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Abstract—We investigate the use of distributed measurements
for estimating and updating the performance of a cellular system.
Specifically, we discuss the number and placement of sensors in
a given cell for estimating its signal coverage. Here, an “outage”
is said to occur at a location if a mobile receiver there has
inadequate signal-to-noise ratio (SNR-based outage) or, using
another criterion, inadequate signal-to-interference ratio (SIR-
based outage); and the “outage probability” is the fraction of the
cell area over which outage occurs. A design goal is to improve
measurement efficiency (i.e., minimizing the required number
of measurement sensors) while accurately estimating the outage
probability and mapping the coverage holes. The investigation
uses a generic path loss model incorporating distance effects
and spatially correlated shadow fading. Our emphasis is on the
performance prediction accuracy of the sensor network, rather
than on cellular system analysis per se. Through analysis and
simulation, we assess several approaches to estimating the outage
probability. Applying the principle of importance sampling to the
sensor placement, we show that a cell outage probability of Po can
be accurately estimated using ∼ 10/Po power-measuring sensors
distributed in a random uniform way over the area with base-
sensor distances from 50% to 100% of the cell radius. This result
applies to both SNR-based and SIR-based outage estimation for
both indoor and outdoor environments.

Index Terms—Distributed measurements, cellular systems, im-
portance sampling, sensor networks, path loss.

I. INTRODUCTION

WE investigate the use of distributed measurements
in a cell via sensors at known locations. The aim

is to assist radio resource management in maximizing the
quality of service in cellular systems. Our focus is on new or
envisioned cellular system designs in which antenna beams,
power per beam and channel sets can be assigned adaptively to
accommodate slowly changing conditions of the propagation
and the user population. The sensor-measured data can reduce
the measurement demands on the active mobiles; or, it can be
augmented by such measurements, to permit more dynamic
adapting as individual mobiles change locations, start and end
service, and so on.
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The key benefit of the distributed measurement system is
that it provides round-the-clock measurements from many
low-cost sensors per cell, at known locations. The data so
obtained can be used not only for medium-term radio resource
management, but also for longer-term engineering, e.g., iden-
tifying the need for new cell sites. RF planning for wireless
systems utilizes both proactive measurements (e.g., path loss)
and reactive measurements (e.g., call drops, handovers). For
proactive measurements, in most cases, currently used RF
planning tools gather propagation information based on the
use of a database in a given region, augmented by drive tests
conducted during off-peak times. Such static snapshots of RF
planning information are suitable for current systems with
fixed antenna patterns and limited use of adaptive algorithms.
Data collected by mobiles and relayed to base stations may
deliver additional time-of-day-specific RF planning informa-
tion. However, relying on mobiles alone to provide signal
and interference power measurements has limited benefit and
adds demands to scarce mobile battery resources. Furthermore,
a given mobile can measure downlink conditions only, may
not be equipped with GPS receivers to help associate its
measurements with location, and reports at uncontrolled times
and locations.

Distributed measurements can react to gradual changes
in propagation (e.g., new structures, especially in cities) or
interference (e.g., due to adaptive beamforming). They are not
labor-intensive and are available at all times, to accommodate
slow adaptive changes in radio resources. The sensors can
be more numerous and measurements may be gathered more-
or-less uniformly from known locations, facilitating reliable
outage evaluations. In fact, the potential exists to accurately
pinpoint chronically poor service areas that arise after initial
planning, and to identify the need for new or reengineered
sites. Additionally, the sensor network could be extended to
support multiple air interfaces within overlapping coverage
regions (e.g., wireless LAN, DVB-H deployments).

We envision a network fabric of N sensors per cell (N ∼
100) which communicate with each other and, through some
sensors, with the cellular system, as shown in Fig. 1. Each
sensor has an identifying code and a fixed and known location,
and it measures received powers from pilots sent by its
closest base and several bases nearby. As we will show, the
collection of data from all the sensors can be used to estimate
the percentages of each cell having adequate signal-to-noise
ratio (SNR), or adequate signal-to-interference ratio (SIR). The
percentage of the cell that is not having sufficient SNR (or SIR)
is called the outage probability, Po.
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Fig. 1. A 7-cell cluster, with many sensors in each cell. We evaluate “outage”
conditions in the center cell, both actual and as estimated using the sensors.

