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Abstract— For multiple transmitters sending independent data
to a single receiver, the problem of optimizing transmitter
codewords to maximize capacity has been addressed in [11][12].
This paper considers an analogous scenario when the information
sent by the transmitters is correlated. The optimal codeword set
and power allocation which minimizes TMSE (total mean square
error) at the receiver under a total power constraint have been
derived. The equivalence between TMSE and sum capacity is
also shown, in the sense that minimizing the former corresponds
to maximizing the latter.

I. I NTRODUCTION

The information-theoretic capacity of a single cell symbol
synchronous white gaussian noise CDMA system was derived
in terms of the correlations between user signature waveforms
by Verdu [11]. Subsequently, a lot of research work has been
done in the area of signature waveform optimization for single
cell CDMA type systems [12].

Assuming a finite dimensional signal space, the signature
waveforms of users can be described asL-dimensional vectors
(codewords) whereL is called the spreading gain of the
system.

For an average power constraint on symbols of all users,
Masseyet al. [8] showed that the capacity maximizing code-
words for the single cell symbol synchronous system are same
as the WBE sequences. Viswanathet al. [12] generalized
the result to the case where the user power constraints are
unequal. Further extensions include the colored noise case [13]
and joint optimizations of codeword/power levels for fading
channels [3].

In a CDMA system, the user’s symbols are assumed to be
independent of each other and all the above work maintains
this assumption. However, there may be scenarios in which
transmitters send correlated data to a receiver. For example,
in the literature for sensor networks [1], one readily comes
across a scenario where sensor nodes (analogous to users in
CDMA) measure a common physical phenomenon and send
their observations (which are correlated) to a central node.

In many cases, the physical phenomenon under observation
can be abstracted as a 2-dimensional information source
with spatially varying information density. Since sensor nodes
usually have a non–replenishable source of energy, it is highly
desirable to keep the transmission powers at their minimum
levels. Moreover, since sensors are usually assumed to be de-
ployed in very large numbers, measurements of spatially closer

sensors will have a high degree of correlation. It is therefore
likely that a fewer number of sensors are sufficient to sense the
entire region. Hence, minimizing the total transmission power
of a cluster of sensors is more meaningful than optimizing the
individual transmit powers.

We assume a sensor network model where nodes use
signature waveforms (codewords) to transmit their data to
a common receiver and find the optimal codewords which
minimize a performance metric (TMSE, defined later) under
a total power constraint.

The rest of this paper is arranged as follows. We present
the system model in Section II and derive the relevant TMSE
expression. In Section III we introduce the notion of majoriza-
tion and some related results that are required for our analysis.
In Section IV we derive the optimal transmitter codewords,
power levels and receiver filters by minimizing the TMSE and
in Section V we establish an equivalence between between
TMSE minimization and sum capacity maximization. Finally,
we conclude with a summary and discussion of possible future
research in Section VI.

II. PROBLEM STATEMENT

AssumingM users transmitting symbols using unit–norm
codewords of lengthL in an additive white Gaussian channel,
the signal at the receiver is given by:

r = SP
1
2 b + n (1)

where,

PM×M : diag(p1p2 . . . pM )
pi : transmit power ofith transmitter
SL×M : [s1s2 . . . sM ]
si : unit norm signature codeword ofith transmitter
b : symbol vector
n : zero–mean Gaussian noise with varianceσ2IL

BM×M = E
[
bb>

]
is defined as the symbol correlation

matrix.
Assuming a linear receiver filter,ci, corresponding to the

ith transmitter, the filter output is given by:

yi = r>ci (2)



The mean square error (MSE) corresponding to theith

transmitter is given by,

MSEi = E
[(

r>ci − bi

)2]
(3)

which allows us to define total MSE as

TMSE =
M∑
i=1

MSEi

=
M∑
i=1

c>i
(
SP

1
2 BP

1
2 S> + σ2IL

)
ci + M

− 2
M∑
i=1

c>i SP
1
2 E [bbi]

= tr
(
C>SP

1
2 BP

1
2 S>C + σ2C>C

−2C>SP
1
2 B + IM

)

(4)

The optimization problem can then be stated as follows:

min
S,P,C

TMSE subject to tr(P) = Ptot (5)

III. M AJORIZATION: DEFINITIONS AND SOME KEY

RESULTS

This section outlines certain mathematical relationships
that are needed in obtaining the results in this paper. A
detailed survey of these inequalities and their properties may
be found in [4].

