
16:332:541 Stochastic Signals and Systems Final Exam
December 21, 2005

You have 180 minutes to complete this exam. Items with unspecified point values are worth
ten points. Put your name and your Rutgers netid (but no part of your SSN) on each exam book
(10 points). Please read both sides of the exam carefully and ask the instructor if you have any
questions. You must complete problems 1, 2 and 3 and EITHER problem 4 or problem
5. You must indicate in the front cover of your exam book whether you wish to have
problem 4 or problem 5 graded.

1. 70 points Please answer the following questions

(a) Write down a code c, an integer from the set {1000, 1001, . . . , 9999}, that you can re-
member but will seem random to other students in the class. (This secret code will be
used to return your exam scores by email so do not reveal your code to others. Note
this item has no wrong answers.)

(b) Suppose an unending sequence of students enter this exam room. Student n, the nth
student to enter, is asked to choose randomly and equiprobably among all possible codes
(and independent of all prior choices) a code cn, just as you did in part (a). Let Xn denote
the number of unique codes in the set {c1, c2, . . . , cn}. Obviously X1 = 1. Let Dn = 1 if
code cn is different from all prevously chosen code words c1, . . . , cn−1; otherwise Dn = 0.
Find the conditional PMF PDn|Xn−1

(d|x).
Given Xn−1 = x, x unqiue codes have already been chosen, Thus Dn = 1 iff student n
chooses one of the 9000 − x unchosen codes. This occurs with probability 1 − x/9000.
The conditional PMF of Dn is

PDn|Xn−1
(d|x) =

⎧⎨
⎩

x/9000 d = 0,
1 − x/9000 d = 1,
0 otherwise.

(c) Using the fact that Xn = Xn−1+Dn, find the conditional expected values E [Xn|Xn−1 = x]
and E [Xn|Xn−1].

E [Xn|Xn−1 = x] = E [Xn−1 + Dn|Xn−1 = x]
= E [Xn−1|Xn−1 = x] + E [Dn|Xn−1 = x]

= x + 1 − x

9000
= 1 +

8999
9000

x

It follows directly that

E [Xn|Xn−1] = 1 +
8999
9000

Xn−1.

(d) Find E [Xn]. Hint: Let µn = E [Xn] and find a recursion for µn.

E [Xn] = E [E [Xn|Xn−1]] = E [1 + αXn−1] = 1 + αE [Xn−1] .

Let α = 8999/9000. By the iterated expectation,

E [Xn] = E [E [Xn|Xn−1]] = E [1 + αXn−1] = 1 + αE [Xn−1] .

Following the hint, we define µn = E [Xn] so that

µn = 1 + αµn−1.
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Since µ1 = 1, we observe that

µ2 = 1 + αµ1 = 1 + α

µ3 = 1 + αµ2 = 1 + α + α2

and so on. In fact, it follows that

µn = 1 + α + · · · + αn−1 =
1 − αn

1 − α
.

(e) What is limn→∞ E [Xn]? Explain your answer.
From the previous answer,

lim
n→∞E [Xn] = lim

n→∞µn =
1

1 − α
= 9000.

In fact, this answer could be derived from first principles, Eventually for for some suffi-
cently large n = n∗, all 9000 unique codes are produced, yielding Xn∗ = 9000. Moreoever,
for all n > n∗, Xn = 9000. It follows that for n > n∗ that E [Xn] = 9000.

(f) 20 points Suppose we define X0 = 0. Is the random sequence {Xn|n = 0, 1, 2, . . .} a
Markov chain? If not, explain why. If so, explain why, find and sketch the Markov
chain, and find the limiting state probabilities (or explain why they don’t exist.)
The sequence X0, X1, . . . is a Markov chain. To show this, we frist observe that

P [Xn = xn|Xn−1 = xn−1, . . . , X0 = 0] = P [Dn = xn − xn−1|Xn−1 = xn−1, . . . , X0 = 0] .

Given the past history Xn−1 = xn−1, . . . , X0 = 0, Dn = 0 with probability xn−1/9000
independent of Xi for i < n − 1. All that matters is that xn−1 unique codes have been
chosen by time n − 1. Thus,

P [Xn = xn|Xn−1 = xn−1, . . . , X0 = 0] = P [Dn = xn − xn−1|Xn−1 = xn−1]
= P [Xn = xn|Xn−1 = xn−1] .

