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Abstract

Combined spatial and temporal processing has been shown to increase the potential link

capacity enormously for wireless communication systems, especially when the channels

between different transmit and receive antenna pairs are uncorrelated. In this paper,

we consider both spatial and temporal channel correlations that may be encountered in

space-time processing and present the performance analysis of convolutionally coded

DS-CDMA systems. An upper bound for the average bit error probability (P b) is

derived for the case of perfect channel estimation and an analytical approximation for

P b is derived in the case of erroneous channel estimates. The analytical approach is

general enough to be applicable to various space and time diversity situations, such as

wideband multipath channels and antenna arrays.
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1 Introduction

Space-time processing has been shown to yield tremendous capacity gains in multiple-input

and multiple-output (MIMO) wireless communication systems, especially when the transfer

functions between different transmit and receive antenna pairs are uncorrelated [1–3]. The

coherent rake receiver with pilot-aided channel estimation will be used to improve the re-

verse link performance versus the non-coherent rake receiver in wideband DS-CDMA based

third-generation cellular systems. Most of the analytical studies in the literature on the per-

formance of convolutional codes in DS-CDMA systems do not consider channel correlation

and channel estimation errors. The usual assumptions are spatially uncorrelated multi-

paths/antenna signals, temporally independent symbol errors by perfect interleaving and

perfect channel estimation. In the absence of the above idealistic assumptions, performance

of such systems will be degraded. In practice, the temporal correlation in each fading path

could be caused by imperfect interleaving due to application delay constraints. The spatial

correlation between different rake fingers could exist when multipath components and their

associated fingers are close to each other or the fingers come from different antennas with

limited spacing in the case of antenna diversity. It has been shown in [4, 5] that spatial

correlation between signals at different antenna elements may limit potential capacity gains.

Thus it is of interest to analyze the performance of convolutional codes in DS-CDMA sys-

tems with spatial and temporal channel correlations. Further, since the success of space-time

processing relies on accurate channel estimates, it is also of interest to study the performance

under channel estimation errors.

In previous work, the performance analysis of CDMA systems has been conducted exten-

sively [6–8]. The union bound has been used to analyze the coding performance in DS-CDMA

systems under perfect channel state information and memoryless fading [7, 8]. The coding

performance over non-independent Rician fading channels has been studied with perfect

channel information [9]. Pairwise error probability of non-interleaved codes over Rayleigh

channel with channel estimation was analyzed in [10] for a general maximum likelihood (ML)

decoder. In this paper, considering the effect of temporal and spatial channel correlations, we
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first derive an upper bound for the average bit error probability for a convolutionally coded

DS-CDMA system under perfect channel estimation. We then present an approximation for

the average bit error probability by taking channel estimation errors into account. Simula-

tions using SPW (Signal Processing WorkSystem, Cadence) are performed to compare with

the analytical results.

2 System Model with Spatial and Temporal Channel

Correlations

The system model considered here is that of a convolutionally coded DS-CDMA system

employing a coherent rake receiver. It is assumed that every user is received with equal

average signal power at the base station, i.e., power control is implicitly considered to have

eliminated the near-far effect due to the pathloss and also large-scale fading. However, the

short-scale (such as Rayleigh) fading is assumed to remain uncompensated.

The wideband frequency-selective channel is modeled as a random delay, discrete ‘resolv-

able’ path model [11]. The number of resolvable paths of the channel for the k-th user is

assumed to be L(k). The received signal over each path is temporally correlated due to imper-

fect interleaving and channel correlation. In most analytical studies, the different paths are

generally assumed to be mutually independent. However, when the resolvable delay between

two consecutive paths becomes smaller (especially in the case of systems with relatively high

chip rates as in WCDMA), the fading signals in two consecutive paths could be correlated.