Definition 1: Let x = (x[1], x[2], . . . , x[n]) and y =
(y[1], y[2], . . . , y[n]) be decreasing sequences of real numbers.
Then,x is majorizedby y (denoted byx ≺ y) if

k∑
i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, . . . , n− 1

and,
n∑

i=1

x[i] =
n∑

i=1

y[i]

Thus, majorization ofx by y suggests that the components
of x are “less spread out” or “more nearly equal” than the
components ofy.

An important example of majorization between two vectors
is the following:

Example 1:For everya ∈ <n such that
∑n

i=1 ai = 1,

(a1, a2, . . . , an) �
(

1
n

,
1
n

, · · · ,
1
n

)
Definition 2: A real–valued functionφ : <n → <, defined

on a setA ⊂ <n, is Schur–convex onA if

x ≺ y onA ⇒ φ(x) ≤ φ(y)

The functionφ is strictly Schur–convex ifx ≺ y andx 6= y
implies that φ(x) < φ(y). Also, the functionφ is Schur–
concave if−φ is Schur–convex.

An important class of Schur–convex functions is the follow-
ing:

Example 2: If g : < → < is convex and increasing, then
φ(x) =

∑n
i=1 g(xi) is increasing and Schur–convex.

IV. OPTIMAL TRANSMITTER CODEWORDS, POWER

LEVELS AND RECEIVER STRUCTURE

It is well–known [10] that the structure of the optimum
linear receiver that minimizes the MSE is the MMSE receiver.
For this problem, the expression for the optimum receiver was
obtained as:

C? =
(
SP

1
2 BP

1
2 S> + σ2IL

)−1 (
SP

1
2 B
)

(6)

Substituting (6) in (4), the TMSE expression reduces to:

TMSE = M − tr

[
BP

1
2 S>

(
σ2IL + SP

1
2 BP

1
2 S>

)−1

SP
1
2 B
]

= M − tr

[
BP

1
2 S>

σ2

{
IL −

SP
1
2 BP

1
2 S>

σ2

+

(
SP

1
2 BP

1
2 S>

σ2

)2

− · · ·

SP
1
2 B


= M − tr(B) + σ2tr

[(
σ2B−1 + P

1
2 S>SP

1
2

)−1
]

(7)

Note that SP
1
2 BP

1
2 S> is positive definite, which implies

that
(
SP

1
2 BP

1
2 S> + σ2IL

)
is invertible. Also, it has been

assumed in the above analysis thatB−1 exists. However, it
will be argued at the end of this section that invertibility of
B is not necessary since it does not affect the structure of the
optimum codewords.

Let B = U1Σ1U>
1 andA = SP

1
2 = U2Σ2V>

2

whereΣ1 = diag(λ1, λ2, . . . , λM )
such that,λ1 > λ2 > . . . > λM

andΣ2 =
[
diag(µ1, µ2, . . . , µL),0L×(M−L)

]
Note that S and P

1
2 can be obtained fromA as the

normalized columns and norms of columns ofA respectively.

Then, the optimization problem can be rewritten as:

min
A∈A

tr
[(

σ2B−1 + A>A
)−1
]

(8)

where, A is the set of allL×M matrices such that

tr(A>A) =
L∑

j=1

µ2
j = Ptot

Lemma 1:∀A ∈ A, ∃Ã ∈ A such that TMSE(Ã) ≤
TMSE(A) andÃ>Ã commutes withB.

Proof: Marshall and Olkin [4, Lemma 9.G.4] state the
following:

det(G + H) ≤
n∏

i=1

(
λ[i](G) + λ[n+1−i](H)

)
(9)

2



Define a functionθ(A) = det
(
σ2B−1 + A>A

)
.

