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These patches have been developed jointly at WINLAB, Rutgers University and West Virginia 
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Issues of Vehicle-to-Vehicle Based Safety Systems (V2V-Interoperability) Project headed by the 
Crash Avoidance Metrics Partnership (CAMP) Vehicle Safety Communications 3 (VSC3) 
Consortium, in partnership with the United States Department of Transportation (USDOT). 

 

  



 

 

MAC Layer Patches 

• Backoff Timer Countdown Correction: Adjusts the countdown procedure of backoff timer 
when nodes are using 802.11 Enhanced Distributed Channel Access (EDCA) as the MAC 
layer control model. [Bug 1205] 

• Additional Backoff Timer Trigger: Initiates an additional backoff when a channel access 
is requested and the channel is in either IFS idle or ack timeout, while the backoff timer is 
zero.  

• Queue Management Policy: Provides an option which allows to drop the oldest packet in 
the packet queue instead of the newest packet when the queue is full. 

Physical Layer Patches 

• Frame Capture: Allows the nodes to switch to a stronger signal during an ongoing reception 
of a packet with a weaker signal. 

Other Patches 

• Mobility Helper: Improves the accuracy of mobility model when GPS data is used as the 
mobility trace input. 

  



 

 

Backoff Timer Countdown Correction 

The default ns-3.16 implementation of the Enhanced Distributed Channel Access (EDCA) follows 

the backoff timer countdown rule from the deprecated IEEE 802.11 Distributed Coordination 

Function (DCF). The mechanism seeks to reduce collisions in a distributed network of wireless 

stations. In both mechanisms, stations rely on carrier sensing to determine if the wireless medium 

is currently busy. If so, stations wait for a random time interval before retrying to access the 

channel. This random delay is referred to as backoff. 

The EDCA method prioritizes channel access into different traffic classes. It defines four Access 

Categories (ACs) with different backoff parameters. In addition, it also allows each AC to have a 

different Arbitration Inter-Frame Space (AIFS). The AIFS further controls how long a transmitter 

has to wait after the medium becomes idle. However, the EDCA also introduces a subtle change 

in the way that backoff countdown is performed. 

 

Figure 1 - The difference between DCF and EDCA Backoff Timer Countdown 

 

In ns-3.16, the EDCA function and the DCF function share one class, DcfManager, for backoff-

timer countdown. However, as illustrated in Figure 1, the IEEE 802.11 standard mandates different 

times at which the backoff timer is decremented in the two functions. The backoff timer is 

decremented at the beginning of a slot for EDCA and at the end of a slot for DCF. In other words, 

for EDCA, the medium needs to be idle only for an AIFS[AC] period before the backoff timer is 

decremented, while the backoff timer has to wait for one Distributed Inter-Frame Space (DIFS) 



 

 

plus one SlotTime before decrementation in the DCF. In the latter case, if the medium becomes 

busy again during this slot time, the backoff timer remains unchanged. Therefore, to accurately 

implement the EDCA functionality, the backoff timer needs to be changed in ns-3 simulator. 

The modification steps are as follows: First, the idle duration of medium is tracked by each station. 

Once the idle duration of one station becomes greater than or equal to AIFS, the next step is 

triggered. In step two, the slot boundary of AIFS is identified and the potential decrement for the 

backoff timer counter is increased by one. Hence, the length of the idle duration after AIFS is 

divided by the length of one SlotTime and, in step three, the backoff timer counter is decremented 

by the quotient plus one. When the backoff timer reaches zero, the station is allowed to 

immediately transmit after the medium becomes idle for one AIFS. 

Additional Backoff Timer Trigger 
EDCA-mac-fixes-patches.tar.gz  

In ns-3, once a frame is generated in the upper layer and ready for transmission, the station requests 

to access to the medium immediately. According to the standard, there are two possible situations 

for this access request. 

• If the medium is busy as indicated by either physical or virtual carrier sensing, and the 

counter of backoff timer is equal to zero, the station should invoke a backoff procedure. 

• If the counter of backoff timer is equal to zero and the medium is idle for at least one AIFS 

(i.e., the medium is not seized by another station), the station should immediately start the 

transmission. 

