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Abstract—This paper subverts the traditional understanding
of Photoplethysmography (PPG) and opens up a new direction
of the utility of PPG in commodity wearable devices, especially
in the domain of human computer interaction of fine-grained
gesture recognition. We demonstrate that it is possible to leverage
the widely deployed PPG sensors in wrist-worn wearable devices
to enable finger-level gesture recognition, which could facilitate
many emerging human-computer interactions (e.g., sign-language
interpretation and virtual reality). While prior solutions in
gesture recognition require dedicated devices (e.g., video cameras
or IR sensors) or leverage various signals in the environments
(e.g., sound, RF or ambient light), this paper introduces the first
PPG-based gesture recognition system that can differentiate fine-
grained hand gestures at finger level using commodity wearables.
Our innovative system harnesses the unique blood flow changes
in a user’s wrist area to distinguish the user’s finger and hand
movements. The insight is that hand gestures involve a series
of muscle and tendon movements that compress the arterial
geometry with different degrees, resulting in significant motion
artifacts to the blood flow with different intensity and time
duration. By leveraging the unique characteristics of the motion
artifacts to PPG, our system can accurately extract the gesture-
related signals from the significant background noise (i.e., pulses),
and identify different minute finger-level gestures. Extensive
experiments are conducted with over 3600 gestures collected
from 10 adults. Our prototype study using two commodity PPG
sensors can differentiate nine finger-level gestures from American
Sign Language with an average recognition accuracy over 88%,
suggesting that our PPG-based finger-level gesture recognition
system is promising to be one of the most critical components in
sign language translation using wearables.

I. INTRODUCTION

The popularity of wrist-worn wearable devices has a sharp
increase since 2015, an estimation of 101.4 million wrist-worn
wearable devices will be shipped worldwide in 2019 [1]. Such
increasing popularity of wrist-worn wearables creates a unique
opportunity of using various sensing modalities in wearables
for pervasive hand or finger gesture recognition. Hand and
finger gestures usually have a diverse combinations and thus
present rich information that can facilitate many complicated
human computer interaction (HCI) applications, for example
wearable controls, virtual reality (VR)/augmented reality (AR),
and automatic sign language translation. Taking the automatic
sign language translation as an example illustrated in Figure 1,
a wrist-worn wearable device (e.g., a smartwatch or a wrist-
band) could leverage its sensors to realize and convert sign
language into audio and text and back again, which will
greatly help people who are deaf or have difficulty hearing to
communicate with those who do not know the sign language.

Existing solutions of gesture recognition mainly rely
on cameras [2]–[4] microphones [5], [6], radio frequency
(RF) [7]–[9] or special body sensors (e.g., Electromyography
(SEMG) [10], Electrical Impedance Tomography (EIT) sen-
sor [11], and electrocardiogram (ECG) sensor [12]). The
approaches using cameras face occlusion and privacy issues.
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Fig. 1. Illustration of the automatic sign language translation using wearables
in daily communications.

Microphones are vulnerable to ambient acoustic noises. The
RF-based approaches are usually known to be device-free,
but they are very sensitive to indoor multipath effects or RF
interference. Using special body sensors for gesture recog-
nition is more robust to environmental noises but requires
extra cost and manpower of installation. Recently, motion
sensors in wearables present their great potential in hand
and finger gesture recognition on the wrist [13], [14], but
motion sensors are sensitive to body motions and are thus
difficult to identify fine-grained finger-level gestures, such as
sign language gestures.

In this work, we propose to recognize the fine-grained
finger-level gestures such as sign language using low-cost PPG
sensors in wearable devices. We study the unique PPG featu-
res resulted from finger-level gestures, and carefully devise
a system that can effectively detect, segment, extract, and
classify finger-level gestures based on only PPG measurements.
The basic idea of our system is examining the blood flow
changes resulted from finger-level gestures based on the PPG
measurements, which are collected by low-cost PPG sensors in
wrist-worn wearable devices. The advantages of our approach
are two-fold. First, our system could be easily applied to
billions of existing wrist-worn wearable devices without extra
cost, enabling every wrist-worn wearable device to recognize
fine-grained gestures on users’ fingers (e.g., sign language).
Second, our system only relies on wrist-worn PPG sensors,
which directly obtain gesture related features without the
impact of environmental changes (e.g., ambient light, sound,
RF) and moderate body movements (e.g., walking, turning
body, slow arm movements), thus is more robust in practical
scenarios. Our main contributions are summarized as follows:

• We demonstrate that PPG sensors in commodity wrist-worn
wearable devices can be utilized to recognize fine-grained
finger-level gestures. We develop a machine-learning appro-
ach by leveraging the unique gesture-related PPG patterns
captured by wearables on the wrist. To our best knowledge,

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE 1457



this is the first work recognizing finger-level gestures using
commodity PPG sensors that are readily available in wrist-
worn wearable devices.

• We explore the physical meaning and characteristics of
PPG measurements collected from the PPG sensor on the
wrist and develop a novel data extraction method that can
precisely separate the PPG measurements caused by minute
finger movements from the continuous background noise
caused by human pulses.

• We show that it is possible to accurately identify complica-
ted finger-level gestures with minute differences (e.g., sign
language gestures) by exploiting various types of features
extracted from the unique gesture-related PPG patterns in
different signal spaces (e.g., dynamic time warping, wavelet
transform, Fourier transform).

