
Performance of Hypothesis Testing

in a Communication System∗

Ritabrata Roy

December 11, 2002

Abstract

This exercise aims at examining the basic ideas behind hypothe-
sis testing and its role in a communication system. The binary data
transmitted by a source is assumed to be corrupted by white Gaus-
sian noise. At the receiver’s end, a decision is made about the original
transmitted signal using a simple binary hypothesis. The energy ex-
pended and the resulting bit error rate are obtained coresponding
to different transmission strategies and variance levels in the noise.
Based on this information, an optimum transmission strategy is pro-
posed that provides a minimum bit error rate while maintaining a low
power consumption.

1 Introduction

The terms detection, decision making, hypothesis testing, and decoding are
almost synonymous. The word detection refers to the effort to decide whether
some phenomenon is present or not on the basis of some observations. The
meaning has been extended in the communication field to detect which one,
among a set of mutually exclusive alternatives, is correct. Decision making

is, again, the process of deciding between a number of mutually exclusive
alternatives. Hypothesis testing is the same, and here the mutually exclusive
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alternatives are called hypotheses. Decoding is the process of mapping the
received signal into one of the possible set of code words or transmitted sym-
bols [5, 1, 6].

Here a data source is assumed to emit a binary symbol (either a ‘zero’
or a ‘one’) every T seconds, for a total of 1

T
symbols every second. During

the transmission of each symbol from the source, a symbol 0 is transmitted
as a signal s0(t), while a symbol s1(t) corresponds to the symbol 1. In a
simple communication model, the transmitted signal may be assumed to be
corrupted by white Gaussian noise w(t).

For a receiver that samples the received signal at a rate of N samples per
second, the decision hypotheses may be written as:

H0 : x(n) = s0(n) + w(n) for n = 0, 1, . . . , N − 1
H1 : x(n) = s1(n) + w(n) for n = 0, 1, . . . , N − 1

(1)

It is assumed that the sampling extracts the true value of the signals
sj(t) and w(t). The noise process may therefore be considered as an inde-
pendent and identically distributed (iid) Gaussian random variable, N(0, σ2).

The aim of this exercise is to study the possible choices of s0(n) and
s1(n) that will result in the smallest probability of decision error at different

signal-to-noise ratio, SNR=
‖sj‖2

σ2 where ‖s‖ is the Euclidean norm of s.

1.1 Hypothesis Testing

For any binary channel, the transmitted signal over a symbol interval (0, T)
is represented by:

si(t) =

{

s0(t), 0 ≤ t ≤ T for a binary 0
s1(t), 0 ≤ t ≤ T for a binary 1

(2)

The received signal r(t) is typically degraded by noise n(t) and possibly
degraded by the impulse response of the channel hc(t) and may be written
as [3]:

r(t) = si(t) ? hc(t) + w(t), i = 1, . . . , M (3)

where w(t) is assumed to be a zero-mean AWGN process and ? represents a
convolution operation. For binary transmission over an ideal distortionless
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channel, convolution with hc(t) produces no degradation (since hc(t) is an
impulse function for the ideal case), and the representation of r(t) simplifies
to:

r(t) = si(t) + w(t), i = 1, 2, 0 ≤ t ≤ T (4)

In the general case of Bayesian Hypothesis Testing, the two hypotheses
concerning a real-valued observation Y can be written as [2]:

H0 : Y = ε + µ0

versus
H1 : Y = ε + µ1

where ε is a Gaussian random variable with zero mean and variance σ2,
and where µ0 and µ1 are two fixed numbers with µ1 > µ0 (without loss of
generality). In terms of distributions on the observation space, the hypothesis
pair may be rewritten as:

H0 : Y ∼ N(µ0, σ
2)

versus
H1 : Y ∼ N(µ1, σ

2)

where N(µ, σ2) denotes the Gaussian(or normal) distribution with mean µ
and variance σ2.

Thus, the likelihood ratio is given by:

L(y) =
p1(y)

p0(y)
(5)

=

1√
2πσ

e−(y−µ1)2/2σ2

1√
2πσ

e−(y−µ0)2/2σ2
(6)

= exp

{

µ1 − µ0

σ2

(

y −
µ0 + µ1

2

)}

(7)

Thus, the Bayes test is given by:

δB(y) =

{

1, if exp
{

µ1−µ0

σ2

(

y − µ0+µ1

2

)}

≥ τ
0, otherwise

(8)

where τ is an appropriate threshold.
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Figure 1: Illustration of Bayesian hypothesis testing with Gaussian error and
uniform costs [2].