Such correlation may come from either the spatial correlation between two paths with small

delay spread or the unresolvable paths due to pulse shaping filtering. Also, in the situation

of antenna diversity, the correlation between different rake fingers may come from the spatial

correlation between different antennas due to limited antenna spacing. In this paper, we do

not distinguish the correlation between paths due to different reasons but simply characterize

such correlation as spatial correlation. Thus, both the temporal correlation in each fading

path and the spatial correlation between different fading paths could exist and affect the
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coding performance.

2.1 Temporal Channel Correlation

For the k-th user, the envelope of each path in the wideband channel is assumed to be

Rayleigh distributed. Thus, the sample value of each path at time iT (time index i) is a

complex Gaussian random variable given as

h
(k)
l (i) = h

(k)
xl (i) + jh

(k)
yl (i), 1 ≤ l ≤ L(k), (1)

where T is the sample period, h(k)
xl (i) and h(k)

yl (i) represent respectively the I and Q compo-

nents of the l-th path at time index i of the k-th user. The temporal autocorrelation function

of h
(k)
l (i) is given as [12]

ρ
(k)
ll (m) =

1

2
E[h

(k)
l (i)(h

(k)
l (i + m))∗] = (σ

(k)
hl )2J0(2πfDmT ), 1 ≤ l ≤ L(k), (2)

where fD is the maximum Doppler frequency and J0(·) is the zero-order Bessel function.

2.2 Spatial Channel Correlations

The spatial (cross) correlation coefficient between two Rayleigh faded envelopes r(k)
l (i) =

|h(k)
l (i)| and r

(k)
n (i) = |h(k)

n (i)| is expressed as (page 51 in [12])

ρ(k)
r =

(1 + λ
(k)
ln )Ei(

2

q
λ
(k)
ln

1+λ
(k)
ln

) − π
2

2 − π
2

(3)

where λ
(k)
ln denotes the correlation coefficient between the complex amplitudes h

(k)
l (i) and

h
(k)
n (i), and Ei(η) denotes the complete elliptical integral of the second kind. The spatial and

temporal correlation function between two complex amplitudes with time index difference

m can be expressed as

ρ
(k)
ln (m) =

1

2
E[h

(k)
l (i)(h(k)

n (i + m))∗] = λ
(k)
ln σ

(k)
hl σ

(k)
hn J0(2πfDmT ), 1 ≤ l ≤ L(k). (4)

Readers are referred to [12] for further details and [13] for the algorithm for the generation

of Rayleigh fading signals with spatial correlation.
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3 Bit Error Probability Analysis

In this section, we analyze the bit error probability of a convolutional code with maximum-

ratio combining (MRC) rake receiver in DS-CDMA systems. We first consider the case of

perfect channel estimation and derive an upper bound for the average probability of bit error

under both spatial and temporal channel correlations.

3.1 Upper bound for average bit error probability under perfect

channel estimation

It is well known that the output of the maximum-ratio combining (MRC) rake receiver with

channel estimation ĥ∗
l (i) can be expressed as [6–8]

U(i) = Re{
L∑

l=1

(
√

Eshl(i)b(i) + wl(i))ĥ
∗
l (i)} (5)

in the case of BPSK data modulation with b(i) ∈ {−1, +1} being the modulated data symbol

and Es being the symbol energy. In the above equation and henceforth, we drop the super-

index notation (k) and refer to the reference user only. Using the Gaussian assumption for

the interference from (K−1) users, the total interference wl(i) = wxl(i)+jwyl(i) is a complex

white Gaussian variable with zero mean and variance I0/2 [7, 8]

σ2
w =

1

2
E[wl(i)w

∗
l (i)] =

I0

2
= (K − 1)

Ec

2
+

N0

2
(6)

where Ec = Es/g = REb/g is the chip energy with g being the processing gain, Eb being the

bit energy, and R being the code rate.