• We conduct experiments with 10 participants wearing our
prototype consisting of two off-the-shelf PPG sensors and
an Arduino board. We show that our system can achieve over
88% average accuracy of identifying 9 finger-level gestures
from American Sign Language, suggesting that our PPG-
based finger-level gesture recognition system is promising
to be one of the most critical components in sign language
translation using wearables.

II. RELATED WORK

In general, current techniques for gesture recognition can
be broadly categorized into four categories (i.e., vision-based,
RF-based, acoustic-based and body sensor based) as follows:

Vision Based. A couple of vision-based approaches have
been developed to recognize hand/body gestures with the help
of cameras (e.g., Microsoft Kinect [2] and leap motion [3]) or
visible light (e.g., LiSense [4]). However, these approaches are
sensitive to the ambient light and may require users to have
the line of sight to the cameras or need specific light sensing
equipment installation.

RF Based. RF-based approaches have become increasingly
important due to the prevalent wireless environments. For
instance, WiDraw [7] and Wisee [8] propose to use channel
state information(CSI) and Doppler shifts of wireless sig-
nals to achieve fine-grained gesture recognition, respectively.
WiTrack [15] and WiTrack2.0 [16] can track multiple users
by examining the multi-path effects of Frequency-Modulated
Continuous-Wave (FMCW) signals. These approaches, howe-
ver, either can be easily affected by environmental changes
such as people walking or require dedicated and costly devices
such as the Universal Software Radio Peripheral (USRP).

Acoustic Based. Acoustic-based approaches are also explo-
red by several studies. For instance, CAT [5] and FingerIO [6]
track a smartphone’s motion and a finger’s dynamics by using
audio components (e.g., multiple external speakers, device’s
microphones), respectively. However, these approaches need
occupy device’s speaker/microphone and external audio har-
dware (e.g., nearby speakers), which is not always available
in many real-world scenarios.

Body Sensor Based. In addition, several customized we-
arable devices, which can be worn on users’ forearm or
wrist, are designed to capture the hand gesture by capturing
either Surface Electromyography (SEMG) signals [10], Elec-
trical Impedance Tomography (EIT) [11] or electrocardiogram
(ECG) [12]. However, these solutions need extra hardware
supports and are not compatible with existing mobile/wearable
devices. Another body of related work is using motion sensors
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Fig. 2. Example of PPG sensors in wrist-worn wearable devices.

in wrist-worn wearables to achieve hand and finger gesture
recognition [13], [14]. The solution, however, is sensitive to
body/arm motions and cannot identify fine-grained finger-level
gestures, such as sign language gestures.

Different from previous work, we propose to innovatively
use the photoplethysmogram (PPG) sensor, which is originally
used for heart rate detection in the most of the commodity
wearable devices (e.g., smartwatch and wristband), to perform
fine-grained finger-level gesture recognition and detection. To
the best of our knowledge, it is the first wrist-worn PPG sensor
based gesture recognition system. With the proposed scheme,
we envision that most wearable device manufacturers would
open the interface of PPG raw readings to developers soon.

III. PRELIMINARIES & FEASIBILITY STUDY

In this section, we discuss the preliminaries, design intuiti-
ons and feasibility studies.

A. Wearable Photoplethysmography (PPG) Sensor

During the past few years, more and more commodity wrist-
worn wearables (e.g., smartwaches and activity trackers) are
equipped with Photoplethysmography (PPG) sensors on their
back as illustrated in Figure 2. These wrist-worn PPG sensors
are mainly designed to measure and record users’ heart rates.
Specifically, a typical PPG sensor consists of a couple of LEDs
and a photodiode/photodetector (PD), which detects the light
reflected from the wrist tissue. The principle of PPG is the
detection of blood volume changes in the microvascular bed of
tissue. When light travels through biological tissue, different
substances (e.g., skin, blood and blood vessel, tendon, and
bone) have the different absorptivities of light. Usually, blood
absorbs more light than the surrounding tissue. Therefore, by
utilizing a PD to capture the intensity changes of the light
reflected from the tissue, the wearable device can derive the
blood flow changes in the wrist-area tissue and calculate the
pulse rate or even blood pressure [17].

It is important to note that most PPG sensors embedded
in commodity wearable devices use green LEDs as light
source has much greater absorptivity for oxyhemoglobin and
deoxyhemoglobin compared to other light sources (e.g., red or
infrared light) [18]. We thus use green-LED PPG sensors in
this work to study and evaluate PPG based gesture recognition.