Our calculations are based on a path loss model that
incorporates the effects of path length (distance) and spatially
correlated shadow fading, as discussed in Section II. We
then apply the principle of importance sampling (IS) in the
placement of sensors and discuss how it might decrease the
number of sensors required for a given accuracy in estimating
Po (Section III). Here, we derive an optimal sensor placement
strategy for SNR-based estimation of Po and also introduce
three sub-optimal (but more generic) placement schemes.
Next, we describe the use of Monte Carlo simulations to
quantify the accuracy in estimating Po as a function of the
number of sensors (N ), the placement scheme, and various
system and path loss model parameters (Section IV). The
results, for both SNR-based and SIR-based estimation, reveal
the values of N needed for good accuracy and show the
possible reductions in N using IS-type sensor placement. We
also briefly discuss the use of the distributed measurements to
generate outage (or hole) maps. We conclude (Section V) with
a general discussion of distributed measurements to assist cell
engineering, and we summarize our main findings.

II. SYSTEM MODEL

We assume each of N sensors in a given cell with radius
R measures the received power of a downlink pilot signal.
We also assume that the pilot power measurement is over a
bandwidth sufficiently wide (5 MHz or more) that multipath
fading is essentially averaged out. Thus, the measurement of
received power PR, combined with knowledge of the downlink
transmit power per user and the antenna gains, permits the
network to estimate the downlink path loss, PL. For our
purposes, it is fair to assume that the antenna gains are
independent of sensor position, so that the variation of PR

over the sensors precisely tracks the variation of PL, i.e.,
PR = C −PL, where C is the same for all sensors. We note
that, due to the averaging over multipath fading, this estimate
applies to the uplink path loss as well.

Assuming the model of [1], the path loss (PL) from a base
station (BS) to a location of the i−th sensor in the environment
is

PLi[dB] = A + 10γ log(di/do) + si, di > do, i = 1, · · · , N
(1)

where di is the distance from the BS to the i−th sensor and
do is a reference distance (typically, 1 m indoors and 100
m outdoors). The intercept A is given by 20 log(4πdo/λ),
where λ is the wavelength. The path loss exponent γ can
range from 3 to 6, depending on the environment; the dB
shadow fading, si, is a Gaussian process over space with zero
mean and standard deviation σ; and σ can range from 4 dB
to 12 dB, depending on the environment. We assume that the
autocorrelation of the spatial process si depends only on the
separation distance, i.e.,

E[sisj ] = σ2e−dij/Xc , i, j = 1, · · · , N (2)

where dij is the distance between the i−th and j−th sensors;
and Xc, the shadow fading correlation distance, can range
from several to many tens of meters [2]. We will assume a
frequency of 2 GHz and γ = 3.8 in all our computations1;
and will consider different combinations of σ, Xc, do and cell
radius for different cellular environments. We can thus use (1)
and (2) to simulate the cell-wide variation of path loss.

For SNR-based estimation of outage probability, we com-
pare the path loss, PLi, to a threshold value PL0. That
threshold is the value at which a mobile receiver near the
sensor would have just enough fade-averaged signal-to-noise
ratio for good reception2. A hole in coverage (i.e., an outage)
is defined as a location whose path loss from the BS is
greater than the threshold, i.e., a hole exists at a location if
PL > PL0. The fraction of sensors measuring power below
the threshold is the sensor network’s estimate of the cell’s
SNR-based outage probability. The SNR-based approach is
the same for the downlink and uplink. However the value of
PLo may differ for the two directions, due to differences in
transmit power, receiver noise level or air interface.

