the transmitter is idle in slot t, the
new arriving packet must be queued while slots t + 1 and t + 2 are used
for a link initialization procedure.

(c) Any additional packets that arrive during the initialization procedure are
also queued until the initialization procedure is done.

Using 0 to denote the idle state, construct a discrete-time Markov chain for this
system. Define (in words) what your system states represent. Calculate the
stationary probability π0 that the link is idle.

For the Markov chain, we use n ∈ {0, 1, 2, 3} to denote the state in which the
system has n packets buffered and, if n > 0, is able to transmit a packet in the
current slot. The system needs three additional states:

1, 2 The transmitter has 1 buffered packet but must wait 2 slots before trans-
mitting.

1, 1 The transmitter has 1 buffered packet but must wait 1 slot before transmit-
ting.

2, 1 The transmitter has 2 buffered packets but must wait 1 slot before trans-
mitting.

The resulting Markov chain is

0 2,1 3

2

1

1,1

1,2

p p p

p

p

p

p

1-p1-p1-p

1-p

1-p 1-p

1-p

The equations for the stationary probabilities are surprisingly simple. By omit-
ting the equation for π2 which has the most complicated set of incoming transi-
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tions, we obtain

π0 = (1 − p)π0 + (1 − p)π1 ⇒ π1 =
p

1 − p
π0

π1,2 = pπ0

π2,1 = pπ1,2 ⇒ π2,1 = p2π0

π1,1 = (1 − p)π1,2 ⇒ π1,1 = p(1 − p)π0

π3 = pπ2,1 + pπ3 ⇒ π3 =
p

1 − p
π2,1 =

p3

1 − p
π0

π1 = pπ1 + (1 − p)π1,1 + (1 − p)π2 ⇒ π2 = π1 − π1,1 =
p2(2 − p)

1 − p
π0

Applying the condition

π0 + π1,2 + π2,1 + π1,1 + π1 + π2 + π3 = 1

yields

π0 =
1 − p

1 − 2p
.

In fact, there is a reason the π0 is so simple. Amar found a much simpler
way to model the system state. The idea is that we can model the initialization
period by requiring the system to transmit a dummy packet in each initialization
slot. In this case, the state of the system is captured by the total number of
buffered packets, including both real packets and dummy packets. The system is
empty only when the ral packets and the dummy packets are sent. The simplified
Markov chain is

0 3 2 1

p

p

p p

1-p

1-p

1-p
1-p

The equations for this Markov chain are also much simpler.

π0 = (1 − p)π0 + (1 − p)π1 ⇒ π1 =
p

1 − p
π0

π3 = pπ0 + pπ3 ⇒ π3 =
p

1 − p
π0

π2 = pπ2 + (1 − p)π3 ⇒ π2 = π3 =
p

1 − p
π0

Applying the condition
π0 + π1 + π2 + π3 = 1

yields π0 = (1 − p)/(1 − 2p).
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4. 80 points Take Home Problem Random variables X1, X2, . . . are an iid random
sequence. Each Xj has CDF FX (x) and PDF fX (x). Consider

Ln = min(X1, . . . , Xn) Un = max(X1, . . . , Xn)

where labels L and U are chosen to remind of Lower and Upper. The following
questions can be answered in terms of the CDF FX (x) and/or PDF fX (x).

(a) Find the CDF FUn (u).

This is straightforward:

FUn (u) = P{max(X1, . . . , Xn) ≤ u}
= P{X1 ≤ u, . . . , Xn ≤ u}
= P{X1 ≤ u}P{X2 ≤ u} · · ·P{Xn ≤ u} = (FX (u))n

(b) Find the CDF FLn (l).

This is also straightforward.

FLn (l) = 1 − P{min(X1, . . . , Xn) > l}
= 1 − P{X1 > l, . . . , Xn > l}
= 1 − P{X1 > l}P{X2 > l} · · ·P{Xn > l} = 1 − (1 − FX (l))n

(c) 20 points Find the joint CDF FLn,Un (l, u).

This part is a little more difficult. The key is to identify the “easy” joint
probability

P{Ln > l, Un ≤ u} = P{min(X1, . . . , Xn) ≥ l, max(X1, . . . , Xn) ≤ u}
= P{l < Xi ≤ u, i = 1, 2, . . . , n}
= P{l < X1 ≤ u} · · ·P{l < Xn ≤ u}
= [FX (u) − FX (l)]n

Next we observe by the law of total probability that

P{Ln > l, Un ≤ u}P{Un ≤ u} = P{Ln > l, Un ≤ u} + P{Ln ≤ l, Un ≤ u}.
The final term is the joint CDF we desire and using the expressions we
derived for the first two terms, we obtain

FLn,Un (l, u) = P{Un ≤ u} − P{Ln > l, Un ≤ u}
= [FX (u)]n − [FX (u) − FX (l)]n

(d) 40 points Suppose the PDF fX (x) has the following properties

• fX (x) = fX (−x)

• fX (x) > 0 for all x
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A Gaussian (0, σ) PDF would be one example (among many) of a PDF
with the above properties. Suppose

Rn =
Un

Ln

.

What properties can you deduce about Rn as n becomes large? You may
wish to experiment with various PDFs in order to draw conclusions. It
may well be that your conclusions will vary depending on the PDFs you
examine. If you choose to work with specific PDFs, try to be clear what
conclusions are generally true versus those conclusions that depend on the
specific choice of PDF.

Comment: Parts (a)-(c) can be solved exactly. I don’t actually know the
answer(s) to part (d). You are welcome to look in the literature. Your
grade will not be penalized. If you find papers or texts that are helpful in
solving this problem, you must reference those works. I look forward to
your investigations.

Several people observed experimentally that for large n that Rn has a fairly
narrow PDF centered in the general vicinity of r = −1. However, nobody
showed that the variance of Rn goes to zero, nor that the variance converges
to some constant. Various ideas I had about analysis have not panned out
so far. If I can make some progress on this, I’ll try to revisit this on the
final exam. :)
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