B. Intuition of Gesture Recognition Using PPG Sensors

The current use of PPG in wearables is limited to heart
rate, pulse oximetry and blood pressure monitoring. Such
applications only focus on examining regular blood flow
changing patterns in the radial artery and the ulnar artery,
and consider mechanical movement artifacts as noise [18].
In this work, we put forward an innovative idea of using
readily available PPG in wearables for finger-level gesture
recognition. We show that hand gestures, especially finger
gestures (i.e., flexion, extension, abduction, and adduction),
result in significant motion artifacts to PPG. The reason
behind this is that the two major muscles controlling hand
gestures [19], namely flexor digitorum superficialis and flexor
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Fig. 3. Illustration of the finger movement related muscles in the anatomy of
a human forearm.

hallucis longus, are right beside the radial artery and the
ulnar artery as illustrated in Figure 3. Any hand or finger
gestures would involve a series of complicated muscle and
tendon movements that may compress the arterial geometry
with different degrees. Since the blood absorbs most of the
green light, the changes of the light reflected from the wrist
area present different degrees of disturbances of the flood flow
in terms of the shapes and duration of PPG waveforms. Current
PPG sensors in off-the-shelf wearables are usually equipped
with two green LED and photodiodes to ensure accurate pulse
estimation by increasing the diversity (i.e., monitoring blood
flow changes at different locations on the wrist). In this work,
we mimic this approach and utilize two separated PPG sensors
at close but different locations on the wrist to ensure our
gesture recognition accuracy.

C. Feasibility Study

In order to explore the feasibility of using PPG sensors
in commodity wearables for finger-level gesture recognition,
we conduct five sets of experiments on a sensing platform
prototyped with two off-the-shelf PPG sensors (i.e., a pho-
todiode sensor and a green LED) connecting to an Arduino
UNO (Rev3) board, which continuously collects PPG readings
at 100Hz and save them to a PC. During the experiments, a
user wears a wristband to fix two off-the-shelf PPG sensors
on the inner side of the wrist, and respectively bends each of
his fingers as illustrated in Figure 4 to emulate the simplest
elements of sign language gestures. Specifically, in each set
of the experiments, the user bends one of his finger 10 times
with 8s between each bending. We record the process of the
experiments using a video camera synchronized with the PPG
measurements to determine the starting and ending time of
each finger bending gesture.

We extract the PPG sensor readings within the time window
between the starting and ending points identified in the video
footage of each gesture and examine their changing patterns.
As we expected, bending different fingers result in different
unique patterns in PPG readings. Figure 4 presents an example
of the unique patterns in PPG that correspond to bending
different fingers, which is from one out of the two sensors.
Moreover, we notice that same finger movements generate
similar patterns, which demonstrates that it is possible to
utilize readily available PPG sensors in wearables for fine-
grained gesture recognition.

IV. CHALLENGES & SYSTEM DESIGN

A. Challenges

In order to build a system that can recognize fine-grained
finger-level gestures (e.g., sign language) using PPG sensors
in wearable devices, a number of challenges need to be
addressed.

Re-using the PPG Sensors in Wearables for Finger-level
Gesture Recognition. The PPG sensors in commodity weara-
ble devices are specifically designed for monitoring pulse rate
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Fig. 4. Example of PPG readings associated with five finger-bending gestures
in the feasibility study.

or blood pressure. The blood flow changes associated with
finger-level gestures have much shorter duration and do not
have repetitive patterns compared to those caused by pulses.
Our system thus needs to detect and discriminate the unique
PPG patterns of different finger movements by re-using the
low-cost PPG sensors in commodity wearable devices.

Gesture-related PPG Readings Interfered by Pulses. In
this work, PPG readings corresponding to finger-level gestures
are treated as target signals that our system wants to identify
and examine. Therefore, the PPG readings resulted from
pulses are considered to be the noise. Such noise always
exists and sometimes has intensity comparable to that of the
signals caused by finger-level gestures. Our approach should
be intelligent enough to separate relevant useful signals from
the complicated noise caused by pulses.

Accurate Finger Gesture Recognition Using Single Sen-
sing Modality on the Wrist. It is also challenging to achieve
high accuracy in fine-grained finger-level gesture recognition
by using the readily available but coarse-grained wrist-worn
PPG technique. Commodity wearable devices usually only
have few PPG sensors that are placed very close to each other.
Such layout limits the coverage of the PPG sensors on the wrist
and the diversity of sensor readings, which could significantly
impact the performance of gesture recognition. We thus need
to explore the critical features of PPG readings in different
domains to achieve accurate finger-level gesture recognition.

B. System Overview

The basic idea of our system is examining the blood
flow changes collected by readily available PPG sensors
in commodity wrist-worn wearable devices to differentiate
different fine-grained finger-level gestures. Toward this end,
we design a machine-learning approach that mainly contains
two major steps: Training Phase and Classification Phase. As
illustrated in Figure 5, our system first takes as inputs the PPG
measurements from wrist-worn PPG sensors. Then it conducts
Coarse-grained Gesture Detection and Reference Sensor De-
termination to determine whether there is any gesture being
performed based on the signal energy after mitigating the noise
from pulses. Then the system automatically determines the
Reference Sensor, which is the sensor presenting significant
(i.e. containing more energy) gesture-related PPG patterns
compared to those related to pulses. The system will keep
monitoring the PPG sensor if there is no gesture detected.
Otherwise, it will further process the raw PPG measurements
depending on whether it is in the Training Phase or Classifi-
cation Phase.

Training Phase. In the Training Phase, we collect labeled
PPG measurements for each gesture and build binary clas-
sifiers for each user. Specifically, we perform Fine-grained
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Fig. 5. Overview of the PPG-based finger-level gesture recognition system.

PPG Data Segmentation Using Energy and DTW to accurately
extract the segments containing gesture-related PPG measure-
ments between the estimated starting and ending points of
gestures, which are obtained by examining the energy and
dynamic time warping (DTW) distance to pulse profiles in a
sliding window.