When the transmitted codeword is all-zero codeword C0, a Viterbi decoder will select the

erroneous codeword Cj if the received signal’s Euclidean distance to Cj is less than that to

C0 [9, 10], i.e.,

N∑
i=1

[U(i) − bj(i)]
2 <

N∑
i=1

[U(i) − b0(i)]
2 (7)

where U(i) is the soft input of the Viterbi decoder given in equation (5), bj(i) and b0(i) are

the data symbols that correspond respectively to Cj(i) and C0(i). Assuming that codewords
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Cj and C0 differ in dj code-symbols and these positions are at in, n = 1, 2, ...dj, the inequality

in (7) can be shown to be equivalent to [8]

dj∑
n=1

Re{
L∑

l=1

(
√

Eshl(in) + wl(in))ĥl

∗
(in)} < 0. (8)

Under the assumption of perfect channel estimation, ĥl(in) equals to hl(in). Following

the derivation in [8], the average pairwise error probability can be expressed as

P dj(Cj, C0) = E

[
Q

(√√√√2
Es

I0

dj∑
n=1

L∑
l=1

|hl(in)|2
)]

(9)

where E(·) denotes the expectation over the set of random variables {hl(in)}l=1,...L;n=1,...dj.

To obtain an upper bound for P dj(Cj, C0) over a correlated channel, we follow a method

similar to the one used by Gagnon and Haccoun in [9] for a temporally correlated Rician

channel. However, both spatial and temporal correlations of the multipath signals are con-

sidered in our analysis. Using Q(
√

x) ≤ 1
2
exp(−x

2
), an upper bound can be obtained as

P dj(Cj, C0) ≤
1

2
E

[
exp

(
−Es

I0

dj∑
n=1

L∑
l=1

|hl(in)|2
)]

. (10)

It can be rewritten as

P dj(Cj, C0) ≤
1

2
E

[
exp

(
−Es

I0

VjV
�
j

)]
(11)

using the expression

Vj = [ h1 h2 . . . hL ] (12)

with

hl = [ hxl hyl ] = [ hxl(i1) . . . hxl(idj ) hyl(i1) . . . hyl(idj) ]. (13)

Note that the symbol � represents the matrix transpose operator in equation (11). Since the

components in row vector Vj are all zero-mean Gaussian random variables, it can be shown

(using a technique in [14]) that

1

2
E

[
exp

(
−Es

I0

VjV
�
j

)]
=

1

2|2Es

I0
Mj + Ij|

1
2

(14)
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where Ij is the identity matrix of the same size as Mj , and Mj is the autocovariance matrix

of vector Vj defined as

Mj = E[(Vj − Vj)
�(Vj − Vj)] = E[V �

j Vj ]

=




M11 M12 . . . M1L

M21 M22 . . . M2L

...
...

. . .
...

ML1 ML2 . . . MLL




(15)

with

Mln = E[h�
l hn], 1 ≤ l, n ≤ L. (16)

The diagonal terms, Mll, 1 ≤ l ≤ L, are due to the temporal correlation in each path and can

be calculated from ρll(m) in equation (2). The off-diagonal terms, Mln, 1 ≤ l �= n ≤ L are

due to both the temporal correlation in each path and spatial correlations between different

paths and can be calculated from ρln(m) in equation (4).

Thus the average pairwise error probability can be bounded as

P dj(Cj, C0) ≤ 1

2|2Es

I0
Mj + Ij|

1
2

. (17)

Using the well known union bound [11], the average bit error probability P b can now be

bounded as

P b ≤ 1

k

∞∑
j=1

Bj

2|2Es

I0
Mj + Ij|

1
2

(18)

where Bj is the weight of information bits corresponding to codeword Cj, and the code

rate is R = k/n. This upper bound for the average bit error probability is general enough

to be applied to different spatial and temporal channel models, such as MIMO channel

with spatial correlation [1, 3] and WSSUS (Wide Sense Stationary Uncorrelated Scattering)

channel without spatial correlation [15].
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3.2 Approximation of average bit error probability under channel

estimation errors

We now consider the analytical results for the average probability of bit error when the

channel estimates are not exact. Since the focus of this paper is not on any specific channel

estimation technique, we use a general channel estimation error model in the analysis [16].