Rearranging the terms, we get:

δB(y) =

{

1, if y ≥ τ
′

0, if y < τ
′ (9)

where τ
′

= σ2

µ1−µ0

log(τ) + µ0+µ1

2
.

Fig. 1 shows the case for uniform costs and equal priors, i.e., τ = 1 and
τ

′

= (µ0 + µ1)/2. Thus, the Bayes rule compares the observation to the av-
erage of µ0 and µ1. If y is greater than or equal to the average, H1 is chosen,
while if y is less than this average h1 is chosen.

1.2 Probability of Error and Bit Error Rate

Probability of error P (e) and bit error rate (or BER) are often used inter-
changeably, although in practice they have slightly different meanings. Pe

is a theoretical (mathematical) expectation of the bit error rate for a given
system, whereas BER is an empirical (historical) record of a system’s actual
bit error performance [4]. For instance, if a system has a Pe of 10−5, it means
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that mathematically, one bit error is expected in every 100,000 bits transmit-
ted. However, if a system has a BER of 10−5, it means that in the past there
has been one bit error for every 100,000 bits transmitted. The bit error rate
is measured, then compared to the expected probability of error to evaluate
a system’s performance.

1.3 Signal-to-Noise Ratio

The probability of error is a function of the average signal power to noise
power ratio, more commonly referred to as the signal-to-noise ratio (or SNR).
The SNR is the ratio of the average signal power (the combined power of the
carrier and its associated sidebands) to the thermal noise power.

The thermal noise power is expressed mathematically as:

N = KTB (10)

where N : thermal noise power, W
K : Boltzmann’s proportionality constant, 1.38 × 10−23 J/K
T : temperature, K
B : bandwidth, Hz

While the SNR is a standard performance metric in analog communica-
tions, in digital communication systems it is more customary to use Eb/N0,
which is a normalized version of SNR. Here, Eb is the bit energy, described
as signal power S times the bit time Tb, and N0 is the noise power spectral
density described as the noise power N divided by the bandwidth W . Since
bit time Tb and bit rate R are reciprocals of each other, the metric Eb/N0

may be interpreted as follows:

Eb

N0

=
S

N

B

fb

(11)

where Eb/N0 : energy per bit-to-noise power density ratio
S/N : signal-to-noise power ratio
B/fb : noise bandwidth-to-bit ratio

A typical curve of Probability of Error versus Eb/N0 is shown in Fig. 2.
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Figure 2: General shape of the PB vs Eb/N0 curve [3].

2 Analysis

This exercise calls for the simulation of the binary hypothesis testing model
for different choices of s0 and s1. In addition, for each choice of these pa-
rameters, the performance of the testing procedure is obtained by varying
the values of the SNR as well as the number of samples per symbol. Three
different hpothesis schemes are proposed in the following subsections.

2.1 On–Off Keying

On–off keying (OOK ), or unipolar amplitude keying, is arguably the sim-
plest form of communication. The transmitter uses s0(n) = 0 to represent
a “zero” and s1(n) = A to represent a “one”, where A is the amplitude of
the transmitted signal. Thus, effectively the transmitter is off when the a
zero symbol is being transmitted, which explains the name of the scheme.
While the resulting communication leads to conservation of energy, a serious
flaw is that when the receiver does not detect any signal, it has no means of
knowing whether a stream of zero bits is being transmitted or whether there
is a problem with the communication channel.

A simple case of the on-off keying scheme has been illustrated in Fig. 3,
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Figure 3: Illustration of a simple on-off keying (OOK) scheme where the
transmitted code sequence is 1011100.

where the symbol sequence is 1011100.