After segmentation, our system calculates the 2D-DTW
distances between every two segments for every gesture in
2D-DTW Profile Selection and selects three profile segments
that are most representative for each gesture (i.e., having the
minimum average 2D-DTW distance to other segments of the
same gesture). The selected profile segments will be used
to calculate the DTW features in the Classification Phase.
Meanwhile, the system performs PPG Feature Extraction and
Selection to derive a variety of features in different signal
spaces (e.g., discrete wavelet transform, fast Fourier transform)
and selects the critical features that can effectively capture the
unique gesture-related PPG patterns for each gesture. Because
the selected critical feature sets are optimized for each gesture,
the system further derives a super set of the selected critical
features in Feature Integration to ensure the system perfor-
mance. Next, we perform Binary Gradient Boosting Classifier
Construction for Each Gesture to train a binary classifier for
each target gesture using Gradient Boosting.

Classification Phase. In the Classification Phase, our sy-
stem collects testing PPG measurements in real time and de-
termines which finger gesture has been performed based on the
classification results. The system extracts the selected critical
features from the PPG data segments in Feature Extraction
based on Selected General Features and performs Finger-
level Gesture Classification to determine which target gesture
has been performed. Specifically, the system processes the
extracted features using the binary gradient boosting classifiers
built for target gestures in parallel. Each classifier generates
a confidence score, and the system takes the target gesture
having the highest confidence score as the recognized gesture.

V. FINE-GRAINED PPG DATA SEGMENTATION

In this section, we discuss how to achieve fine-grained data
segmentation based on the raw PPG data segments that have
been determined to contain significant gesture-related PPG
patterns through the Data Preprocess discussed in Section VII.

A. Energy-based Starting Point Detection

Due to the consistent existence of pulse signals in PPG
measurements, it is difficult to remove the pulse signals
without jeopardizing the details of the gesture-related readings,
which are critical to characterizing the starting and ending
points of a specific gesture. In order to accurately determine
the starting point, we seek an effective detection approach to
mitigate the impact of pulse signals. We find that the gesture-
related PPG signals are usually stronger than those caused by
pulses as illustrated in Figure 6(a), because gestures usually
involve dynamics of major forearm muscles/tendons close to
the sensor on the wrist. Inspired by the above observation,
we design an energy-based starting point detection scheme to
effectively estimate the starting of gesture-related PPG signals
without removing the interference of pulses.

The basic idea of our energy-based starting point detection
method is to determine the time corresponding to the local
maximum of the short-time energy of PPG signals. The reason
behind this is that when using a sliding window with the same
length of a signal to calculate the short-time energy of the
signal, the energy reaches its maximum value when the signal
entirely falls into the window. Therefore, by carefully choosing
the size of the sliding window (e.g., the average length of
target gesture-related signals), the starting point of the gesture-
related signals would be the same time when the short-time
energy of the signals reaches its maximum. In particular, given
the data segment containing gesture-related PPG signals P(t)
from the Coarse-grained Gesture Segmentation (Section VII),
the starting point detection problem can be formulated as the
following objective function:

arg max
τ

(P(τ)− 1θ )P(τ)T , (1)

where P(τ) = [p(τ), p(τ + δ ) · · · , p(τ +W )], p(τ) denotes the
amplitude of the PPG signal at time τ , δ represents the PPG
sensor sampling interval, W is the length of the sliding window,
θ is the threshold used to avoid finding the local maximum
energy resulted from pulse signals, 1 is an all-one vector of the
same length as P(τ), and T indicates the transpose operation.
The above problem can be easily solved through simple 1-
D searching within the period derived from coarse-grained
gesture segmentation.

Through our preliminary study on the time length of 1080
finger gestures performed by three users as shown in Figure 7,
we find that the length of gesture-related signals has the range
between 0.7s and 1.4s with an average of 1.2s. Therefore,
we empirically determine the length of the sliding window
as 1.2s to ensure the accuracy of our energy-based starting
point detection. Note that the threshold θ is user-specific and
needs to be dynamically determined by the maximum short-
time energy of the PPG signals when there is no gesture
detected in the Coarse-grained Gesture Detection. Figure 6(b)
illustrates the short-time energy corresponding to the PPG
signals in Figure 6(a). We can clearly see that the energy peaks
in Figure 6(b) are very close to the ground truth observed from
the synchronized video footage, suggesting that our algorithm
could promisingly capture the starting point of gestures in the
PPG measurements.

B. DTW-based Ending Point Detection

Detecting the ending point of a gesture-related signal is
more challenging than detecting the starting point because the
muscles are more relaxed at the end of the gesture and the
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Fig. 6. Example of detecting starting and ending point of a gesture-related
PPG measurements using energy and DTW.

corresponding gesture-related PPG signals are usually weaker
than those at the beginning of the gesture. As illustrated in
Figure 6(a), the PPG measurements around the ending point do
not have significant patterns that can facilitate the ending point
detection. However, we find that gesture-related PPG signals
are usually immediately followed by pulse signals, which are
very clear and easy to identify. Hence, instead of directly
locating the ending point based on PPG readings, we design
a DTW-based ending point detection scheme, which aims to
identify the starting time of the first pulse signal following the
gesture-related signal. We employ the dynamic time warping
(DTW) to measure the similarity between the user’s pulse
profile Ppulse and the PPG measurements collected after the
already-detected starting point of the gesture.