Figure 2 presents an outage map for a circular cell, where
the dark spots indicate outages. The outage probability here is
Po = 11.8%. Also, N = 4000 and PLo = 120 dB. The dark
outage spots are seen to be concentrated in the outer regions
of the cell. Placing sensors close to the center, therefore, can
amount to wasting limited resources on what are predictably
“non-events”. This brings us to the subject of importance
sampling [7].

III. IMPORTANCE SAMPLING (IS) FOR OUTAGE

PROBABILITY ESTIMATION

A. IS Concept and Analysis

Assume N sensors are placed in the circular cell with
radius R, and the i-th sensor is at a distance di from the
base at an azimuth angle ϕi, i = 1, · · · , N . Assume further

1While γ can have a wide range of values [1], the most common cellular
values cited on the literature range from 3.5 [3] to 4.0 [4]; hence, we choose
3.8 for our calculations.

2The multipath-averaged SNR is a valid determinant of link performance
(e.g., see [5] and [6]), which is why our method is based on fade-averaged
measurements.
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Fig. 2. An “outage” map for a single cell with 4000 uniformly located
sensors. In this example, the cell radius is 100 m, σ = 8 dB, Xc = 8 m, and
“outage” corresponds to the condition PL > PLo = 120 dB. The dark dots
indicate outages, which occur for 11.8% of all sensors, primarily in sensors
located towards the cell boundary.

that each squared distance, Di = d2
i , is drawn from a set

of possible values on [0, R2] whose underlying probability
density function (PDF) is f(D); that each ϕi has a uniform
PDF on [0, 2π]; and that all the Di and ϕi are mutually
independent. Thus, in populating a given cell with sensors,
each sensor can be said to be placed independently and
randomly according to the underlying PDF f(D).

In a traditional Monte Carlo simulation, the sensors would
be distributed randomly and uniformly over the full cell; we
call this full-cell (FC) placement. Here, f(D) = 1/R2 for 0 <
D < R2, and zero otherwise. The estimated outage probability
is an average over measurements by N sensors, given by

p̂FC =
1
N

N∑
i=1

φ(ξi) (3)

where φ(·) is an indicator function, i.e., φ(ξi) = 1 if PLi >
PL0, otherwise, φ(ξi) = 0.

Now we consider what happens if we “bias” the placement
of the sensors to the area where the outage is more likely to
happen. Denote the PDF of D and d in the new placement
as f∗(D) and f∗

d (d), respectively. By definition, we have∫ R2

0 f∗(D)dD = 1 and f∗(D) ≥ 0. The estimated outage
probability is

p̂IS =
1
N

N∑
i=1

φ(ξ′i)W (ξ′i) (4)

where ξ′i, i = 1, · · · , N is the location of the i-th sensor,
generated according to f∗(D). The weight function W (·)
seeks to “undo” the bias due to sampling with the biased
placement.

The estimate of outage probability must be unbiased, i.e.,
E[p̂IS ] = E[p̂FC ]. Also, the variance should be smaller,
i.e., V ar[p̂IS ] < V ar[p̂FC ], which means that its estimate
is sharper than that for full-cell placement with the same
amount of sensors, or equivalently, requires fewer sensors for
the same estimate sharpness. The average and the variance are
taken over different random selections of the sensor positions

and the shadow fading realizations. This is the essence of
importance sampling [7].

We now consider how to satisfy two conditions: (1) unbi-
ased estimates of Po, and (2) minimal estimator variance. To
gain insight with minimal complexity, we assume Xc = 0 in
the current analysis, i.e., the dB shadow fadings are are i.i.d
Gaussian variables N(0, σ2). In our later computations, we
will take shadow fading correlations into account.