Using pn = n/9000, the corresponding Markov chain is

0 21

p1

1

p2
p8999

1-p8999
1-p89981-p1

1-p2

8999 9000

1

...

This chain has transient states 0, 1, . . . , 9000 and the sole absorbing state 9000 which
is by itself the single recurrent communicating class. No matter what state the system
starts in, the system eventually ends up in state 9000. The limiting state probabilities
are πi = 0 for i = 0, 1, . . . , 8999 and π9000 = 1.

2. 40 points Let Xn be a wide sense stationary Gaussian random sequence with expected value
E [Xn] = 0 and autocorrelation function

RX [k] = E [XnXn+k] = 2−|k|.

We observe the noisy random sequence Yn = Xn + Zn where Zn is an iid Gaussian noise
sequence, independent of Xn, with E [Zn] = 0 and Var[Zn] = 1/2.
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(a) Find the LMSE estimate X̂n of Xn given only the observation Yn. Note that X̂n cannot
use prior observations Yn−1, Yn−2, . . . That is, X̂n is the output of an order 0 filter.
Since both Xn and Zn have zero expected value, Xhatn = aYn for the optimal choice of
a. We could derive the optimal a from first principles, or we could use apply our LMSE
Estimator formula

X̂n = R−1
Yn

RYnXnYn.

In this case, all terms are simply scalars. In particular,

RYn = Var[Yn] = Var[Xn] + Var[Zn] = 1 +
1
2

=
3
2

and
RYnXn = E [YnXn] = E [(Xn + Zn)Xn] = E

[
X2

n

]
= 1.

It follows that

X̂n =
2
3
Yn.

(b) What is the mean square error e0 of the estimator X̂n?
From first principles, the mean squared error is

e0 = E
[
(X̂n − Xn)2

]
= E

[(
2
3
Yn − Xn

)2
]

= E

[(
2
3
(Xn + Zn) − Xn

)2
]

.

Simplifying and then expanding the square, we find that

e0 = E

[(
−1

3
Xn +

2
3
Zn

)2
]

= E

[
1
9
X2

n − 4
9
XnZn +

4
9
Z2

n

]
=

1
9

+
4
9

1
2

=
1
3
.

(c) What is the PDF fX̂n
(x) of X̂n?

Since X̂n = (2/3)Xn + (2/3)Zn is the sum of independent Gaussian random variables,
we know that X̂n is Gaussian. Moreover,

E
[
X̂n

]
=

2
3
(E [Xn] + E [Zn]) = 0, Var[X̂n] =

4
9

Var[Xn] +
4
9

Var[Zn] =
2
3
.

Since X̂n is Gaussian, it has PDF

fX̂n
(x) =

1√
2π(2/3)

e−x2/[2(2/3)] =

√
3
4π

e−3x2/4.

(d) Find the conditional expectation E [Xn|Yn].
Because Xn, Zn, Yn and X̂n are all jointly Gaussian, the LMSE estimate X̂n equals the
conditional expected value E [Xn|Yn]. That is E [Xn|Yn] = X̂n = 2Yn/3.

3. 40 points The random sequence X0, X1, . . . is an iid random sequence such that each Xn is
a Gaussian (0, 1) random variable. N(t) is a Poisson process of rate λ that is independent of
Xn. Let {Y (t)|t ≥ 0} denote a random process defined by Y (t) = XN(t).

(a) Find E [Y (t)] and the PDF fY (t) (y).
First we condition on N(t) = n and find that Y (t) has conditional PDF

fY (t)|N(t)=n (y) = fXn|N(t)=n (y) = fXn (y) =
1√
2π

e−y2/2.
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Note that the second step required that Xn be independent of N(t). The conditional PDF
of Y (t) given N(t) = n is independent of N(t). Thus

fY (t) (y) = fY (t)|N(t)=n (y) =
1√
2π

e−y2/2.

We see that Y (t) is a Gaussian (0, 1) random variable and thus E [Y (t)] = 0.

(b) Find the autocorrelation RY (t, τ). (Assume |τ | < t.)
We will find RY (t, τ) = E [Y (t)Y (t + τ)] = E

[
XN(t)XN(t+τ)

]
using conditional expec-

tation. The key issue in calculating the expectation is whether N(t) = N(t + τ). If
N(t) = N(t + τ) = n, then XN(t) = XN(t+τ) = Xn and RY (t, τ) = E

[
X2

n

]
= 1. If

N(t) = n and N(t + τ) = n′ �= n, then

RY (t, τ) = E [XnXn′ ] = E [Xn]E [Xn′ ] = 0.