Intuitively, the time when the DTW value reaches the
minimum is the starting time of the pulse signals and also
the ending point of the gesture-related signals. We adopt
DTW because it can stretch and compress parts of PPG
measurements to accommodate the small variations in the
pulse signals. To summary up, this ending point detection
problem is defined as follows:

arg min
t

DTW (P(t),Ppulse), s.t.,τ < t ≤ τ +Wp, (2)

where DTW (·, ·) is the function to calculate the DTW distance,
P(t) has the same definition as P(τ) in Equation 1, Wp is the
time duration for the gesture, and τ is the detected starting
point. After searching the DTW distances for all P(t), we find
the time index of the first local minimum in the DTW distances
(i.e., the starting time of the first pulse after the gesture) as the
ending point of the gesture-related signals. Figure 6(c) presents
the DTW between a selected pulse profile and the raw PPG
measurements in Figure 6(a) with Wp = 0.88s. From the figure,
we can observe that the time indexes of the detected first local
minimum DTW values are very close to the ground truth
of the ending time of the two gestures, which demonstrates
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)

Fig. 7. Preliminary study: CDF of the duration of 1080 gestures from 3 users.

the effectiveness of the DTW-based ending point detection
scheme.

Extracting Pulse Profiles. The pulse profile Ppulse can
be extracted from the PPG measurements that are collected
when there is no gesture performed (e.g., at the beginning
of the training phase). In particular, we first detect the pulse
signal peaks in the PPG measurements. Given the fact that
a typical PPG pulse signal always has a peak, if the pulse
signal peak is located at tp, so the PPG measurements between
[tp− td , tp + ts] are identified as the user’s pulse profile. In this
work, we respectively choose td = 0.2s and ts = 0.6s based
on the duration of diastole (i.e., 0.15s∼ 0.26s) and systole
(i.e., 0.44s∼ 0.74) phases of the vascular system reflected in
a typical PPG pulse signal [20], which can effectively extract
all users’ pulse profile.

C. Segmentation on Inconspicuous Gesture-related Patterns

Our DTW-based ending point detection can accurately de-
termine the ending point if the gesture-related PPG pattern
has significant amplitudes compared to those of the pulse-
related patterns. However, in rare cases, the gesture-related
PPG patterns may not have significant amplitudes when the
sensor is at the locations far away from the arteries. Note that
such inconspicuous patterns are not easy to be extracted as
their boundaries with pulse-related patterns are very vague, but
they still contain rich information that could greatly facilitate
gesture recognition. In this work, we find that when using
two PPG sensors close to each other on the wrist, at least one
of the sensors can generate gesture-related PPG patterns with
significant amplitudes. Inspired by this observation, we adopt
a reference-based approach to accurately determine the ending
point for the inconspicuous gesture-related PPG patterns.

In particular, assuming our system identifies the ending
point tR on the sensor R with significant gesture-related PPG
patterns (i.e., Reference Sensor discussed in Section VII) using
our DTW-based method, the system further derives the ending
point at the other sensor D as tD = tR + ∆T , where ∆T is
the time delay of the ending point on sensor R. According to
our empirical study, ∆T is nonzero and stable between two
sensors across different gestures. Since muscles and tendons
at different locations of the forearm compress the arteries with
different pressure and duration when performing a gesture,
the gesture-related patterns captured by the PPG sensors at
different locations will last different time periods. Because
the system can always find multiple gestures that generate
significant PPG patterns on both sensors, ∆T can be easily
estimated in the Training Phase by calculating the average
time difference of the ending points from the gestures where
both sensors are determined to be Reference Sensors.

VI. FINGER-LEVEL GESTURE CLASSIFICATION

In this section, we explore the PPG features that could
facilitate gesture recognition and discuss how to build the
binary classifier using Gradient Boosting and perform gesture
classification in the Training Phase and Classification Phase.
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TABLE I
LIST OF EXTRACTED FEATURES.

Category Features (# of features) Description

Time Domain

Classic Statistics (4): mean, peak-to-peak,
RMS, variance

Descriptive statistics of each segment, reflecting the statistical characteristics of
the unique gesture-related patterns.

Cross Correlation between Sensors (9)
A vector of cross correlation coefficients between the segments from two PPG
sensors based on a sequence of the lag values, characterizing the relationship
between two PPG sensors in a gesture.

2D-DTW to Gesture Profiles (9)
Similarity between PPG measurements from two sensors (i.e., 2D) and the cor-
responding gesture profiles, directly capturing the temporal shape characteristics
of the unique gesture-related patterns.

Frequency
Domain

Fast Fourier Transform (< 5Hz) (6): skew-
ness, kurtosis, mean, median, var, peak-to-peak

Statistics of frequency components in the specific low frequency band, analyzing
the unique PPG patterns in frequency domain.

Time-frequency
Domain

Discrete Wavelet Transform (4): mean, peak-
to-peak, RMS, variance

Statistics of the third level decomposition of the wavelet transform using the
Harr wavelet, revealing the details of gesture-related patterns at interested time
and frequency scale.