Following (1), we write the average outage probability of
FC placement over all realizations of the shadow fading as

P̂FC =
1
N

N∑
i=1

Pr(A + 10γ log(di/do) + si > PL0)

=
1
N

N∑
i=1

Q(
PL0 − A − 10γ log(di/do)

σ
)

=
1
N

N∑
i=1

Q(
β − α log(Di)

σ
) (5)

where α = 5γ, β = PL0 − A + 10γ log(do).
Similarly, we write the average outage probability of IS

placement as

P̂IS =
1
N

N∑
i=1

Q(
β − α log(D∗

i )
σ

)W (D∗
i ) (6)

Condition 1 above amounts to (E[P̂FC ] = E[P̂IS ] = Po),
so we require that

W (D) =
f(D)
f∗(D)

=

{
1/R2

f∗(D) , 0 < D < R2

0, otherwise
(7)

which indicates that f∗(D) > 0 throughout 0 < D < R2.
Condition 2 amounts to minimizing Var[P̂ ] = E[P̂ 2] −

E2[P̂ ], i.e.,

Varf∗(D)[P̂ ] = Ef∗(D)[P̂ 2] − P 2
o

=
1

N2
E[

N∑
i=1

N∑
j=1

Q(
β − α log(D∗

i )
σ

)W (D∗
i )

Q(
β − α log(D∗

j )
σ

)W (D∗
j )] − P 2

o

=
1
N

Ef∗(D∗)[(Q(
β − α log(D∗)

σ
)W (D∗))2] − P 2

o

N

=
1

NR4

∫ R2

0

Q2(β−α log(D)
σ )

f∗(D)
dD − P 2

o

N
(8)

where the third line follows from the independence of W (D∗
i )

and W (D∗
j ), i �= j, and

Po = Ef(D)[P̂FC ] = Ef∗(D)[P̂IS ] = E[Q(
β − α log(D)

σ
)]

=
∫ R2

0

Q(
β − α log(D)

σ
)]dD/R2 (9)

B. Optimal Sensor Placement Scheme

From the above discussion, we can see that f∗(D) for the
optimal sensor placement is given by

min V arf∗(D)[P̂ ]

s.t.
∫ R2

0 f∗(D)dD = 1
(10)
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where f∗(D) > 0 for 0 < D < R2. Its Lagrangian form is

L(f∗, λ) =
∫ R2

0

(Q2(
β − α log(D)

σ
)/f∗(D) + λf∗(D))dD

(11)

Then the optimization reduces to minimizing L2(f∗, λ) =
Q2(β−α log(D)

σ )/f∗(D) + λf∗(D), subject to the constraint
in (10). This leads to the following solution for the PDF of
D:

f∗(D) =
{

Q(β−α log(D)
σ )/η, 0 < D < R2

0, otherwise
(12)

where η =
∫ R2

0
Q(β−α log(D)

σ )dD. The corresponding optimal
PDF for d is

f∗
d (x) =

{
2xQ(β−2α log(x)

σ )/η, 0 < d < R
0, otherwise

(13)

This is a parametric scheme in that it requires knowledge
of channel parameters, such as σ and γ (= 0.2α). Further,
this optimal placement essentially requires knowledge of the
outage probability Po, as can be seen from (9) and the
above definition of η. In traditional IS methods, such an
optimal solution is referred to as degenerate, since it requires
knowledge of the true value of the quantity being estimated.

C. Semi-Parametric Placement Schemes

Motivated by the importance sampling idea above and to
overcome the degenerate problem, we propose three sensor
placement schemes that are semi-parametric, that is, each
exploits the knowledge that power generally falls off with
distance but does not attempt to know or exploit the precise
nature of that falloff. Each scheme is defined by the PDF it
uses for the base-to-sensor distance, d; the angular PDF in
each case is uniform on [0, 2π], as before. The three distance
PDFs we consider are the following:

Scheme 1 : fd(x) =
{

4x3/R4, 0 < x < R
0, otherwise

(14)

Scheme 2 : fd(x) =
{

6x5/R6, 0 < x < R
0, otherwise

(15)

Scheme 3 : fd(x) =
{ 2x

R2−R2
min

, Rmin < x < R

0, otherwise
(16)

Unlike the first two schemes, Scheme 3 is based on the
assumption that there are no holes in the inner area of the
cell, i.e., at locations with distances smaller than Rmin. Here,
all the sensors are distributed uniformly in the outer ring of
the cell, i.e., at locations with distances between Rmin and R.
Accordingly, we call Scheme 3 partial-cell (PC) placement.
From Fig. 3, we see that these PDFs, and especially the one
for Scheme 2, are good approximations to the PDF that was
shown to be optimal for the case γ = 3.8, σ = 8 dB, Xc = 0
and Po = 0.05. How this translates into performance is a topic
we address next.
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Fig. 4. b vs. N , where b = Pr[|P̂o − Po| < 0.2Po], with R = 1000 m,
γ = 3.8, σ = 8 dB, Xc = 50 m, and Po = 0.05.