Taking into consideration the situation where the counter of backoff timer is zero and the idle 

duration is less than one AIFS. There are two options: after AIFS, the station either transmits the 

frame immediately, or initiates an additional backoff procedure. Based on the conditions for 

initiating a transmission for EDCA in the 802.11 standard: “there is a frame available for 

transmission at that Enhanced Distributed Channel Access Function (EDCAF), and the backoff 

timer for that EDCAF has a value of 0”. Although the situation fits the condition, the second option 

is chosen, since even though the medium is indicated as idle when the station claims its request, 

the medium might not be truly idle. In other words, the AIFS is a part of the EDCA function that 



 

 

cannot detect if another station has a packet ready for transmission. As an example, consider 

following case: 

Both stations A and B have a value of 0 for the backoff timer counter and each station has one 

frame available for transmission. They remain quiet during the AIFS. However, after the AIFS 

both stations transmit the frame and a collision occurs. Thus, if the stations were allowed to send 

the frames generated during the AIFS directly, more collisions could have happened among 

stations. The solution to avoid these collisions is to initiate the backoff procedure for these frames. 

In the default ns-3, the frame can be sent out directly without the additional backoff procedure. 

Note that the standard leaves room for interpretation on this matter. Our interpretation in 

consultation with experts in the 802.11 standard activities yields to the most likely implementation 

in the field radio chips. Based on this feedback, we modified the channel-granting function to make 

sure the additional backoff procedure is implemented. 

The modification is also made in class dcf-manager.cc. Recall that once a frame is generated from 

the upper layer and available for transmission, the DcfManager::RequestAccess() function is 

called to attempt to access the medium. In this function, both the backoff timer counter and the 

medium state are checked. If the backoff timer counter equals 0 and the medium is busy, a backoff 

procedure will be initiated. If the backoff timer counter has a value of 0 but the medium is idle, 

the length of this idle duration will be calculated. If the length is less than one AIFS (i.e., the station 

is requesting the access during AIFS) an additional backoff procedure will be started. Except above 

cases, new initialization of a backoff procedure is not necessary. Further actions are taken to update 

the backoff timer counter or grant the medium access. 

There are three cases to initiate a new backoff timer: 

• A channel access request is received when the channel is indicated as busy and the current 

backoff timer counter is 0 

• A channel access request is received during the period of an ack timeout whenever it 

applies (the channel is conceptually considered as busy) and the current backoff timer 

counter is 0 

• The channel access request is received during an IFS interval (i.e. AIFS or EIFS) and the 

current backoff timer counter is 0 



 

 

The default ns3 handles the first case by calling a function 

called DcaTxop::NotifyCollision(). The name of this function is a bit confusing as this is not 

a collision. In addition, ns3 does not handle the second case properly. Based on the NAV vector 

which is set for other terminals listening to the transmitter or receiver, the ack timeout should be 

considered as part of a successful transmission. Therefore, the MAC layer should treat a 

transmission request received during an ack timeout just like the case it is received during another 

transmission. In this case, the device does not call for setting a backoff timer, instead, it just wait 

until the ack timeout passes. The third case is newly added. 

All three cases are handled with a function named DcfState::NotifyBackoffStart(). This 

function is similar to DcaTxop::NotifyCollision(), but to add readability to the code, it has 

been renamed to reflect the more general use cases. 

Queue Management Policy 
wifi-mac-queue-patches.tar.gz   

The default ns-3.16 drops the newest packet whenever the queue is full in the MAC layer. Some 

applications need to preserve the newest generated packet and drop the oldest one from the MAC 

layer queue. This patch has been developed to add this feature to ns-3 MAC layer queueing policy. 

A second queue management policy was added to WifiMacQueue::Enqueue(). Before a new 

packet can be inserted into the queue, the function checks whether the queue is full or not. If the 

queue is full and the drop newest policy is selected, the newly generated packet will be dropped ( 

as default ns-3 behaves). However, if the drop oldest policy is selected, the oldest packet in the 

queue will be dropped and the new packet will be inserted at the tail of the queue. The drop-oldest 

policy was added to transmit the latest generated packet with most recent information instead of 

an old packet. 