Specifically, the channel estimate, ĥl(i), is modeled as

ĥl(i) = hl(i) + el(i) (19)

where el(i) = exl(i) + jeyl(i) is a complex Gaussian random variable with mean E[el(i)] = 0

and variance σ2
el

= 1
2
E[el(i)e

∗
l (i)] . The error term el(i) is assumed to be independent of hl(i).

In the analysis of the average bit error probability that follows in this paper, we assume that

σ2
el

is known.

Starting from equation (8), the average pairwise error probability can be approximated

as

P dj(Cj, C0) ≈ E

[
Q

(√√√√ 2Es

I0

1 + 2Es

I0
σ̄2

e + 2Lσ̄2
e

dj∑
n=1

L∑
l=1

|hl(in)|2
)]

(20)

where σ̄2
e is the average channel estimation error variance over multiple rake fingers. The

details of the above derivation can be found in the Appendix. Similarly, the average bit error

probability P b under the channel estimation errors can be approximated as

P b ≈ 1

k

∞∑
j=1

Bj

2| 2Es/I0
1+2Es

I0
σ̄2

e+2Lσ̄2
e
Mj + Ij|

1
2

. (21)

3.3 Calculation of the average bit error probability under block

interleaving

In order to calculate the upper bound and the approximation of average bit error probability,

the autocovariance matrix Mj needs to be calculated for different codewords Cj. In this

section, we give an example on how to compute the autocovariance matrix Mj and also

point out the effect of block interleaving.
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For codeword Cj of a given convolutional code, the positions in, n = 1, 2, ...dj, where Cj

and C0 have different code-symbols, can be obtained by an exhaustive binary-tree search [17].

Once these parameters are determined, the autocovariance matrix Mj can be calculated.

Now we illustrate this for the example of a convolutional code (1/2, 3) (rate 1/2 and

constraint length 3). The generator polynomial of this code is (5 7) in octal format [17].

This code has a free distance of 5. Considering a pair codewords C1 = (1 1 0 1 1 1) and

C0 = (0 0 0 0 0 0), the two codewords differ in dj = 5 positions in = {1, 2, 4, 5, 6}, n = 1, 2, ...5.

Since the I and Q components of the same path are assumed to be mutually independent,

the diagonal terms of the autocovariance matrix M1 (corresponding to codeword C1) can be

calculated as

Mll = E[h�
l hl] =


 Φll 0

0 Φll


 , l = 1, 2...L, (22)

with

Φll = E[h�
xlhxl] = E[h�

ylhyl] (23)

=




ρll(0) ρll(1) ρll(3) ρll(4) ρll(5)

ρll(1) ρll(0) ρll(2) ρll(3) ρll(4)

ρll(3) ρll(2) ρll(0) ρll(1) ρll(2)

ρll(4) ρll(3) ρll(1) ρll(0) ρll(1)

ρll(5) ρll(4) ρll(2) ρll(1) ρll(0)




where the autocorrelation function ρll(m) is defined in equation (2). The off-diagonal terms

Mln, 1 ≤ l �= n ≤ L, can be calculated similarly using ρln(m) in equation (4). Therefore, the

autocovariance matrix M1 can be obtained. From M1 the upper bound or approximation of

the average pairwise error probability P dj(C1, C0) can be calculated. Similarly, the average

pairwise error probability P dj(Cj, C0) for other pairs of codewords can be calculated. Thus

the upper bound or approximation of the average bit error probability P b can be evaluated

using equation (18) and (21), respectively.