The hypothesis relations for this scheme may be written as:

H0 : x(n) = s0(n) + w(n) for n = 0, 1, . . . , N − 1
H1 : x(n) = s1(n) + w(n) for n = 0, 1, . . . , N − 1

(12)

where s0(n) = 0
s1(n) = A

If zero and one symbols are equiprobable, then the expected energy ex-
pended by this keying scheme is given by:

E[ε] = s2
0P (s0) + s2

1P (s2
1) (13)

= 0.5(02 + 12) (14)

= 0.5 (15)

This strategy was implemented in matlab (program code included in
Appendix A) and the plot of bit error rate was obtained as a function of the
signal-to-noise ratio. Fig. 4 and Fig. 5 illustrate two of these case for differ-
ent values of the number of samples, viz., n=2 and n=5. In both cases, the
total number of symbols transmitted is 10000 and the SNR is varied between
1 dB and 8 dB. The amplitude A is given the value 1.
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Figure 4: matlab plot of bit error rate as a function of signal-to-noise
ratio for a unipolar amplitude keying (on–off keying) scheme with 2 sam-
ples/symbol.

Figure 5: matlab plot of bit error rate as a function of signal-to-noise
ratio for a unipolar amplitude keying (on–off keying) scheme with 5 sam-
ples/symbol.
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Figure 6: Illustration of a simple bipolar amplitude keying scheme where the
transmitted code sequence is 1011100.

2.2 Bipolar Amplitude Keying

Bipolar amplitude keying is a slight modification of the on–off keying scheme
discussed earlier. Instead of representing a binary zero with no signal, this
scheme uses −A to represent the zero pulse, where A is the amplitude of the
signal used to represent binary one.

Thus, the hypothesis relations for this scheme may be written as:

H0 : x(n) = s0(n) + w(n) for n = 0, 1, . . . , N − 1
H1 : x(n) = s1(n) + w(n) for n = 0, 1, . . . , N − 1

(16)

where s0(n) = −A
s1(n) = A

A simple case of the bipolar amplitude keying scheme has been illustrated
in Fig. 6, where the symbol sequence is 1011100.

This improves over on–off keying by reducing the probability of error in
the presence of noise, since symbols zero and one are now separated by 2A
instead of A, making it less likely for the error threshold to be crossed. It
also makes the scheme less ambiguous— since a zero symbol is transmitted
as −A, when there is no signal, the receiver interprets it as no data being
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transmitted (although it might also be an effect of poor channel conditions).
The tradeoff for the improvement in the bit error rate is a higher consump-
tion of energy, since even a zero pulse is represented by a signal of non-zero
amplitude in this scheme.

If zero and one symbols are equiprobable, then the expected energy ex-
pended by this keying scheme is given by:

E[ε] = s2
0P (s0) + s2

1P (s2
1) (17)

= 0.5(12 + 12) (18)

= 1 (19)

It is observed that the expected energy consumption in this scheme is twice
that of the on–off keying scheme.

Since the aim of this transmission mechanism is to reduce the error rate
by increasing the “distance” between a transmitted zero symbol and a one
symbol, it is instructive to look at a modified form of the on–off keying
where the pulses zero and one are represented by 0 and 2A, i.e., the sepa-
ration between antipodal symbols is still 2A. Putting A = 1 and assuming
equiprobable zeros and ones, the expected energy would be:

E[ε] = s2
0P (s0) + s2

1P (s2
1) (20)

= 0.5(02 + 22) (21)

= 2 (22)

Thus, the expected energy consumption in this scheme is twice that of the
bipolar amplitude keying scheme, and therefore does not offer any advan-
tages.

The bipolar amplitude keying strategy was implemented in matlab (pro-
gram code included in Appendix B) and the plot of bit error rate was obtained
as a function of the signal-to-noise ratio. Fig. 7 and Fig. 8 illustrate two of
these case for different values of the number of samples, viz., n=2 and n=5.
In both cases, the total number of symbols transmitted is 10000 and the SNR
is varied between 1 dB and 8 dB. The data symbols 0 and 1 are represented
by −A = −1 and A = 1 respectively.
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Figure 7: matlab plot of bit error rate as a function of signal-to-noise ratio
for a bipolar amplitude keying scheme with 2 samples/symbol.

Figure 8: matlab plot of bit error rate as a function of signal-to-noise ratio
for a bipolar amplitude keying scheme with 5 samples/symbol.
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Figure 9: Illustration of a simple phase–change amplitude keying scheme
where the generated symbol sequence is 1011100 and the transmitted code
sequence is 0110010.