Physical Layer: Frame Capture Effect Implementation 

frame-capture-patches.tar.gz   



 

 

If the receiver is already in RX state when a new signal arrives, the decision whether to switch to 

the new signal is made by a frame-capture policy. In the calibrated simulator, the frame-capture 

effect is implemented as an enhancement of the default ns-3 version. The frame capture effect is 

in part a feature of modern wireless devices to switch to a stronger signal during the reception of 

a weaker frame. Suppose that a node is receiving a relatively weak signal, while a stronger frame 

is arriving. Due to the additional interference, the SINR of the currently received packet drops and 

the correct reception will fail. If the receiver cannot stop the current reception and switch to the 

stronger signal, it will determine that the received data is corrupt only at the frame’s end. The 

stronger frame is lost as well. More sophisticated receivers can support frame body-capture and 

tune to the stronger frame. This stronger frame then can be correctly received. Even simple 

receivers, however, are capable of frame capture if the two frames with significantly different 

power levels arrive nearly simultaneously. A detailed description of an implementation of the 

frame-capture effect in ns-3 simulator can be found in [1]. We largely followed this description 

except for several modifications and simplifications listed below. The frame-capture mechanism 

is implemented primarily in theInterferenceHelper, WifiStateHelper, 

and YansWifiPhy classes. 

Within the receiving stage are two different capture types. Preamble capture refers to the case 

where the second transmission arrives while preamble reception of the first transmission is still 

ongoing. Frame-capture refers to the case where preamble reception of the first transmission is 

already complete and frame body or payload reception is ongoing when the second transmission 

arrives at the receiver (this discussion uses the terms frame body and payload interchangeably). 

Preamble Capture 

In the preamble capture scenario shown in Figure 1, signal A is being received when signal B 

arrives. The current SINR of signal A is updated with the interference from signal B for the 

calculation of the preamble decoding probability. The probability model of successful decoding is 

plotting in Figure 2. If signal A passes the probability check (i.e., signal A can still be decoded 

successfully) the reception will continue and signal B is ignored. However, if signal A fails the 

probability check (i.e., the preamble of signal A cannot be decoded successfully at this time), the 

reception of signal A will be terminated and signal B will be evaluated. If the SINR for signal B, 



 

 

while considering signal A as interference, is strong enough to pass the probability check for 

capturing the signal, the receiver will switch to the stronger signal B. If signal B cannot pass the 

capture-probability check either, the receiver will ignore both signals and switch to CCA_BUSY 

mode. The probability model we used for calculating the preamble-capture probability is shown 

in Figure 3. It is also a shifted version of default ns-3 probability model for decoding the OFDM 

3 Mbps signal. Since there are no strong references or tests to indicate which probability models 

for preamble decoding and capture apply to the devices in the field test, this model was also 

empirically calibrated. That is, models with different dB shifts were tested in the simulation to find 

the dB shift that creates the simulation results closest to the field test results. The selected models 

generate comparatively better matching simulation results to field test results. 

 

Figure 1 - State Transitions in Frame Capture: Preamble Decoding Success 

 



 

 

 

Figure 2 - Probability Model for Preamble Decoding 

 

Figure 3 - Probability Model for Preamble Capture 

Payload Capture 

The procedure of payload capture is similar to that of the preamble capture (see Figure 4). In this 

instance, signal B arrives while the payload of packet A is being received. The simulator calculates 

the SINR values as described before. The main difference lies in the probability models used for 

determining successful payload decoding and payload capture based on this SINR value. We fit 



 

 

the probability model to the data obtained from a hardware test for DSRC 6 Mbps channel. The 

model for payload decoding is derived based on the results for the sender-first case. The sender-

first case indicates the scenario in which the receiver node synchronizes to the signal from the 

sender before other interference signals arrive. From this case, we can determine under what SINR 

condition the signal from the sender can be still decoded with increased interferences. The 

probability model for payload capture is obtained from the results of the sender-last case. The 

sender-last case indicates the scenario in which the receiver node is receiving another signal while 

the signal from the sender is arriving. From this case, we can determine under what circumstance 

the receiver can switch to the signal from the sender. The hardware test results showed that the 

probability of successful packet reception can change at the same SINR when the received power 

levels are very low. We have not accounted for this variation since the simulation results generally 

showed a good fit without modeling this additional detail. We chose probability values from 

measurements at the higher received power levels, specifically the mean probability of the received 

power levels of -45 dBm and -55 dBm, which appeared to be most stable and representative. This 

processed data is used for fitting the error model. The error model we use is based on the following 

error function 	 

erf 𝑥 = 	
2
𝜋

𝑒*+,
-

.
	𝑑𝑡 

The general format of the model is as following: 

𝑎	× erf
𝑥 − 𝑏
𝑐 + 	𝑑 

By fitting the data to this model, parameters a, b, c and d can be determined. The values for a, b, c 

and d in the payload decoding case are 0.4997, 3.557, 1.292 and 0.5 respectively. The 

corresponding values in the payload capture case are 0.4989, 9.356, 0.8722 and 0.5 respectively. 