IV. SIMULATION RESULTS ON OUTAGE PROBABILITY

ESTIMATION

A. Preliminary Result

Figure 4 presents the probability that the error in estimating
Po falls within ±20% of the true value, which is 0.05 in
this example. Similar results were obtained for Po = 0.10.
It is seen that the three IS-based schemes cited above have
similar performance, and all of them are better than full-cell
placement. Among the IS-based schemes, Scheme 3 (partial-
cell placement, (16)) is easy to implement and has very good
performance. In the remainder of the paper, we will compare
it with full-cell placement for both SNR-based and SIR-based
outages and for both indoor and outdoor environments.

B. Simulation Approach

In our simulations, we initially assume a circular cell of
radius R (later, we discuss circular vs. hexagonal cell shapes),
and we assign values to R and the propagation parameters in
(1) and (2). We simulate some number, Nsh, of statistically
similar cells, with each having a different spatial variation of s,
the dB shadow fading. We start by simulating s(ξ) for Cell 1,
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where ξ denotes position within the cell. This random spatial
variation is simulated using (2) and Cholesky decomposition,
as described in [8]. The next step is to choose a value for N ,
the number of sensors per cell; a placement for the N sensors;
and a path loss threshold, PLo, the determination of which is
described below. Finally, the path loss at each of the sensors
is computed, and the outage probability in Cell 1, po(1), is
determined as the fraction of sensors for which PL > PLo.

With s(ξ) fixed, the N -sensor placement is chosen a total
of M times and, if M is sufficiently large, the mean and
standard deviation of po(1), μ1 and σ1, respectively, can be
estimated. (Note that these are the mean and standard deviation
taken over the random placements of the N sensors within the
cell.) This procedure is repeated for a total of Nsh generations
of the shadow fading variation s(ξ), corresponding to Cells
1, . . . , Nsh. The average of μj over j is the network’s estimate,
denoted by P ∗

o , of the true outage probability; and the average
of σj over j, denoted by ρ, is the network’s estimate of
the intra-cell standard deviation due to the random N -sensor
placement. We call ρ the “sharpness” of the estimate, and seek
to make it as small as 0.25Po or less.

The baseline value of Po, i.e., what we assume to be the
true one, is obtained by first assigning an extremely large
value for N . We have found, by a combination of analysis
and simulation not shown here, that N = 4000 would yield
precise estimates in any cell, with negligible variation from
one placement of N sensors to another. For that N , we (1)
computed outage probability for each of Nsh realizations of
s(ξ), for each of several values of path loss threshold, PLo;
(2) averaged over the Nsh values for each PLo; and (3) took
the result to be the “true” outage probability, Po, for that path
loss threshold. We were thus able to identify the values of PLo

producing average outage probabilities of 0.05 and 0.10. We
applied the procedure described in the previous paragraph for
each of these Po-values, using practical values of N (namely,
50, 100, 200, 300, and 400). For each of these N , we did
M = 200 placements for each of Nsh = 10 realizations of
the shadow fading variation, s(ξ).

