
16:332:541 Stochastic Signals and Systems Final Exam
SOLUTION

December 22, 2006

You have 180 minutes to complete this exam. Put your name and your Rutgers netid (but no part
of your SSN or Rutger ID) on each exam book (10 points). Please read both sides of the exam
carefully and answer all four questions. Ask the instructor if you have any questions.

x 0.0 0.5 1.0 1.5 2.0 2.5 3
Q(x) = 1− Φ(x) 0.500 0.3085 0.1587 0.0668 0.02275 0.00621 1.35 · 10−3

1. 30 points TRUE OR FALSE. All answers must be justified. Keep in mind that for an answer
to be TRUE, it must be true in all possible cases.

(a) X1 and X2 are jointly Gaussian random variables. For any constant y, there exists a
constant a such that P [X1 + aX2 ≤ y] = 1/2.
FALSE: Let W = X1 + aX2. If E [X2] = 0, then E [W ] = E [X1] for all a. Since W
is Gaussian, P [W ≤ y] = 1/2 if and only if E [W ] = E [X1] = y. We obtain a simple
counterexample when y = E [X1]−1. Note that the answer would be true if we knew that
E [X2] was nonzero. Also note that the variance of W will depend on the correlation
between X1 and X2, but the correlation is irrelevant in the above argument.

(b) For identically distributed zero-mean random variables Y1 and Y2, Var[Y1+Y2] ≥ Var[Y1].
FALSE: Suppose Y1 and Y2 have correlation coefficient ρ = −3/4. In this case,

Var[Y1 + Y2] = Var[Y1] + Var[Y2] + 2 Cov [Y1, Y2] . (1)

Since Y1 and Y2 are identically distributed, Var[Y1] = Var[Y2] = Var[Y ] and Cov [Y1, Y2] =
ρ Var[Y ]. Thus,

Var[Y1 + Y2] = 2 Var[Y ] + 2ρ Var[Y ] = Var[Y ]/2 < Var[Y1]. (2)

(c) If X(t) and Y (t) are independent zero-mean wide-sense stationary processes, then W (t) =
X(t) + Y (t) is wide-sense stationary.
TRUE: First we observe that E [W (t)] = E [X(t)] + E [Y (t)] = 0. Next, we observe that

RW (t, τ) = E [W (t)W (t + τ)]
= E [(X(t) + Y (t))(X(t + τ) + Y (t + τ))]
= E [X(t)X(t + τ)] + E [Y (t)X(t + τ)] + E [X(t)Y (t + τ)] + E [Y (t)Y (t + τ)] .

Since X(t) and Y (t) are independent processes, E [X(t1)Y (t2)] = E [X(t1)]E [Y (t2)] = 0
for all t1 and t2. In the autocorrelation RW (t, τ), the cross terms drop out and

RW (t, τ) = RX(τ) + RY (τ).

2. 60 points Squares are labelled 1 through n consecutively from left to right. A player starts
by placing a token on square k where 1 < k < n. On each turn, a six-sided die is rolled. With
a roll of 1 or 2, the token moves one square to the left. With a roll of 3 or higher, the token
moves one square to the right. The player wins if the token reaches square 1. The game is a
loss if the token reaches square n. When the game ends, the token stays on its final square
(1 or n).
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(a) Sketch a Markov chain that describes the position of the token and find the state tran-
sition matrix.
The Markov chain is

The state transition matrix is

P =



1 0 0 · · · 0
1/3 0 2/3 0

0 1/3 0 2/3 0
...

. . . . . . . . . . . . . . .
... 1/3 0 2/3 0

0 1/3 0 2/3
0 · · · 0 0 1


(b) Identify any recurrent communicating classes, the set of transient states (if any).

Whenever you enter state 1, you remain there forever. Similarly, whenever you enter
state n, you stay there. Thus C1 = {1} and C2 = {n} are recurrent communicating
classes. All other states are transient. Note that C3 = {2, 3, . . . , n− 1} is a communi-
cating class of transient states.

(c) Identify the set of all possible stationary distributions (if any exist).
There are stationary distributions These are

π1 =
[
1 0 · · · 0

]′
, π2 =

[
0 · · · 0 1

]′
associated with the communicating classes C1 and C2. These stationary distributions
correspond to getting locked into communicating class Ci forever. In terms of the game,
the token reaches square 1 or square m and stays there.
Recall that a stationary distribution is defined as any probability vector such that π′P =
π′. You can verify that for any 0 ≤ α ≤ 1, π = απ1 + (1 − a)π2 is also a stationary
distribution.