Interleaving is commonly used to reduce or break the correlation of errors caused by

fading channels. However, perfect interleaving is not always feasible due to delay constraints
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and hardware memory limits especially for high data rates. With imperfect interleaving, the

received signals of adjacent symbols are temporally correlated. As pointed out in [9,10,18], a

slowly fading system with interleaving is equivalent to a faster fading system without inter-

leaving. Consider a commonly used block interleaver with interleaving depth D and interleav-

ing length N , where N is assumed to be large enough to avoid the “wraparound” effect [7],

which is the situation when in a code word two code symbols separated by N-1 code symbols

at the receiver are consecutive during transmission. After interleaving/deinterleaving, two

adjacent code symbols at the receiver are separated by another D − 1 code symbols during

transmission over the channel. For a fading channel with normalized Doppler frequency

of fDTs, after interleaving/deinterleaving, the equivalent normalized Doppler frequency be-

comes fD(DTs) [9,18]. Thus for interleaved systems, the normalized Doppler frequency fDTs

in ρll(m) and ρln(m) should be replaced by fD(DTs) in the calculation of the autocovariance

matrix Mj .

4 Numerical Results

In this section, the average bit error probability results are presented for a convolutionally

coded DS-CDMA system with a coherent rake receiver. In these examples, we consider

two standard convolutional codes, a (1/2, 7) code (rate 1/2 and constraint length 7) with

generator polynomial (133 171) in octal form and a (1/3, 9) code with generator polynomial

(557 663 711) in octal form [11,17].

Figure 1 shows the upper bound for the average bit error probability (P b) for (1/2, 7)

code under perfect channel estimation and different interleaving depth. Here the interleaving

length N is chosen to be 32 and the interleaving depth D is 51, 101 and 404 for interleaving

delay of 10ms, 20ms and 80ms respectively. For this example, the channel model is composed

of L = 4 mutually uncorrelated paths with equal average power. The Doppler frequency is

51.67Hz. The frame size is 10ms. The channel symbol rate is 161.1 ksps (kilo-symbols per

second). All the above parameters are chosen to match the parameters used in Figure 6 of the

reference [8] for comparison. This code has a free distance df = 10 and only even Hamming
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weight codewords. For this example, the upper bound for the average bit error probability

P b in equation (18) is calculated using only codewords having the Hamming distance 10, 12

and 14 from the all-zero codeword C0. Further the numbers of codewords with Hamming

distance 10, 12, and 14 are 11, 38 and 193 respectively [17]. The total number of these

codewords is 242, or equivalently the number of terms used in the upper bound calculation

in equation (18) is 242. Our simulation results using SPW are also shown to compare with

our analytical results. It is observed that our upper bounds are relatively tight for different

interleaving depths. Also, our simulation results match well to the simulation results of

Figure 6 in reference [8]. It is noticed that the upper bound for P b is not asymptotically

tight when Eb/N0 increases. This is because the exponential function is used to upper bound

the Q(·) function and as such the exponential function is not an asymptotically tight bound

of the Q(·) function. In spite of this, the upper bound is still reasonably tight.

Figure 2 shows the upper bound and simulation results for (1/3, 9) code under perfect

channel estimation and two different Doppler frequencies. This code is used in practical DS-

CDMA systems such as IS-95 and WCDMA. This code has a free distance df = 18 and only

even Hamming weight codewords. The upper bound for the average bit error probability P b

is calculated using the codewords having three lowest Hamming distances, i.e., 18, 20, and

22, from the all-zero codeword C0. The total number of these codewords is 48. Again, the

results show that the upper bound analysis works well for different Doppler frequencies.

The upper bound and simulation results of P b in Figure 3 show the degradation of P b due

to spatial correlation between different rake fingers. For instance, when the cross-correlation

coefficient λ equals 0.7 (ρr = 0.49) as shown in this example, the degradation is about 1.0dB

compared to the case with mutually uncorrelated (independent) rake fingers.

Figure 4 shows the analytical approximation and simulation results of P b under channel

estimation error and different Doppler frequencies. The spatial correlation is assumed to be

zero here, i.e., λ = 0. Note that the analytical approximations have a good match to the

simulation results.

Figure 5 shows the analytical approximation and simulation results of P b with temporal

and spatial correlation as well as channel estimation errors. Again, the analytical approx-
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imations of P b have a good match to the simulation results. Our results indicate that the

analytical approximation underestimates those from simulations when the channel estima-

tion error variance σ2
e is larger and the spatial and temporal channel correlation is higher.