Wigner Ville Distribution [21] (13): first-order
derivative, frequency and time when the signal
reaches the maximum, maximum energy (E i

max)
/ minimum energy (E i

min), differential energy

(E i
max − E i

min), STDi and AV i of the energy

within the ith sliding window

Fine-grained time-frequency features with high resolutions, capturing details of
gesture-related patterns having short time duration.

Autoregressive Coefficients [22] (9)
Time variant coefficients that can capture the characteristics of gesture-related
patterns independent of the patterns’ time scales.
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Fig. 8. Example of different finger-level gestures and corresponding features.

A. PPG Feature Extraction and Selection

Feature Extraction. To capture the characteristics of unique
gesture-related PPG patterns, we explore the efficacy of diffe-
rent kinds of features including typical temporal statistics (e.g.,
mean, variance, standard deviation (STD)), cross-correlation,
autoregressive (AR), dynamic time warping (DTW), fast Fou-
rier transform (FFT), discrete wavelet transform (DWT), and
Wigner Ville distribution as listed in Table I. The features
can be categorized into three types: Time Domain, Frequency
Domain, and Time-Frequency Domain, which are designed
to capture the detailed characteristics of the gesture-related
PPG patterns across different frequency and time resolutions.
While the AR Coefficients, FFT, DWT, WVD, and most of the
Classic Statistics are all focusing on analyzing an individual
sensor’s measurements, the Cross Correlation and 2D-DTW
are promising for characterizing the unique gesture-based PPG
patterns in terms of the relationship between a pair of sensors.
Moreover, our Time-Frequency (TF) Domain features include
three major TF types (i.e., non-parametric linear TF analysis
(DWT), non-parametric quadratic TF analysis (WVD), and
parametric time-varying based metric (AR)), which can well
capture the dynamics of gestures in PPG measurements. In
total, we extract 54 different features from each PPG sensor.
Note that in order to calculate the 2D-DTW feature, our system
first performs 2D-DTW Profile Selection in the Training Phase,
which calculates the 2D-DTW distance between every two
segments for every gesture in the training data and selects three
segments that have the minimum average 2D-DTW distance
to other segments of the same gesture as the profile for later
use in the Classification Phase.

Feature Selection. Our system further employs the elastic
net feature selection method [23] in the Training Phase

to automatically choose the most discriminative ones from
our extracted features. In particular, the system respectively
performs the elastic net feature selection on the PPG features
corresponding to every target gesture. Based on the one-stand-
deviation rule [24], our system keeps the most significant
highly correlated features and eliminates noisy and redundant
features to shrink the feature set and avoid overfitting. Next,
in order to generalize the features set for classifying all target
gestures, our system integrates the features selected for each
target gesture and generates a general feature set F as follows:

F= F(g1)∪ . . .∪F(gn), (3)

where F(gn) is the selected feature set of the nth target gesture
gn. After the feature selection and integration, we keep 46
Determined General Features in F, which will be used in the
Classification Phase. Figure 8 illustrates that our features can
effectively capture different characteristics of PPG patterns for
distinguishing different gestures.

B. Gradient Boosting Tree based Classification

Next, we build a binary classifier for each target gesture
by using the Gradient Boosting Tree (GBT). We choose GBT
mainly because 1) GBT is famous for its robustness to various
types of features with different scales, which is the exact case
in our project (e.g., the mean value of the PPG signal reading
of the gesture period is around 500, and the autoregressive
coefficients are the numbers fluctuated around 0 with value
less than 1). 2) GBT classifier is robust to the collinearity of
feature data. Because our features are heterogeneous across
different domains, it may result in unexpected correlation or
unbalance ranges that possess the collinearity. Therefore, GBT
would eliminate the efforts to normalize or whiten the feature
data before classification [25]. We note that among all the
machine learning methods, such as Random Forest (RF) and
Support Vector Machine (SVM), adopted for our classifier
implementation, GBT has the best performance.

Given N training samples {(xi,yi)}, where xi and yi repre-
sent the gesture-related feature set and corresponding label
with respect to one specific gesture (i.e., yi = 1 or -1 repre-
sents whether xi is from this gesture), GBT seeks a function
φ(xi) =∑M

m=1 ωmhm(xi) to iteratively select weak learners h j(·)
and their weights ω j to minimize a loss function as follows:
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Arduino UNO (REV3) PPG Sensor

Fig. 9. Prototype wrist-worn PPG sensing platform.

L =
N

∑
i=1

L(yi,φxi). (4)

Specifically, we adopt the GBT implementation from the
library of SQBlib [26] for gesture-related feature training.
Specifically, the loss function L(·) is chosen as the exponential

loss L = eyiφ(xi) that applies enough shrinkage (i.e., 0.1) and
number of iterations (i.e., M = 2000), and the sub-sampling of
the training dataset is a fraction of 0.5. The above parameters
adopted in GBT are optimized in terms of the speed and
accuracy based on our empirical study. Once the loss function
is determined, we next will build a binary gradient classifier
bk(· · · ) for each profiled gesture gk,k = 1, · · · ,K to complete
the Training Phase, and each binary gradient classifier will
output a score for the testing feature set. The reason of using
binary classifier is that binary classifier has high accuracy
with distinguishing one gesture from other gestures, whereas
a multi-classifier has relative lower accuracy when performs
the same classification task [27].