(d) 20 points Let Wk denote the event that you win the game starting from position k.
Outline a calculation procedure to find P [Wk] for a given value of k. You do not need
to write matlab code, however you must provide a sequence of steps that a programmer
could translate into matlab.
This problem can be viewed as being about Markov chain dynamics or about the limiting
state probabilities in a system where the limiting state probabilities depend on the initial
state probabilities. In this case we know that the state probability vector at step n is p(n)
which satisfies p′(n) = p′(0)Pn. where the initial state probability vector is p(0) = ek,
the Cartesian unit vector with a 1 is position k and zero elsewhere. Eventually, the token
ends up either on square 1 or square n. This implies the limiting state probabilities are

π′ = lim
n→∞

p′(n) = e′k lim
n→∞

Pn

If we define P∞ = limn→∞Pn, then π′ is the kth row of P∞, a row vector of the form

π′ =
[
ω 0 · · · 0 1− ω

]
.
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where, if Xn denotes that token position at time n, ω = limn→∞ P [Xn = 1] .
We can diagonalize P in the form P′ = SDS−1, where the columns of S are the right
eigenvectors of P′, or equivalently the transposed left eigenvectors of P. Equivalently,
we can write P = (S′)−1DS′. The diagonal matrix D = diag[λ1, . . . , λn] will have
eigenvalues λ1 = λ2 = 1, corresponding to the stationary distributions π1 and π2. The
other eigenvalues will have magnitude strictly less than 1. In this case

Pn = (S′)−1DnS′ (3)

and P∞ = (S′)−1D∞S′, where D∞ = diag[1, 1, 0, · · · , 0] because limn→∞ λn
i = 0 if

|λi| < 1.
To find the limit in an algorithmic way, we would

• Diagonalize P′: [S,D]=eigs(P’)

• Null out the non-unity entries in D: DF=D.*(abs(D)>=1)

• Compute P∞: PF=inv(S’)*DF*(S’)

The k, 1 entry of PF will hold the probability that you win starting from square k.

(e) For the special case of n = 4, find P [W2] and P [W3]. Hint: Don’t use the calculation
procedure from part (d).
The key observation is that anytime you are in position k, the probability that you even-
tually win is P [Wk], independent of the past history of the game. By defining the events
L and R for Left and Right moves of the token, we observe that

P [Wk|R] = P [Wk−1] , P [Wk|L] = P [Wk+1] .

Using the Law of total probability, we can write

P [Wk] = P [Wk|L]P [L] + P [Wk|R]P [R]
= P [Wk−1] (1/3) + P [Wk+1] (2/3)

For the game with n = 4 squares, we know that P [W1] = 1 and P [W4] = 0. For squares
2 and 3, we can write

P [W2] = 1/3 + (2/3)P [W3]
P [W3] = (1/3)P [W2]

We can solve these two equations for our two unknowns, yielding P [W2] = 3/7 and
P [W3] = 1/7. This approach can be generalized to a set of equations of the form w = wQ
where Q is a matrix similar to P. Also, for n = 4 states, the event W2 occurs if and
only if there are zero or more state 2 – state 3 – state 2 cycles followed by a transition to
state 1. This leads to a sum that yields the above answers. Unfortunately, this method
doesn’t generalize for n > 4.

3. 50 points The random sequence X1, X2, . . . is an iid sequence of Gaussian (0, 1) random
variables. N(t) is a Poisson process of rate λ that is independent of the Xn. Let {Y (t)|t ≥ 0}
denote a random process defined by Y (t) =

∑N(t)
n=0 Xn. Answers to the following questions

must be justified.

(a) Find the conditional CDF FY (t)|N(t) (y|n) = P [Y (t) ≤ y|N(t) = n]. Express your answer
in terms of the Φ(·) function.
Given N(t) = n, Y (t) = X0+· · ·+Xn is a sum of n+1 Gaussian (0, 1) random variables.
Since

E [Y (t)] = (n + 1)E [X] = 0, Var[Y (t)] = (n + 1) Var[X] = n + 1,

3



Y (t) has conditional CDF

FY (t)|N(t) (y|n) = P [Y (t) ≤ y|N(t) = n] = P

[
Y (t)√
n + 1

≤ y√
n + 1

|N(t) = n

]
= Φ

(
y√

n + 1

)
.

(b) Is Y (t) a Gaussian process?
A necessary condition for Y (t) to be a Gaussian process is that the random variable Y (t)
be Gaussian for every time instant t. In particular Y (t) is Gaussian if it has a CDF of
the form FY (t) (y) = Φ((y−µ)/σ). For the given process, we can write the CDF of Y (t)
as

FY (t) (y) = P [Y (t) ≤ y] =
∞∑

n=0

P [Y (t) ≤ y|N(t) = n]P [N(t) = n]

=
∞∑

n=0

Φ
(

y√
n + 1

)
(λt)n

n!
e−λt.