2.3 Phase–Change Amplitude Keying

The third scheme being proposed is a subtle modification of the on–off keying
scheme — it sends a symbol A only when there is a change of phase (either
from bit 0 to bit 1, or vice versa) and shuts off transmission when there is no
change of phase in consecutive data bits. As revealed by the matlab code in
Appendix C, this requires the original data stream to be coded to carry this
information (assuming that the initial signal is high) and then falls into the
category of on–off keying. The advantage of this scheme is that it consumes
less energy for certain types of data stream where toggling of data between
0 and 1 is relatively infrequent. However, a major disavantage is that if a
particular symbol is misinterpreted by the receiver, it has a domino effect on
the subsequent symbols until another error occurs. This limits the usefulness
of the procedure without adequate safeguarding techniques, and is included
here only for instructive purposes— it may also be pointed out that for a
random set of data that has no particular “pattern”, it does not offer energy
advantages either.

A simple case of the phase–change amplitude keying scheme has been il-
lustrated in Fig. 9, where the symbol sequence 1011100 is coded as 0110010
(note that it has reduced the number of ones, and hence the transmission
energy).
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Figure 10: matlab plot of bit error rate as a function of signal-to-noise ratio
for a phase–change amplitude keying scheme with 2 samples/symbol.

The phase–change amplitude keying strategy was implemented in mat-

lab (program code included in Appendix C) and the plot of bit error rate
was obtained as a function of the signal-to-noise ratio. Fig. 10 and Fig. 11
illustrate two of these case for different values of the number of samples, viz.,
n=2 and n=5. In both cases, the total number of symbols transmitted is
10000 and the SNR is varied between 1 dB and 6 dB. A change of phase
(either from 0 to 1 or from 1 to 0) is represented by A = 1, while A = 0
represents no change in phase.

3 Conclusion

The performance of the different transmission schemes outlined in the pre-
vious section were compared according to the variation of the bit error rate
with the signal-to-noise ratio. The table below summarises the power con-
sumption in each of the methods, for different numbers of samples.
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Figure 11: matlab plot of bit error rate as a function of signal-to-noise ratio
for a bipolar amplitude keying scheme with 5 samples/symbol.

Method No. of Samples No. of Symbols Power Consumed
On–Off 2 10000 0.4960
Keying 5 10000 0.5007
Bipolar Amplitude 2 10000 1.0000
Keying 5 10000 1.0000
Phase–Change 2 10000 0.5042
Amplitude Keying 5 10000 0.4998

As is expected, the bipolar amplitude keying transmission consumes ap-
proximately twice the amount of energy as the other two schemes since the
transmitter expends the same amount of energy regardless of whether a zero
bit or a one bit is transmitted. On the other hand, on–off keying and phase–
change amplitude keying consume approximately the same amount of power
since they are built upon the same model; the subtle differences in the en-
ergy values may be attributed to different random number sequences being
generated. It may be pointed out, however, that if the generated data had a
specific pattern (long periods of ones followed by long periods of zeros), then
the phase–change amplitude keying technique would be much energy-efficient
than the bipolar amplitude keying method.

The other issues that deserve careful consideration include the following:
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• The amount of energy used in transmitting a symbol.

As has been observed in Section 2.2, the bipolar amplitude keying tech-
nique consumes the same amount of energy irrespective of the symbol
being transmitted. However, both on–off keying and phase–change key-
ing represent a zero with a lack of a signal, thus consuming no energy
in the process, and reducing the net energy consumption.

• Performance at different signal-to-noise ratios.

This has been studies extensively in Section 2 and it was seen that the
bit-error-rate falls with increase of the signal-to-noise ration resulting
in the classic waterfall curve.

• Dependence on the number of samples per symbol.

The bit error rate versus signal-to-noise ratio curve was plotted for two
different values of the number of samples per symbol, viz. n = 2 and
n = 5. There is a very slight fall in the bit error rate with increase
in the number of samples, which can be attributed to the fact that
the detection decision is made over a larger number of measurements,
which reduces the probability of error. The difference may be expected
to be more marked for a larger increase in the number of samples per
symbol, but hardware restrictions limited that approach.

• Dependence on the likelihood of symbols zero and one.