This is due to the approximation in equation (30) in Appendix.

The effect of correlated errors on P b due to imperfect interleaving (temporal correlation

only) can be seen from Figure 1 and 2. For the (1/2,7) code shown in Figure 1, the degra-

dation from 80ms interleaving to 10ms interleaving can be as large as 2dB at P b = 10−3

and 4dB at P b = 10−6. Similar degradations due to smaller Doppler frequencies can be seen

for the (1/3, 9) code in Figure 2. For voice applications at P b = 10−3, this degradation

may be inevitable due to the delay constraint of voice applications. For non-real time data

applications, longer interleaving is preferred for significant performance improvement.

The impact of channel estimation errors on P b can be seen more easily from the analytical

results in Figure 6. In this example, the channel with mutually independent 4 equal power

Rayleigh paths is considered. The variance of each Rayleigh signal, σ2
h, equals 0.125 due

to the normalized power of total signals. In our analysis and simulations, we have used

a constant channel estimation error variance for different Es/I0 values. In practice, the

channel estimation error variance will generally decrease with an increase in Es/I0. Also

the channel estimation error will be affected by the fading rate of the channel. However the

focus of this paper is not on any specific channel estimation method. Figure 6 indicates that

once the variance of the channel estimation error is obtained, it can be incorporated with our

analytical method to evaluate the performance of convolutionally coded DS-CDMA systems.

5 Conclusion

Space-time processing is a promising technique to increase the link capacity of wireless

communication systems. Various techniques such as maximum-ratio rake finger combining

and antenna diversity, have been used in DS-CDMA systems to improve the performance

and capacity. Considering both temporal and spatial channel correlations encountered in

space-time processing and the channel estimation errors, we have presented the performance

12



analysis of convolutionally coded DS-CDMA systems. We derived an upper bound for the

average bit error probability (P b) in the case of perfect channel estimation and an analytical

approximation for P b in the case of erroneous channel estimates. The analytical approach

is general enough to be applicable to various space and time diversity situations, such as

wideband multipath channels and antenna arrays. The analytical results are obtained as a

succinct function of the weight distribution of the codeword, temporal and spatial channel

correlation values and are able to account for channel estimation errors when applicable.

Appendix. The approximation of the pairwise error

probability with channel estimation errors

From the inequality in equation (8), the average pairwise error probability can be derived

as follows under the situation of channel estimation errors. Firstly, the LHS of equation (8)

can be written as

dj∑
n=1

Re{
L∑

l=1

(
√

Eshl(in) + wl(in))ĥl

∗
(in)} = st + wt (24)

where the signal component st is given as

st =
√

Es

dj∑
n=1

L∑
l=1

|hl(in)|2 (25)

and the noise component wt is given as

wt =

dj∑
n=1

L∑
l=1

[wxl(in)hxl(in) + wyl(in)hyl(in) +
√

Eshxl(in)exl(in) +
√

Eshyl(in)eyl(in)

+wxl(in)exl(in) + wyl(in)eyl(in)]. (26)

The conditional power in the signal component st, denoted as Pst|{hl(in)}, is given as

Pst|{hl(in)} = Es(

dj∑
n=1

L∑
l=1

|hl(in)|2)2. (27)
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We approximate the noise wt conditioned on {hl(in)}l=1,...L;n=1,...dj as a Gaussian random

variable with zero mean, denoted as E[wt|{hl(in)}] = 0 and variance

σ2
wt
|{hl(in)} = σ2

w

dj∑
n=1

L∑
l=1

|hl(in)|2 + Es

dj∑
n=1

L∑
l=1

σ2
el|hl(in)|2 +

dj∑
n=1

L∑
l=1

2σ2
wσ2

el. (28)

Let us denote the average channel estimation error variance as σ̄2
e = 1

L

∑L
l=1 σ2

el. The second

term in the expression for σ2
wt
|{hl(in)} (equation (28)) is now approximated as