Unfortunately, this sum cannot be reduced to a single Φ(·) function. If this is not clear,
you should take a derivative of the CDF and see that you do not obtain a Gaussian PDF.
Thus Y (t) is not a Gaussian random variable and thus the process is not Gaussian.

(c) Is Y (t) a stationary process?
The process is not stationary because FY (t) (y) depends on the time t.

(d) 20 points Is the process wide-sense stationary? Find the expected value function µY (t) =
E [Y (t)] and the autocovariance function CY (t, τ).
First we find the expected value and autocorrelation, and then we will know whether the
process is wide-sense stationary. For the expected value, we recall from part (a) that
conditioned on N(t) = n, Y (t) was a zero mean Gaussian. That is, E [Y (t)|N(t) = n] =
0. This implies

E [Y (t)] =
∞∑

n=0

E [Y (t)|N(t) = n]P [N(t) = n] = 0.

To find the autocovariance, we use the same trick as for finding the autocorrelation of
the Poisson process and the Brownian motion process. To start, we assume τ > 0. Since
E [Y (t)] = 0,

CY (t, τ) = E [Y (t)Y (t + τ)] = E [Y (t) ((Y (t + τ)− Y (t)) + Y (t))]

= E [Y (t)(Y (t + τ)− Y (t))] + E
[
Y 2(t)

]
. (4)

Note that Y (t+τ)−Y (t) depends on Xn corresponding to arrivals of the Poisson process
in the interval (t, t+ τ ], which is independent of the arrivals prior to time t. In addition
the Xn corresponding to arrivals in the interval (t, t + τ ] are independent of the Xn

corresponding to arrivals prior to time t. Thus Y (t + τ)− Y (t) is independent of Y (t).
It follows from (4) that

CY (t, τ) = E [Y (t)]E [Y (t + τ)− Y (t)] + E
[
Y 2(t)

]
= E

[
Y 2(t)

]
= Var[Y (t)].

To calculate Var[Y (t)], we observe that it will be convenient to redefine Y (t) as

Y (t) = X1 + X2 + · · ·+ XN ,
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where N = N(t)+1. This makes no difference since Y (t) is still the sum of N = N(t)+1
iid Gaussian (0, 1) random variables. Written this way, we see that Y (t) is a random
sum of random variables such that N is independent of X1, X2, . . . The variance of a
random sum of random variables is given by

Var[Y (t)] = E [N ] Var[X] + Var[N ](E [X])2.

Since E [X] = 0 and Var[X] = 1, we have

Var[Y (t)] = E [N ] = E [N(t) + 1] = λt + 1.

This same result can also be obtained by careful use of the iterative expectation with
conditioning on N(t) and N(t + τ).
Thus for τ ≥ 0, CY (t, τ) = 1 + λt. For τ < 0, t + τ < t. In the above argument, we
reverse all labels of t and t + τ and we can conclude that CY (t, τ) = 1 + λ(t + τ). If you
don’t trust this argument, here are the details:

CY (t, τ) = E [Y (t)Y (t + τ)] = E [(Y (t)− Y (t + τ) + Y (t + τ))Y (t + τ)]

= E [(Y (t)− Y (t + τ))Y (t + τ)] + E
[
Y 2(t + τ)

]
= E

[
Y 2(t + τ)

]
= Var[Y (t + τ)].

Note that Var[Y (t + τ)] is the same as Var[Y (t)] but with t replace by t + τ . Thus, for
τ < 0, CY (t, τ) = 1 + λ(t + τ). A general expression for the autocovariance is

CY (t, τ) = 1 + λ min(t, t + τ).

Since CY (t, τ) depends on t, Y (t) is not wide-sense stationary.

4. 60 points Suppose you have n suitcases. Suitcase i holds Xi dollars where X1, X2, . . . , Xn

are iid continuous uniform (0,m) random variables. (Think of a number like one million for
the symbol m.) Unfortunately, you can’t find out Xi until you open suitcase i.

(a) Suppose you can open all n suitcases and then choose the suitcase with the most money.
Let Y denote the amount you receive. What is E [Y ]?
If you can open all suitcases before choosing, Y = max(X1, . . . , Xn). To find E [Y ], we
first find the CDF and PDF of Y :

FY (y) = P [max(X1, . . . , Xn) ≤ y] = P [X1 ≤ y, . . . ,Xn ≤ y]
= (FX (y))n

=


0 y < 0,
(y/m)n 0 ≤ y ≤ m,
1 m < y.

By taking the derivative of the CDF, the PDF of Y is

fY (y) =
{

nyn−1/mn 0 ≤ y ≤ m,
0 otherwise.