There is no significant difference in the plot of bit error rate versus
signal-to-noise ratio when the probability of zero is changed. For in-
stance, Fig. 12 and Fig. 13 plot the BER versus SNR curve for on–off
keying when the probability of zero is increased to 0.7 and 0.9 respec-
tively, and there is no noticeable difference in the results compared to
those in Section 2.1. However, since the symbol zero (which is now more
abundant) requires no energy for transmission, there is a substantial
decrease in the energy consumption. A similar power behaviour is seen
in the case of phase-change amplitude keying. However, since bipolar
amplitude keying utilises the same amount of energy to transmit a zero
as to transmit a one, there is no change in the energy characteristics
with change in the probability of zero. These results are tabulated be-
low.
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Figure 12: matlab plot of bit error rate as a function of signal-to-noise ratio
for an on–off keying scheme with 2 samples/symbol and P (0) = 0.7.

Method n Power Power Power
P (0) = 0.5 P (0) = 0.7 P (0) = 0.9

On–off 2 0.4960 0.3011 0.1008
Keying 5 0.5007 0.2969 0.1023
Bipolar 2 1.0000 1.0000 1.0000
Keying 5 1.0000 1.0000 1.0000
Phase-change 2 0.5042 0.4260 0.1702
Keying 5 0.4998 0.4263 0.1758

In conclusion, it is not possible to minimise the bit-error-rate and the
energy consumption since they have contradictory requirements. Instead,
the optimum transmission mechanism should be able to provide sufficiently
robust quality and reliability while minimising the energy consumed. Under
these conditions, the on–off keying method is probably the best choice for
purely random data since it creates a marked improvement in energy effi-
ciency, while not causing a substantial degradation in the bit error rate. If
however, the transmission power is not an issue, then bipolar amplitude key-
ing provides more robust performance. It has also been proposed that if the
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Figure 13: matlab plot of bit error rate as a function of signal-to-noise ratio
for an on–off keying scheme with 2 samples/symbol and P (0) = 0.9.

data exhibits a particular repetitive pattern, then application of the phase–
change amplitude keying technique would provide a marked improvement in
energy efficiency while maintaining the bit error rate at the level of on–off
keying.

A Appendix

The appendix lists the source codes used for simulating the three algorithms
discussed in this report. The programs were written in matlab version
5.2.0.3084, and were executed in a Microsoft Windows 98SE environment.

A.1 On–Off Keying

% Hypothesis Testing

n=2; % number of samples per symbol

k=10000; % number of symbols transmitted

A=1; % amplitude of pulse

p=0.5; % probability of zero occurring

s0=0; % corresponding to symbol "zero"
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s1=A; % corresponding to symbol "one"

thresh=0.5*(s0+s1); % threshold for estimation

pwr=0.5*(s0*s0+s1*s1) % average power

error=0; % number of errors

%Outer loop of SNR

for SNRdB=1:6

SNR=10(SNRdB/10);

sigma=sqrt(pwr/SNR);

% Generation of the AWGN noise

N=n*k;

for i=1:N

u1=rand(1);

u2=rand(1);

x1=sqrt(-2*log(u1))*cos(2*pi*u2);

x2=sqrt(-2*log(u2))*cos(2*pi*u1);

rv1(i,1)=x1;

rv2(i,1)=x2;

normvarx(i)=0.5*(rv1(i,1)+rv2(i,1));

end

AWGN=sigma*normvarx;

counter=0;

%Generation of symbols

for i=1:k

varsum=0;

y=unifrnd(0,1);

if (y>p)

symbol(i)=s1;

else

symbol(i)=s0;

end

%Inner loop for samples

for j=1:n

x(j)=symbol(i)+AWGN(n*i+j-n);

varsum=varsum+x(j);

end

if y>p

if varsum/n>=thresh

counter=counter+1;
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end

else

if varsum/n<thresh

counter=counter+1;

end

end

end

numerror=k-counter;

errorprob(SNRdB)=numerror/k;

end

SNRdB=1:6;

semilogy(SNRdB, errorprob)

grid on

xlabel(’Signal-to-Noise Ratio’)

ylabel(’Bit Error Rate’)

pwr=(symbol*symbol’)/k

A.2 Bipolar Amplitude Keying

% Hypothesis Testing

n=2; % number of samples per symbol

k=10000; % number of symbols transmitted

A=1; % amplitude of pulse

p=0.5; % probability of zero occurring

s0=-A; % corresponding to symbol "zero"

s1=A; % corresponding to symbol "one"

thresh=0.5*(s0+s1); % threshold for estimation

pwr=0.5*(s0*s0+s1*s1) % average power

error=0; % number of errors

%Outer loop of SNR

for SNRdB=1:6

SNR=10(SNRdB/10);

sigma=sqrt(pwr/SNR);