To finish the problem, let N = N(t + τ) − N(t). Note that N = 0 if there are zero
arrivals of the Poisson process in the interval [t, t + τ ] (or [t + τ, t] if τ < 0). Thus
P [N = 0] = e−λ|τ |. Finally,

RY (t, τ) = P [N = 0] E [Y (t)Y (t + τ)|N = 0] + P [N �= 0] E [Y (t)Y (t + τ)|N �= 0]︸ ︷︷ ︸
=0

= P [N = 0] = e−λ|τ |

(c) 20 points Is Y (t) a Gaussian random process? Hint: Find the PDF of Y =
[
Y1 Y2

]′ =[
Y (t1) Y (t2)

]′ where t2 = t1 + τ > t1.
For the process to be Gaussian, Y1 and Y2 must have a bivariate Gaussian PDF. Since
we found in part (a) that Y1 has a Gaussian PDF, we can just find whther the condtional
PDF of Y2 given Y1 is Gaussian. As in previous parts, what matters is if N = N(t +
τ) − N(t) = 0. If N = 0, then Y2 = Y1 so that

fY2)|Y1,N=0 (y2|y1) = δ(y2 − y1).

However, if N = n �= 0, then Y2 = XN(t)+n and Y1 = XN(t) are independent and

fY2)|Y1,N=n (y2|y1) = fY2 (y2) =
1√
2π

e−y2
2/2.

In fact, whenever N �= 0,

fY2)|Y1,N �=0 (y2|y1) = fY2 (y2) =
1√
2π

e−y2
2/2.

Finally,

fY2|Y1
(y2|y1) = P [N = 0] fY2)|Y1,N=0 (y2|y1) + P [N �= 0] fY2)|Y1,N �=0 (y2|y1)

= e−λ|τ |δ(y2 − y1) + (1 − e−λ|τ |)
1√
2π

e−y2
2/2.

Since this conditional PDF is not Gaussian, Y1 and Y2 are not bivariate Gaussian and
thus Yn is not a Gaussian random sequence.
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4. 40 points A group of n people form a football pool. The rules of this pool are simple: 16
football games are played each week. Each contestant must pick the winner of each game
against a point spread specified by Las Vegas oddsmakers. The contestant who picks the
most games corectly over a 16 week season wins the pool. The spread is a point difference d
such that picking the favored team is a winning pick only if that team wins by more than d
points; otherwise, the pick of the opposing team is a winner. Setting the spread is a tricky
task. For our purposes, we will assume that the oddsmakers use their expertise to attempt
to set a spread such that a random pick of either team will be a winner with probability
1/2, independent of the past history of the football season and any other games played. On
the other hand, each contestant in the pool can devote himself to the study of team’s past
histories, performance trends, official injury reports, the coach’s weekly press conference, chat
room gossip and any other wisdom that might help in placing a winning bet.

After m weeks, each pool contestant will have picked 16m games. Each contestant i will
have picked Wi games correctly where 0 ≤ Wi ≤ 16m. For example, after m = 14 weeks,
16(14) = 224 games have been played and in my pool the leader (call him Jake) has picked
119 games correctly while the worst contestant (call him Fred) has picked 85 games correctly1

The interesting probability question is whether the contestants actually have any ability to
pick football games, or are the contestants essentially just picking games at random as the
oddsmakers intend? In particular, does the pool leader have skills or is he just lucky? To
address this question, we wish to design a significance test to determine whether the pool
leader actually has any skill at picking games. Let H0 denote the null hypothesis that all
players, including the leader, pick winners in each game with probability p = 1/2, independent
of the outcome of any other game. In the following, you may use a central limit theorem
approximation for binomial PMFs as needed.

Suppose the pool has n = 38 contestants. Based on the observation of W , the number of
winning picks by the pool leader after m weeks of the season, design a one-sided significance
test for hypothesis H0 at significance level α = 0.05. You must justify your choice of the
rejection region. Given that Jake is the leader with 119 winning picks in m = 14 weeks, do
you reject or accept the hypothesis H0.