C. SNR-Based Outage Probability

First, we investigate an outdoor system with the usual
hexagonal cells, in particular, a center cell and six surrounding
cells (Fig. 1). The center cell, for which we will analyze outage
probability estimation, is conveniently assumed to be circular,
with a radius, R, chosen such that the circle has the same
area as the actual hexagonal cell. This will simplify analysis
with no loss in accuracy; other studies (e.g., [9]) have shown
cell shape to be a negligible factor so long as cell area is
preserved3. The shadow fading parameters (σ, Xc) are initially
set at (8 dB, 50 m). We set PLo at values that yield “true”
outage probabilities, Po, of 0.05 and 0.10. For each of these
two values, we have computed the corresponding estimate, P ∗

o ,
for both full-cell sensor placement (Rmin = 0) and partial-cell
placement (Rmin = 0.5R and 0.7R).

Simulation results for P ∗
o are shown in Table I. The es-

timates obtained are independent of N except for a slight

3We note further that the regular hexagon closely approximates a circle,
which is why early investigators chose it as the tessellating shape to use in
cellular studies [10], [11].
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Fig. 5. Standard deviation of estimate for Po = 0.05 and 0.10, R = 1000
m, and (Xc, σ) = (50 m, 8 dB).

fluctuation due to finite simulation, so the numbers shown
are averages of those obtained for several values of N . We
see that the estimation of Po is virtually unbiased for Rmin

up to at least 0.5R, i.e., there are virtually no outages to be
counted at smaller distances. At Rmin = 0.7R, however, the
estimation is biased downward because outages can occur at
base-terminal distances between 0.5R and 0.7R and are not
counted.

For the same case, we obtained simulation results for ρ,
the average standard deviation of the estimate resulting from
the random placement of N sensors. Here, we expect to see a
decrease with N , as is confirmed by the plots in Fig. 5. The
“sharpness” of the estimates improves not only with increasing
N , but also with increasing Rmin, because larger Rmin leads
to a higher density of sensors in the area containing them.
A near-best tradeoff between small bias error and maximum
“sharpness” occurs for Rmin = 0.5R, at least for the assumed
model. For ρ to be no greater than 0.25Po, the figure shows
that the required N for Po = 0.05 is ∼ 200 for Rmin = 0.5R
and ∼ 300 for Rmin = 0 (full placement). For Po = 0.10, the
required N -values are ∼ 100 and 150, respectively. Thus, a
simplified form of importance sampling reduces the required
number of sensors by about 33%. The general rule is that,
with Rmin = 0.5R, the required N is ∼ 10/Po, which is
consistent with binomial statistics.

Next, we assume an indoor environment with R = 100
m, and we consider three different sets of shadow fading
parameters (σ, Xc): (8 dB, 8 m), (8 dB, 50 m) and (10 dB,
50 m). Results are given in Table I and Fig. 6 for Po = 0.10.
These results, and those for Po = 0.05 as well (not shown),
reinforce the findings from the previous example. Moreover,
they show that the shadow fading parameters have some
influence, but they do not change the general rules for Rmin/R
and N .

D. SIR-Based Outage Probability

While the above study of SNR-based outage probability was
generic, the study of SIR-based outage probability requires
specificity about the radio interface. For this purpose, we
assume a CDMA system with a spreading factor of 128 and

Authorized licensed use limited to: Rutgers University. Downloaded on November 7, 2008 at 16:41 from IEEE Xplore.  Restrictions apply.



996 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 6, JUNE 2008

50 100 150 200 250 300 350 400
1

1.5

2

2.5

3

3.5

4

4.5

Number of sensors, N

St
an

da
rd

 d
ev

. (
%

)
Rmin=0, (8,8)
R

min
=50, (8,8)

R
min

=70, (8,8)
R

min
=0, (50,8)

R
min

=50, (50,8)
R

min
=70, (50,8)

R
min

=0, (50,10)
R

min
=50, (50,10)

R
min

=70, (50,10)

Fig. 6. Standard deviation of estimate for Po = 0.10, R = 100 m, and
(Xc, σ): (8 m, 8 dB), (50 m, 8 dB), (50 m, 10 dB).

a required receiver output SIR of 5 dB. For simplicity, we
assume that the downlink co-channel interference from the
six surrounding cells is dominant. Also, we assume that each
sensor is able to identify, from downlink pilots, the power from
each base (its own plus the six nearest interfering bases) [12];
that each base is transmitting its full rated power; and that an
“outage” occurs for a mobile if its serving base runs out of
power before it is able to meet that mobile’s SIR requirement.
These assumptions, combined with the above path loss model,
enable us to compute outage probability for a given number,
K , of active mobiles per cell (or sector).