% Generation of the AWGN noise

N=n*k;

for i=1:N

u1=rand(1);

19



u2=rand(1);

x1=sqrt(-2*log(u1))*cos(2*pi*u2);

x2=sqrt(-2*log(u2))*cos(2*pi*u1);

rv1(i,1)=x1;

rv2(i,1)=x2;

normvarx(i)=0.5*(rv1(i,1)+rv2(i,1));

end

AWGN=sigma*normvarx;

counter=0;

%Generation of symbols

for i=1:k

varsum=0;

y=unifrnd(0,1);

if (y>p)

symbol(i)=s1;

else

symbol(i)=s0;

end

%Inner loop for samples

for j=1:n

x(j)=symbol(i)+AWGN(n*i+j-n);

varsum=varsum+x(j);

end

if y>p

if varsum/n>=thresh

counter=counter+1;

end

else

if varsum/n<thresh

counter=counter+1;

end

end

end

numerror=k-counter;

errorprob(SNRdB)=numerror/k;

end

SNRdB=1:6;

semilogy(SNRdB, errorprob)
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grid on

xlabel(’Signal-to-Noise Ratio’)

ylabel(’Bit Error Rate’)

pwr=(symbol*symbol’)/k

A.3 Phase–Change Amplitude Keying

% Hypothesis Testing

n=2; % number of samples per symbol

k=10000; % number of symbols transmitted

A=1; % amplitude of pulse

p=0.5; % probability of zero occurring

s0=0; % corresponding to symbol "zero"

s1=A; % corresponding to symbol "one"

thresh=0.5*(s0+s1); % threshold for estimation

pwr=0.5*(s0*s0+s1*s1) % average power

error=0; % number of errors

%Outer loop of SNR

for SNRdB=1:6

SNR=10(SNRdB/10);

sigma=sqrt(pwr/SNR);

% Generation of the AWGN noise

N=n*k;

for i=1:N

u1=rand(1);

u2=rand(1);

x1=sqrt(-2*log(u1))*cos(2*pi*u2);

x2=sqrt(-2*log(u2))*cos(2*pi*u1);

rv1(i,1)=x1;

rv2(i,1)=x2;

normvarx(i)=0.5*(rv1(i,1)+rv2(i,1));

end

AWGN=sigma*normvarx;

counter=0;

%Generation of symbols

for i=1:k+1

varsum=0;
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y=unifrnd(0,1);

if (y>p)

symb(i)=s1;

else

symb(i)=s0;

end

end

for i=1:k

if (symb(i)+symb(i+1)==(s1+s0))

symbol(i)=s1;

else

symbol(i)=s0;

end

%Inner loop for samples

for j=1:n

x(j)=symbol(i)+AWGN(n*i+j-n);

varsum=varsum+x(j);

end

if y>p

if varsum/n>=thresh

counter=counter+1;

end

else

if varsum/n<thresh

counter=counter+1;

end

end

end

numerror=k-counter;

errorprob(SNRdB)=numerror/k;

end

SNRdB=1:6;

semilogy(SNRdB, errorprob)

grid on

xlabel(’Signal-to-Noise Ratio’)

ylabel(’Bit Error Rate’)

pwr=(symbol*symbol’)/k

22



References

[1] Alberto Leon-Garcia. Probability and Random Processes for Electrical

Engineering. Addison-Wesley, Reading, MA, 1994.

[2] H. Vincent Poor. An Introduction to Signal Detection and Estimation.
Springer Verlag, New York, NY, 1998.

[3] Bernard Sklar. Digital Communications. Pearson Education Asia, Singa-
pore, 2001.

[4] Wayne Tomasi. Electronic Communication Systems. Prentice Hall, Upper
Saddle River, NJ, 1998.

[5] David Tse and Robert Gallager. Detection Notes. Technical report,
Massachussetts Institute of Technology, 2002.

[6] Roy D. Yates and David J. Goodman. Probability and Stochastic Pro-

cesses. John Wiley, New York, NY, 1999.

23