In Classification Phase, our system uses the binary clas-
sifiers for all the gestures in parallel to classify previously
unseen gesture-related feature set x. Specifically, we sum the
stage score [28] of each binary classifier, and choose the label
k of binary classifier bk(x) with highest score as the final
classification.

VII. DATA PREPROCESS

In this section, we present two components that are critical
to fine-grained data segmentation.

Coarse-grained Gesture Detection and Segmentation. To
facilitate the fine-grained data extraction, our system prepro-
cesses the raw PPG measurements to 1) determine whether
there is a gesture performed or not based on the short-time
energy of the PPG measurements; 2) and extract the PPG
measurements that surely include the whole gesture-related
PPG pattern. Specifically, the system first applies a high-pass
filter to the raw PPG measurements to mitigate the interference
of pulses. The reason to use the high-pass filter is that the
finger-level gestures have more high-frequency components
compared to the pulses, which are usually under 2Hz [29].
In this work, we build a Butterworth high-pass filter with the
cut-off frequency at 2Hz. Note that we only use the filtering
technique in the coarse-grained gesture detection, because the
filter removes the low-frequency components of both pulse and
gesture-related signals, which negatively impact the gesture
recognition accuracy. Then the system decides whether there
is a gesture performed or not depending on if the short-time
energy of the filtered PPG measurements crosses a threshold τ
or not. We set the threshold to τ = µ +3δ , where µ and δ are
the mean and standard deviation of the short-time energy of the
filtered PPG measurements collected during the time when the
user is asked to be static (i.e., at the beginning of the training
phase). When the system detects a gesture at tg, we employ a
fixed time window Wc to extract the raw PPG measurements
within [tg, tg +Wc] for the fine-grained segmentation. We set

S1 S2 S3 S4 S5 S6 S7 S8 S9

Fig. 10. American Sign Language of number one to nine.

Wc = 4.5s to ensure the window can cover all possible duration
of gestures that we have observed in our preliminary study as
shown in Figure 7.

Reference Sensor Determination. Intuitively, significant
gesture-related PPG patterns could result in accurate data
segmentation. However, we notice that the intensity of gesture-
related PPG patterns is sensitive to the locations of sensors
on the wrist, thus it may not be significant enough for
segmentation. The insight is that the PPG sensors can capture
more significant changes of reflected light when they are closer
to the arteries that are directly compressed by muscles and
tendons. Through our extensive tests, we find that two PPG
sensors at a close distance on the wrist can already provide
good diversity, and at least one of them can provide gesture-
related PPG signals that have the stronger intensity than that
of pulse-related signals. Therefore, in this work, we employ
a two-sensor approach and determine which sensor could be
the Reference Sensor having the significant gesture-related
PPG patterns, which will be taken as the input for the fine-
grained data segmentation. Specifically, we examine the short-
time energy of the extracted PPG measurements and determine
whether a sensor is a Reference Sensor or not depending on if
its short-time energy exceeds the threshold θ , which has been
defined in Section V.

VIII. EXPERIMENT AND EVALUATION

A. Experimental Methodology

Wearable Prototype. We notice that existing manufacturers
do not provide direct access to raw PPG readings; instead,
they only provide computed heart rate. Therefore, we design
a wearable prototype that mimics the layout of PPG sensors in
commodity wearables to demonstrate that our system can be
applied to the existing wearable products without extra efforts.
Our prototype consists of two commodity PPG sensors (with
single green LED) and an Arduino UNO (REV3) as shown
in Figure 9. The sensors are closely placed to each other and
fixed on the inner side of a wristband, so that it reduces the
movements of sensors and ensures our system to take sensor
measurements at similar locations in different experiments. In
the experiments, we adopt various sampling rates (i.e., 30Hz
to 100Hz) to evaluate the system. Unless mentioned otherwise,
the default sampling rate is set to 100Hz.

Data Collection. We recruit 10 participants including 9
males and 1 female whose ages are between 20 to 30 to
perform finger-level gestures for evaluation. We focus on the
elementary gestures from American Sign Language involving
movements of fingers from a single hand as shown in Fi-
gure 10. The participants are asked to respectively perform
the nine finger-level gestures for 40 times while wearing our
wearable prototype on the right wrist. Note that our system can
be applied to other more complicated finger-level gestures on
whichever wrist regardless of the posture of the hand since
different gestures involve different combinations of muscle
movements that can be captured by our system. In total, we
collect 3600 PPG segments for the experimental evaluation.
Unless mentioned otherwise, our results are derived from 20
rounds Monte Carlo cross-validation using 50% of our data set
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Fig. 11. Confusion matrix of recognizing nine finger-level gestures among
ten participants.

for training and the rest for validation. The data are processed
by our system implemented by MATLAB, which is run on an
ASUS Q324U notebook.

B. Evaluation Metrics

Precision. Given Ng segments of a gesture type g, precision
of recognizing the gesture type g is defined as Precisiong =
NT

g /(N
T
g +MF

g ), where NT
g is the number of gesture segments

correctly recognized as the gesture g. MF
g is the number of

gesture segments corresponding to other gestures which are
mistakenly recognized as the gesture type g.

Recall. Recall of the gesture type g is defined as the
percentage of the segments that are correctly recognized as
the gesture type g among all segments of the gesture type g,
which is defined as Recallg = NT

g /Ng.