We note that for K > 1, there is one more layer of
randomness, besides those for the shadow fading distribution
and the sensor placement, namely, the placement of the
K mobiles. Thus, for every combination of s(ξ)-realization
and N -sensor placement, the network computes an outage
probability for each of Mmt random placements of K mobiles
over the cell, then averages the Mmt values. In our study, we
used Mmt = 200.

The above steps are straightforward for full-cell placement
(Rmin = 0). However, we also considered partial placement,
specifically, Rmin = 0.5R. In this case, the N sensors are
uniformly distributed over 3/4 of the cell area, but no sensors
are in the inner region (d < 0.5Rmin), where, on average, 1/4
of the K mobiles would be located. This poses a question of
how to compute outage probability. To address it, the network
can estimate Po as follows: (1) compute an upper bound by
assuming all of the K mobiles are in the outer region; (2)
compute a lower bound by assuming that 3/4 of the K mobiles
are in the outer region and none are in the inner region4;
and (3) estimate Po as the mean of the two bounds. Our
computations show that the upper and lower bound differ from
their mean by 3.3%, 5.0% and 6.5% for K = 4, 8 and 12,
respectively, so the bounds are clearly tight.

Some results are given in Table I and Fig. 7. In Table I,
the increase in Po with K , due to the dividing of transmit
power among more mobiles, is evident but mild. In Fig. 7, we

4With K/4 mobiles in the inner region, as in an actual K-mobile scenario,
Po will be higher, due to greater interference; thus, the situation where those
K/4 mobiles are absent yields a lower-bound Po.
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Fig. 7. Normalized standard deviation (ρ/Po) with R = 1000 m, σ = 8
dB and Xc = 50 m.

see, as before, that partial placement with Rmin = 0.5R and
N ∼ 10/Po yields the desired level of “sharpness”.

Extensions of this case might take into account issues
such as base station selection (e.g., SIR-based as opposed to
distance-based, as assumed here), other kinds of interference
(outer rings, intra-cell, etc), location information and uplink
performance. Regarding the latter, we note that each sensor
is assumed to be able to estimate its path loss (which is
essentially the same in both directions) to the seven nearest
bases. This information, plus some additional computing,
would allow the sensor network to estimate uplink outage
probabilities, as well. The availability of location information
can be used to map the variations in outage regions, as we
briefly discuss next.

E. Outage Maps

Here, we consider how to draw an “outage map” using
data collected by the sensors. Specifically, given the quality
of the links to N locations, we would like a map that shows
or predicts most of the outage locations within a cell. One
possibility is to center a circular area (“neighborhood”) with
radius Rc about each sensor that detects an outage. The
neighborhoods so identified can be considered to be outage
regions requiring some sort of engineering attention.

Figure 8 illustrates one such example, where N = 200
sensors are used and Rc = 100 m in a cell of 1-km radius.
All diamonds represent sensor locations; all stars represent
outage locations (out of the 4000 locations from which the
sensor locations are chosen); and each circle denotes an outage
“neighborhood”, at the center of which is a sensor that detects
and declares an outage. All stars outside of the circles denote
outage locations that are not detected.

Figure 9 exemplifies the average percentage of outage
locations detected as a function of Rc/R, using partial-cell
placement with Rmin = 0.5R. The averaging in these results
is over both sensor placements and shadow fading realizations;
and the outages are SNR-based. The parameters varied are the
shadow fading correlation distance and the number of sensors.
Other conditions assumed are given in the figure caption.

We see that the percentage of holes detected increases with
N , Xc and Rc/R, though the rate of improvement falls with
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TABLE I
ESTIMATED DOWNLINK OUTAGE PROBABILITY.