The expected value of Y is

E [Y ] =
∫ ∞

−∞
yfY (y) dy =

n

mn

∫ m

0
yn dy =

n

(n + 1)mn
mn+1 =

n

n + 1
m.
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(b) Suppose you must open the suitcases one-by-one, starting with suitcase n and going
down to suitcase 1. After opening suitcase i, you can either accept or reject Xi dollars.
If you accept suitcase i, the game ends. If you reject, then you get to choose only from
the still unopened suitcases.
What should you do? Perhaps it is not so obvious? In fact, you can decide before the
game on a policy, a set of rules to follow. We will specify a policy by a vector (τ1, . . . , τn)
of threshold parameters.

• After opening suitcase i, you accept the amount Xi if Xi ≥ τi.
• Otherwise, you reject suitcase i and open suitcase i− 1.
• If you have rejected suitcases n down through 2, then you must accept the amount

X1 in suitcase 1. Thus the threshold τ1 = 0 since you never reject the amount in
the last suitcase.

i. Suppose you reject suitcases n through i + 1, but then you accept suitcase i. Find
E [Xi|Xi ≥ τi].
You accept suitcase i when Xi > τi. The values of past suitcases are irrelevant given
tht you have opened suitcase i. Thus, given Xi ≥ τi, Xi has a conditional PDF of a
continuous uniform (τi,m) random variable. Since a uniform (a, b) random variable
has expected value (a + b)/2, we can conclude that

E [Xi|Xi ≥ τi] =
τi + m

2
.

ii. Let Wk denote your reward given that there are k unopened suitcases remaining.
What is E [W1]?
When there is exactly one remaining suitcase, we must accept whatever reward it
offers. Thus W1 = X1 and E [W1] = E [X1] = m/2.

iii. 20 points As a function of τk, find a recursive relationship for E [Wk] in terms of τk

and E [Wk−1].
In this case, we condition on whether Xk ≥ τk. Since 0 ≤ τk ≤ m, we can write

E [Wk] = E [Xk|Xk ≥ τk]P [Xk ≥ τk] + E [Wk−1|Xk < τk]P [Xk < τk]
= E [Xk|Xk ≥ τk]P [Xk ≥ τk] + E [Wk−1]P [Xk < τk]

=
τk + m

2

(
1− τk

m

)
+ E [Wk−1]

τk

m

=
m2 − τ2

k

2m
+ E [Wk−1]

τk

m
(5)

iv. For n = 4 suitcases, find the optimal policy (τ∗1 , . . . , τ∗4 ), that maximizes E [W4].
From the recursive relationship (5), we can find τk to maximize E [Wk]. In particu-
lar, solving

dE [Wk]
dτk

= −τk

m
+

E [Wk−1]
m

= 0

implies the optimal threshold is τ∗k = E [Wk−1]. That is, the optimal policy is to
accept suitcase k if the reward Xk is higher than the expected reward we would
receive from the remaining k − 1 suitcases if we were to reject suitcase k. With
one suitcase left, the optimal policy is τ∗1 = 0 since we don’t reject the last suitcase.
The optimal reward is E [W ∗

1 ] = E [X1] = m/2. For two suitcases left, the optimal
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threshold is τ∗2 = E [W ∗
1 ]. Using (5) we can recursively optimize the rewards:

E [W ∗
k ] =

m2 − (τ∗k )2

2m
+ E

[
W ∗

k−1

] τ∗k
m

=
m

2
−

(E
[
W ∗

k−1

]
)2

2m
+

(E
[
W ∗

k−1

]
)2

m

=
m

2
+

(E
[
W ∗

k−1

]
)2

2m
(6)

The recursion becomes more clear by defining E [W ∗
k ] = mαk. Since the reward

cannot exceed m dollars, we know that 0 ≤ αk ≤ 1. In addition, it follows from (6)
that

αk =
1
2

+
α2

k−1

2
.

Since α1 = 1/2,

α2 =
1
2

+
1
8

=
5
8
,

α3 =
1
2

+
α2

2

2
=

89
128

,

α4 =
1
2

+
α2

3

2
=

24, 305
32768

= 0.74.

The optimal thresholds are τ∗1 = 0 and for k > 1, τ∗k = E
[
W ∗

k−1

]
= αk−1m. Thus,

τ∗1 = 0, τ∗2 =
5
8
m τ∗3 =

89
128

m, τ∗4 =
24305
32768

m.

Note that if limk→∞ αk = 1. That is, if the number of suitcases k goes to infinity,
the optimal rewards and thresholds satisfy E [W ∗

k ] = τ∗k−1 → m.
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