Es

dj∑
n=1

L∑
l=1

σ2
el|hl(in)|2 ≈ Esσ̄

2
e

dj∑
n=1

L∑
l=1

|hl(in)|2. (29)

The last term in the expression for σ2
wt
|{hl(in)} (equation (28)) can be expressed as

dj∑
n=1

L∑
l=1

2σ2
wσ2

el = 2Lσ2
wσ̄2

e

dj∑
n=1

L∑
l=1

|hl(in)|2 + 2Lσ2
wσ̄2

e

dj∑
n=1

(1 −
L∑

l=1

|hl(in)|2)

≈ 2Lσ2
wσ̄2

e

dj∑
n=1

L∑
l=1

|hl(in)|2. (30)

Thus σ2
wt
|{hl(in)} can be approximated by

σ2
wt
|{hl(in)} ≈ (σ2

w + Esσ̄
2
e + 2Lσ2

wσ̄2
e)

dj∑
n=1

L∑
l=1

|hl(in)|2 (31)

The conditional pairwise error probability can be calculated as

Pdj(Cj , C0|{hl(in)}) ≈ Q

(√
Pst|{hl(in)}
σ2

wt
|{hl(in)}

)

≈ Q

(√√√√ 2Es

I0

1 + 2Es

I0
σ̄2

e + 2Lσ̄2
e

dj∑
n=1

L∑
l=1

|hl(in)|2
)

. (32)

The unconditional average pairwise error probability can be expressed as

P dj(Cj, C0) ≈ E

[
Q

(√√√√ 2Es

I0

1 + 2Es

I0
σ̄2

e + 2Lσ̄2
e

dj∑
n=1

L∑
l=1

|hl(in)|2
)]

(33)

where the expectation E(·) is over the channel {hl(in)}l=1,...L;n=1,...dj .
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Figure 1: The upper bound and simulation results of P b for different interleaving under

perfect channel estimation (σ2
e = 0). (1/2, 7) code, mutually independent 4-equal-power

channel (L = 4), fD = 51.67Hz, channel rate 1/Ts = 161.1 ksps, frame size = 10ms, block

interleaver N = 32, D = 51, 101, 404.
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Figure 2: The upper bound and simulation results of P b for different Doppler frequencies

under perfect channel estimation (σ2
e = 0). (1/3, 9) code, mutually independent 4-equal-

power channel (L = 4), fD =80, 200Hz, channel rate 1/Ts = 28.8 ksps, block size = 20ms,

block interleaver N = 72, D = 8.
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Figure 3: The upper bound and simulation results of P b with spatial correlation between

different fading paths under perfect channel estimation. (1/3, 9) code, spatially correlated

4-equal-power channel (L = 4), fD = 200Hz, channel rate 1/Ts = 28.8 ksps, block size =

20ms, block interleaver N = 72, D = 8, σ2
e = 0.
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Figure 4: The analytical approximation and simulation results of P b under channel estima-

tion error and different Doppler frequencies. (1/3, 9) code, mutually independent 4-equal-

power channel (L = 4), fD = 80, 200Hz, channel rate 1/Ts = 28.8 ksps, block size = 20ms,

block interleaver N = 72, D = 8, σ2
e = 0.025.
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Figure 5: The analytical approximation and simulation results of P b with spatial correlation

and channel estimation errors. (1/3, 9) code, spatially correlated 4-equal-power channel

(L = 4), fD = 200Hz, channel rate 1/Ts = 28.8 ksps, block size = 20ms, block interleaver

N = 72, D = 8, σ2
e = 0.025.
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Figure 6: The analytical results of degradation of P b due to different channel estimation

error variances. (1/3,9) code, mutually independent 4-equal-power channel (L = 4), fD =

200Hz, channel rate 1/Ts = 28.8 ksps, block size = 20ms, block interleaver N = 72, D = 8.
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