CASE Rmin = 0 Rmin = 0.5R Rmin = 0.7R

SNR-Based; Outdoor Cell (R = 1000 m); (σ, Xc)=(8 dB, 50 m)
“True” Po = 0.05 0.050 0.050 0.044
“True” Po = 0.10 0.100 0.098 0.086

SNR-Based; Indoor Cell (R = 100 m); “True” Po = 0.10
(σ, Xc)=(8 dB,8 m) 0.100 0.099 0.089
(σ, Xc)=(8 dB,50 m) 0.099 0.100 0.092
(σ, Xc)=(10 dB,50 m) 0.100 0.099 0.089

SIR-Based; Outdoor Cell (R = 1000 m); CDMA System; (σ, Xc)=(8 dB, 50 m)
K = 4 (Po = 0.076) 0.075 0.074 -
K = 8 (Po = 0.088) 0.088 0.087 -
K = 12 (Po = 0.103) 0.103 0.100 -
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Fig. 8. An “outage map” for a single cell using data collected by N = 200
sensors. In this example, the cell radius R = 1000 m, Rc = 100 m, σ = 8
dB, Xc = 50 m. All diamonds represent sensor locations; all stars represent
outage locations; and each circle denotes an outage “neighborhood”, at the
center of which is a sensor that detects and declares an outage. All stars
outside of the circles denote outage locations that are not detected.
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Fig. 9. Percentage of holes detected by N sensors in partial-cell placement,
with Rmin = 0.5R, Po = 0.05, σ = 8 dB, γ = 3.8, R = 1000 m, and
various combinations of N and Xc. Rc ranges from 1 m to 400 m.

N . Also note that the interesting region of values of Rc/R is
the low end, typically 0.1 and below, where a “neighborhood”
is no bigger than ∼ 1% of the cell area. In this range, the
difference between correlation distances of 10 m and 50 m
can be substantial. Also, 200 sensors is not nearly enough

to capture, on average, the majority of the outages. For that
purpose, at least 300 sensors are needed, and as many as
600 are needed to detect 70% of all outages. To detect that
percentage using ∼ 200 sensors, the sensor data would have
to be augmented by other information, such as topographical
maps, building location data, and so on.

V. DISCUSSION AND CONCLUSION

We applied the principle of importance sampling to improve
the efficiency of the distributed measurements in cellular
systems. Specifically, we investigated ways to minimize the
number (N ) of sensors needed to estimating the signal cov-
erage of the cells. We derived, for a particular set of parame-
ters, an optimal sensor placement scheme for estimating cell
outage probability; and we used it to postulate schemes that
require no specific parameter information. Among them, we
emphasize a version of partial-cell placement, wherein the
power-measuring sensors are distributed in a random uniform
way over base-mobile distances from 50% to 100% of the
cell radius. Its performance was compared with that of full-
cell placement. It was shown that a cell outage probability of
Po can be accurately estimated using ∼ 10/Po sensors with
partial-cell placement; and that this represents a reduction,
relative to full-cell placement, of ∼ 33%. This result applies
to both SNR-based and SIR-based outage estimation for both
indoor and outdoor environments. We also presented a way
to draw outage maps based on measurement data from the
sensors, and showed that many more sensors are required to
capture most of a cell’s outage locations.

While we have focused in this paper on sensor-based
information, a given operator may want to consider a wide
range of approaches, including: (1) The traditional combining
of site data with drive testing; (2) deploying a dedicated
network of sensors; (3) renting service from an existing multi-
purpose sensor network; (4) using a set of subscriber mobiles,
equipped with GPS, to periodically measure and report power
measurements; and so on. For those approaches based on
sensor or mobile measurements, the rate of measurement-and-
report (e.g., hourly, daily, etc) can be tailored to maintain
acceptable levels of battery drain. Choosing among candidate
approaches would require a cost/performance tradeoff analysis
that is beyond the scope of this study; our main purpose
here has been to demonstrate that accurate outage estimation
based on distributed power measurements is possible and
moreover, that the required number of such measurements can
be substantially reduced via importance sampling.
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