The derived models are plotted in Figure 5 and Figure 6. 



 

 

 

Figure 4 - State Transitions in Frame Capture: Payload Decoding Success 

 

 

Figure 5 - Probability Model for Payload Decoding 



 

 

 

Figure 6 - Probability Model for Payload Capture 

 

State Transitions in Frame Capture 

Depending on the timing and A and B’s signal strengths, there are a few different possibilities to 

receive/drop A or B, or drop both. Let us take a closer look at these situations: 

1. First Sender Success: 

Figure 7 illustrates the state transition in the case that the reception of signal A continues and 

signal B is ignored. Notice that there is no state transition when the collision starts. Notice also 

that after finishing the reception of signal A, the remainder of B’s transmission may trigger 

the CCA_BUSY state. The decision of triggering CCA_BUSY state after finishing the reception of 

signal A is made by comparing the energy on the channel caused by the remainder of B signal 

with the non-OFDM CCA threshold (i.e., -82 dBm). If the energy exceeds this threshold, the 

state of the receiver is set to CCA_BUSY. 



 

 

 

Figure 7 - State Transitions in Frame Capture: Preamble/Payload Capture Success for Signal A 

 

2. Last Sender Success: 

As shown in Figure 8, if signal A cannot pass the probability check for decoding after the 

collision, the reception is immediately aborted and the state will switch to IDLE. At the same 

time, the reception of the new signal B has started and the state switches back to RX. In the 

default ns-3 version, the reception process of signal A cannot be interrupted. Hence we 

modified WifiStateHelper by adding a function SwitchFromRxAbort(). The function is 

called when frame capture is triggered and implements aborting the current RX state and 

switching to IDLE. 

 



 

 

 
Figure 8 - State Transitions in Frame Capture: Preamble/Payload Capture Success for Signal B 

3. No Success: 

Let us now consider the case where neither signal is strong enough: the reception of the first 

packet cannot continue and the reception of signal B cannot start, both due to low SINRs. This 

raises the question of how the channel state should be determined after such a collision. As 

illustrated in Figure 9, if the receiving stage of signal A is in preamble stage when signal B 

arrives, the cumulative energy on the channel will afterwards be compared with the non-

OFDM CCA threshold to determine the channel state, since the preamble of both packets was 

not successfully decoded and virtual carrier sense information is unavailable. If some portions 

of the energy are greater than the threshold, the time duration of these portions will be declared 

as CCA_BUSY. However, if the receiving stage of signal A is already in the payload stage when 

signal B arrives, the time duration of the remaining portion of signal A will be declared 

as CCA_BUSY since the preamble of signal A has been decoded successfully and the virtual 

carrier sense information is known to the receiver. Afterwards, the channel busy state during 

the remainder of signal B is determined by the cumulative channel energy comparison with the 

non-OFDM CCA threshold since the preamble for B was not decoded. 



 

 

 
Figure 9 - State Transitions in Frame Capture: Drop Both Signals 

 

Mobility Trace Handler Modification 
ns2-mobility-helper-patches.tar.gz   

The default Ns2MobilityHelper class extrapolates the new positions of the nodes using their current 

velocity vectors and previous extrapolated positions. Relying only on GPS speed and heading 

information for the duration of the simulation causes an increasing cumulative position error 

between positions of nodes in the simulation and the actual positions (The actual positions could 

be obtained from real experiment logs). By modifying the Ns2MobilityHelper class, both speed and 

position of mobile nodes are updated in the simulation. Specifically, we set the position of nodes 

to the GPS-reported position at the time of every location update and extrapolate the position at 

the time of network events based on the GPS-reported speed vector. Therefore, the simulated node 

positions are reset to the GPS-reported position at every GPS location update and a slight 



 

 

discontinuity in the nodes trajectory can occur. Although, we have not observed any adverse effect 

on the simulation results. 
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