C. Finger-level Gesture Recognition Performance

Figure 11 depicts the confusion matrix for the recognition
of the nine American Sign Language gestures. Each entry Ci j

denotes the percentage of the number of gesture segments i
was predicted as gesture type j in the total number of i. The
diagonal entries show the average accuracy of recognizing
each gesture, respectively. Specifically, the average accuracy is
88.32% with standard deviation 2.3% among all the 9 gestures.
We find that the recognition results of the gesture S2,S6,S7,S8
are relatively low (i.e., around 86%). This is because those
gestures have more subtle differences in the tendon/muscle
dynamics than other gestures. Overall, the results confirm that
it is promising to use commodity wrist-worn PPG sensors to
perform finger-level gesture recognition.

D. Impact of Different Users

Figure 12(a) and (b) present the average precision and recall
of recognizing each finger-level gesture across different parti-
cipants. We observe that all participants have high accuracy
on recognizing these finger-level gestures. Specifically, the
average precision and recall of all the 10 participants are
88% and 89%, respectively, and the lowest average value
of the precision and recall among all the participants is still
above 80%. The results show the robustness and scalability of
our proposed system across different users, and demonstrate
the system is promising to act as an integrated function in
commodity wearables once the interface of PPG raw signals
to developers is open.

E. Impact of Different Gestures

We next study the impact of different sign gestures on the
performance of the proposed system and show the average pre-
cision/recall for each sign gesture. As shown in Figure 13(a), it
is encouraging to find that all those gestures can be recognized
well with the lowest average precision and recall as 85%
and 84%, respectively. Furthermore, Figure 13(b) shows the
standard deviation of the precision and recall of recognizing
each gesture. The gestures S1, S2 and S6 have relatively high
standard deviation. This is because participants P2 and P3
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Fig. 12. Participant study: comparison of gesture recognition performance
among ten participants.
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Fig. 13. Gesture study: Comparison of gesture recognition performance
between nine gestures.

inconsistently perform S1, S2 and S6 respectively based on
our observation. Overall, our system is robust on recognizing
different finger-level gestures.

F. Various Impacts on the System
Impact of Sampling Rate. The sampling rate of sensing

hardware is one of the critical impact factors on affecting
the power consumption of wearables, thus we study the
performance of the proposed system with different sampling
rates on PPG sensors. Most of the commodity wearables have
around 100Hz PPG sampling rate. For instance, Samsung Sim-
band [30] configures its PPG sensor to 128Hz to perform time-
centric tasks (e.g., Pulse Arrival Time calculations). Therefore,
we set our wearable prototype to collect PPG measurements
with different sampling rates (i.e., 30Hz to 100Hz with a
step size of 20Hz) in our experiments. Figure 14(a) shows
the average precision and recall of the gesture recognition
under different sampling rates. We find that the precision/recall
increases with the increased sampling rate, however, the
precision/recall still maintain as high as 87% at the lowest
sampling rate (i.e., 30Hz). As the results implied, our system
is compatible to commodity wearables and can provide high
recognition accuracy with lower PPG sampling rate in terms
of the power consumption.

Impact of Training Data Size. We change the percentage
of data used for training in the Monte Carlo cross-validation to
study the performance of our system under different training
data size as shown in Figure 14(b). In particular, we choose
the percentages 12.5%,25%,37.5%,50%, and 62.5%, which
correspond to 5,10,15,20, and 25 PPG segments with respect
to each gesture for training, and use the rest of our data for
validation. We observe that our system can achieve an average
precision of 75% for recognizing nine finger-level gestures
using only 5 PPG segments of each gesture for training. As
the size of the training data grows, the system performance
improves significantly. More specifically, the average precision
and recall can achieve 89% and 90% respectively when 25
segments of training data for each gesture are collected in
the training phase. The above results indicate our system can
achieve good recognition performance with a limited size of
training data (e.g., 5 sets per gesture), which ensures great
convenience for practical usage on commodity wearables.
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Fig. 14. Impact factor study: average precision and recall of recognizing nine
gestures with different sampling rates and # of training segments.

IX. CONCLUSION AND FUTURE WORK

As an important means for human-computer interactions,
gesture recognition has attracted significant research efforts
in recent years. This paper serves as the first step towards
a comprehensive understanding of the PPG-based gesture
recognition. We made a novel proposition to recognize the
fine-grained finger-level gestures such as sign language using
low-cost PPG sensors in wearables. In particular, we develop
a fine-grained data segmentation method that can successfully
separate the unique gesture-related patterns from the PPG
measurements that are continuously interfered by pulses. Ad-
ditionally, we study the unique PPG features resulted from
finger-level gestures in different signal domains and devise
a system that can effectively recognize finger-level gestures
by only using PPG measurements. Our experiments with over
3600 gestures collected from 10 demonstrate that our system
can differentiate nine elementary finger-level gestures from
American Sign Language with an average recognition accuracy
over 88%. We are aware of the intensity of reflected light
captured by PPG sensors are sensitive to different skin colors
(e.g., light colored skin reflects more light) and locations (e.g.,
outer side of the wrist has weaker signals); the PPG signals
could be significantly impacted by strenuous exercises. We
would like to present our findings and seek solutions (e.g.,
including motion sensors) for these potential impact factors in
our future work.
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