This problem has a lot of words, but is not all that hard. The pool leader has picked W =
max(W1, . . . , Wn) games correctly. Under hypothesis H0, the Wi are iid with PDF

PWi|H0
(w) =

(
16m

w

) (
1
2

)w (
1
2

)16m−w

.

Since E [Wi|H0] = 8m and Var[Wi|H0] = 16m(1/2)(1/2) = 4m, we can use a Central Limit
theorem approximation to write

P [Wi ≤ w|H0] = P

[
Wi − 8m

2
√

m
≤ w − 8m

2
√

m

]
= Φ

(
w − 8m

s
√

m

)
.

Givern H0, the conditional CDF for W is

P [W ≤ w|H0] = P [max(W1, . . . , Wn) ≤ w|H0]
= P [W1 ≤ w, . . . , Wn ≤ w|H0]
= P [W1 ≤ w|H0] · · ·P [Wn ≤ w|H0]

= (P [Wi ≤ w|H0])
n = Φn

(
w − 8m

2
√

m

)
1If you’re curious, I personally have picked 100 games correctly. That’s lousy but I am pleased to be well ahead

of Fred.
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We choose the rejection region such that W > w∗ because we want to reject the hypothesis
H0 that everyone is merely guessing if the leader does exceptionally well. Thus,

α = P [R] = P [W > w∗|H0] = 1 − Φn

(
w∗ − 8m

2
√

m

)
.

For α = 0.05, we find that

Φ
(

w∗ − 8m

2
√

m

)
= (0.95)1/n.

For n = 38,

Q

(
w∗ − 8m

2
√

m

)
= 1 − (0.95)1/38 = 1.35 × 10−3.

It follows that
w∗ − 8m

2
√

m
= 3,

or
w∗ = 8m + 6

√
m.

After m = 14, we require w∗ = 134.5. Thus, if the leader Jake has w ≥ 135 winning picks
after 14 weeks, then we accept the hypothesis that Jake has an ability to pick winners better
than random selection.

5. 40 points Recall that when we use an observation vector Y to form a linear estimate of a
random variable X, the optimal estimator is X̂ = R′

YXR−1
Y Y. If we want to form a optimal

linear estimate X̂ of a vector X =
[
X1 X2 · · · Xn

]′ using an observation Y, we can form
an optimal estimator for each Xi of the form X̂i = R′

YXi
R−1

Y Y. A little bit of algebra will
show that we can write the vector of estimates as X̂ = R′

YXR−1
Y Y.

Now suppose Yk is a noisy version of a quadratic function. That is,

Yk = q0 + q1k + q2k
2 + Zk

where q0 + q1k + q2k
2 is an unknown quadratic function of k and Zk is a sequence of iid

Gaussian (0, 1) noise random variables. We wish to estimate the unkown parameters q0, q1

and q2 of the quadratic function. Suppose we assume q0, q1 and q2 are iid Gaussian (0, 1)
random variables. Find the optimal linear estimator Q̂(Y) of Q =

[
q0 q1 q2

]′ given the
observation Y =

[
Y1 Y1 · · · Yn

]′. Hint: The answer will be in terms of a certain n × 3
matrix. You do not need to try to compute inverses.

The key to this problem is to write Y in terms of Q. First we observe that

Y1 = q0 + 1q1 + 12q2 + Z1

Y2 = q0 + 2q1 + 22q2 + Z2

...
...

Yn = q0 + nq1 + n2q2 + Zn

In terms of the vector Q, we can write

Y =

⎡
⎢⎢⎢⎣

1 1 12

1 2 22

...
...

...
1 n n2

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
K

Q + Z
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Thus we see that Y = KQ + Z.

From the problem statement we know that

E [Q] = E [Z] = 0, RQ = RZ = I.

Following the vector version of optimal linear estimator as given, we wish to find

Q̂ = R′
YQR−1

Y Y.

We need to find

RYQ = E
[
YQ′]

= E
[
(KQ + Z)Q′] = KE

[
QQ′] = K.

We also need

RY = E
[
YY′]

= E
[
(KQ + Z)(KQ + Z)′

]
= E

[
(KQ + Z)(Q′K′ + Z′)

]
= KE

[
QQ′]K′ + KE

[
QZ′] + E

[
ZQ′]K′ + E

[
ZZ′]

= KK′ + I

It follows that
Q̂ = R′

YQR−1
Y Y = K′(KK′ + I)−1Y.
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