ChooseG = σ2B−1 and H = A>A following a similar
argument as in [13]. DefinẽA = AQ, where Q is an
orthogonal matrix chosen so thatσ2B−1 andÃ>Ã commute
and the eigenvector corresponding to theith largest eigenvalue
of σ2B−1 is the same as that corresponding to the(n+1−i)th
largest eigenvalue of̃A>Ã.

Note thatÃ ∈ A since tr(Ã>Ã) = tr
(
Q>A>AQ

)
= Ptot.

Using (9), θ(Ã) ≥ θ(A). Since θ(A) is Schur–
concave and TMSE is Schur–convex in the eigenvalues of(
σ2B−1 + A>A

)
, it follows that TMSE(Ã) ≤ TMSE(A).

�
Lemma 1, combined with the fact that two matrices com-

mute if and only if they share the same eigenvectors [9],
restricts the optimization space to that subset ofA for which
the conditionV2 = U1 holds. Note that this condition is
sufficient but not necessary.

SubstitutingV2 = U1 in (7), the following two cases arise.
1) M ≥ L:

TMSE = M − tr
(
U1Σ1U>

1 +
)

σ2tr
[(

σ2U1Σ−1
1 U>

1 + U1Σ>2 Σ2U>
1

)−1
]

= M −
M∑
i=1

λi + σ2
L∑

i=1

1
σ2

λi
+ µ2

i

+
M∑

i=L+1

λi

σ2

(10)

The Lagrangian corresponding to the optimization prob-
lem at hand can be written as follows:

L
(
µ2

1, . . . , µ
2
L, β

)
= TMSE+ β

(
L∑

i=1

µ2
i − Ptot

)
It is required that

∂L
∂µi

= 0 and
∂L
∂β

= 0.

Using Kuhn-Tucker conditions [2], this leads to the
following optimal solution:

µi =

√√√√max

(
0,

Ptot

L
+

σ2

L

L∑
i=1

1
λi
− σ2

λi

)
(11)

Note that the optimal solution depends only on the first
L eigenvalues ofB, i.e., {λi}L

i=1. Also, the optimal
solution has the property that ifλi ≥ λj , thenµi ≤ µj

as described in the proof for Lemma 1. It will now be
shown that the orderingO1 : λ1 > λ2 > . . . > λM

achieves the optimal solution.
For orderingO1, the eigenvalues{γi}M

i=1 of σ2B−1 +
A>A are given by:

γi (O1) =

{
σ2

L

∑L
j=1

1
λj

+ Ptot
L , i ≤ L1 ≤ L

σ2

λi
, i > L1

It can be verified that for any other orderingO2,

{γi}M
i=1 (O2) � {γi}M

i=1 (O1) (12)

Now consider the functionf(x) = a
x . It can be shown

that f(x) is convex if a, x ∈ <+. Using Example 2,

Fig. 1. Waterfilling is achieved by distributing the sum of the eigenvalues
of A>A over the eigenvalues ofB−1.

it follows that TMSE is a Schur–convex function in
the eigenvalues{γi}M

i=1 of σ2B−1 + A>A, which in
conjunction with (12) implies thatO1 achieves the
optimal solution.

2) M < L:
It can be verified that only the firstM µis need to be
optimized, and the remaining(L−M) eigenvalues may
be set to zero for obtaining the optimal solution.

In other words, for anyM andL, the optimal solution corre-
sponds to waterfilling (Fig. 1) the smallestK(= min(L, M))
eigenvalues ofB−1 with those ofA>A, and aligning the
eigenvectors ofA>A and B as described in the proof of
Lemma 1.

The above analysis assumed thatB is invertible. However,
the result holds even for a non–invertibleB since it can be
made invertible by adding an infinitesimally small perturbation
matrix (while ensuring thatB is still a correlation matrix). As
a result, previously non–zero eigenvalues ofB−1 will suffer
very little change, while the other eigenvalues (previously
zero) will now attain large finite values, but the corresponding
dimensions will be avoided by the waterfilling solution [5].

V. RELATIONSHIP BETWEEN TMSE AND SUM CAPACITY

Verdu [11] derives the information theoretic capacity region
for a white Gaussian synchronous CDMA system. Proceeding
in a similar manner, the sum capacity for the system under
consideration can be expressed as:

Csum =
1
2

log
[
det
(
σ2IL + SP

1
2 BP

1
2 S>

)]
− L

2
log σ2

(13)

where it is assumed that the symbolsbi are jointly Gaussian
with known covarianceB.

It will now be shown that TMSE minimization and sum
capacity maximization are equivalent problems. Using the
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notation defined previously,

Csum =
1
2

log
[
det
(
σ2IL + ABA>

)]
− L

2
log σ2 (14)

Lemma 2:∀A ∈ A, ∃Ã ∈ A such thatCsum(Ã) ≥
Csum(A) andÃ>Ã commutes withB.

Proof: Similar to Lemma 1.�

As in the case of TMSE, Lemma 2 when combined with the
fact that two matrices commute if and only if they share the
same eigenvectors [9], restricts the optimization space to that
subset ofA for which the conditionV2 = U1 holds. Again,
this condition is sufficient but not necessary.

A similar analysis reveals that sum capacity is Schur–
concave under the total power constraint, and hence
minimizing TMSE is equivalent to maximizingCsum.

VI. CONCLUSION AND FUTURE WORK

This paper considered a sensor network model where sen-
sors transmit correlated information to a receiver using a set
of signature waveforms. The optimal signature waveforms and
transmit power levels for minimizing the TMSE at the receiver
under a total power constraint were derived. Furthermore,
the equivalence between TMSE and sum capacity for our
system was shown, in the sense that minimizing the former
corresponds to maximizing the latter under a total power
constraint.

An important area of future work is to carefully com-
pare the efficiency of correlated data transmission using the
scheme presented in this paper to that using distributed source
coding [6] and define suitable metrics for comparing and
contrasting the two. Also, throughout the paper we have
assume that different transmitters operate under a total power
constraint. Search of optimal codewords under individual
power constraints is another important problem and one where
we expect ideas from [12], [7] to prove especially useful.

REFERENCES

[1] I.F. Akyildiz, Y. Sankarasubramaniam, and E. Cayirci. A Survey on
Sensor Networks. IEEE Communications Magazine, 40(8):102–114,
August 2002.

[2] R. Fletcher.Practical Methods of Optimization. John Wiley, New York,
NY, 1988.

[3] O. Kaya and S. Ulukus. Jointly Optimal Power and Signature Sequence
Allocation for Fading CDMA. December 2003.

[4] A.W. Marshall and I. Olkin. Inequalities: Theory of Majorization and
Its Applications. Academic Press, New York, NY, 1979.

[5] D. C. Popescu and C. Rose. Codeword Optimization for Uplink CDMA
Dispersive Channels.IEEE Transactions on Wireless Systems, to appear.

[6] S.S. Pradhan and K. Ramchandran. Distributed Source Coding Using
Syndromes (DISCUS). IEEE Transactions on Information Theory,
49(3):626–643, March 2003.

[7] C. Rose. CDMA Codeword Optimization: Interference Avoidance and
Convergence via Class Warfare.IEEE Transactions on Information
Theory, 47(7):2368–2382, September 2001.

[8] M. Rupf and J.L. Massey. Optimum Sequence Multisets for Synchronous
Code-Division Multiple-Access Channels.IEEE Transactions on Infor-
mation Theory, 40(4):1226–1266, July 1994.

[9] Gilbert Strang. Linear Algebra and its Applications. International
Thompson Publishing, Singapore, 1988.

[10] Sennur Ulukus and Aylin Yener. Iterative Transmitter and Receiver
Optimization for CDMA Networks. IEEE Transactions on Wireless
Communications, to appear.

[11] Sergio Verdu. Capacity Region of Gaussian CDMA Channels: The
Symbol–Synchronous Case.Proceedings of the 24th Allerton Confer-
ence on Communication, Control and Computing, 1989.

[12] Pramod Viswanath and Venkat Anantharam. Optimal Sequences and
Sum Capacity of Synchronous CDMA Systems.IEEE Transactions on
Information Theory, 45(6):1984–1991, September 1999.

[13] Pramod Viswanath and Venkat Anantharam. Optimal Sequences for
CDMA Under Colored Noise: A Schur–Saddle Function Property.IEEE
Transactions on Information Theory, 48(6):1295–1318, June 2002.

4


