
The Boomerang Protocol: Tying Data to Geographic
Locations in Mobile Disconnected Networks

Tingting Sun Bin Zan Yanyong Zhang Marco Gruteser

WINLAB, Rutgers University

Technology Center of New Jersey

671 Route 1 South

North Brunswick, NJ 08902-3390

{sunting,zanb,yyzhang,gruteser}@winlab.rutgers.edu

Abstract—We present the boomerang protocol to efficiently
retain information at a particular geographic location in a sparse
network of highly mobile nodes without using infrastructure
networks. To retain information around certain physical location,
each mobile device passing that location will carry the informa-
tion for a short while. This approach can become challenging for
remote locations around which only few nodes pass by. To address
this challenge, the boomerang protocol, similar to delay-tolerant
communication, first allows a mobile node to carry packets away
from their location of origin and periodically returns them to
the anchor location. A unique feature of this protocol is that it
records the geographical trajectory while moving away from the
origin and exploits the recorded trajectory to optimize the return
path.

Simulations using automotive traffic traces for a southern
New Jersey region show that the boomerang protocol improves
packet return rate by 70% compared to a baseline shortest path
routing protocol. This performance gain can become even more
significant when the road map is less connected. Finally, we look
at adaptive protocols that can return information within specified
time limits.

Index Terms—Geocache, GPS, Mobile, Location-aware infor-
mation, Infrastructureless data management

I. INTRODUCTION

As daily mobile devices such as smart phones, PDAs and

digital cameras start to be used as sensing devices [1]–

[3], mobile sensing is becoming a social event instead of a

high-tech phenomenon. Compared to today’s special-purpose

sensing applications such as automotive traffic congestion

monitoring [4] and pothole detection [5], mobile sensing takes

place anytime, anywhere, and will have far more diverse

meanings. A direct consequence of this trend is the production

of a vast amount of data, in terms of both type and volume.

Example data types include pictures, videos, audios, and plain

text-based sensor readings. These data can potentially bring

great convenience to the society as they can serve as traces of

our lives and logs of the physical world.

Fully utilizing these data, however, demands the establish-

ment of channels between data producers and consumers.

We have seen several methods that were used to establish

such channels in earlier systems. In many web applications,

data producers upload their data to servers, and consumers

can either directly contact the server or locate the server

through a search engine; in many peer-to-peer data sharing

applications, directories are used to map data names to their

locations. Though these methods have proven success in

their intended systems, they are unsuitable for the anytime-

anywhere personal sensing. In personal sensing, there is no

fixed relationship between data producers and consumers.

Data is more likely to be produced unintentionally than

purposefully, and the value of the data is discovered post-

facto. Consequently, we may end up having much more data

than what will be needed later, and uploading these data can

place a huge burden on the underlying network. In addition,

privacy can be a serious concern in a server-centric solution as

well. This relationship, i.e. having many more producers than

consumers, is opposite from what we have observed in other

systems, and thus calls for a new data sharing architecture.

To address this challenge, we take inspiration from real life

solutions. Suppose if we lost/found an item, a common prac-

tice is to post a note around the area where it was lost/found,

and later we refer back to the same location to check for

further updates. Similarly, in the anytime-anywhere mobile

sensing era, information is commonly tagged with location,

thus encouraging location-based queries. To facilitate such

queries, we advocate building “directories” around locations

of interest by having nearby mobiles carry the data (or the

metadata of these data) generated around these locations. We

refer to the directory information as the Geocache of the

location1, and the location of interest as anchor location. By

always having the node close to the anchor location carry the

Geocache, we can tie the data around the location where they

were generated, thus easily facilitate location-based queries by

directing them to the corresponding anchor locations using any

of the geo-routing [6] or geocasting [7] [8] techniques. Once

the Geocache for an anchor location reaches a certain size,

we have the options of compressing the data, or applying the

“chaining” technique, which retains only the latest Geocache

entries around the anchor location while saving a link to the

storage of older entries. Finally, we may also delete outdated

or trivial entries.

1Inspired by physical Geocaches that store information and items at specific
locations. Finding them with GPS receivers has become a popular pastime
(http://en.wikipedia.org/wiki/Geocaching).

Digital Object Indentifier 10.1109/TMC.2011.132 1536-1233/11/$26.00 © 2011 IEEE

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

In this paper, we study protocols that retain Geocache

around the anchor location through inter-vehicle communi-

cation. Specifically, we address two major challenges: (i)

returning the Geocache to the anchor location with high

probability if the carrier of the Geocache becomes temporarily

disconnected; (ii) minimizing the communication overhead for

retaining the Geocache near an anchor location.

The boomerang protocol addresses these challenges by

using a trajectory-based approach. It increases the successful

return probability of the Geocache even in temporary discon-

nected scenarios. While the boomerang protocol is inspired

by delay-tolerant geographic routing, it is unique in recording

a node’s trajectory as the node is moving away from the

anchor location and using this trajectory as a guidance to

carry back the Geocache. Further, to reduce communication

overhead, instead of each node sending the Geocache over the

wireless link as soon as it was received, we have the node keep

the Geocache until it drives off the original trajectory. Thus,

it exploits an important characteristic of vehicular networks,

which is: vehicles move on well-defined and usually bidirec-

tional paths. We will show through analysis and simulations

how this characteristic impacts the performance. In connected

networks, the increased return probability allows significantly

reduced communication overhead by purposefully allowing a

node to briefly carry the information away from the anchor

location before returning it, instead of constantly keeping the

Geocache at the anchor location.

In summary, the salient contributions of our work are:

• Outlining the Geocache concept, which can be used to

make sensed data available at anchor locations, to support

mobile sensing applications over a distributed network of

mobile nodes.

• Designing the boomerang protocol which periodically

return the Geocache to its anchor location. The protocol

employs two alternative heuristics in selecting Geocache

carriers, with the baseline approach based on a node’s dis-

tance to the anchor location, and the improved approach

based on a node’s location relative to the Geocache’s

reverse trajectory.

• Showing through simulations using the traffic trace for a

southern New Jersey area, that the use of trajectory in the

boomerang protocol increases the Geocache return prob-

ability by an average of 70% compared to the baseline

shortest distance routing approach.

• Introducing the parameter ρ that defines the connec-

tivity of a road map, and showing through analysis

that the trajectory-based boomerang protocol outperforms

the baseline distance-based boomerang protocol under

realistic ρ values.

• Designing protocols that return the Geocache within a

specified time constraint through Q-learning.

The remainder of the paper is organized as following: Sec-

tion II briefly discusses the platform assumption and system

model. Section III describes in detail the boomerang protocol

and Section IV discusses its implementation, especially the

������

������	�
��
��

��������

������

�������
�	����

�����
����
�����
�������������
���
���

��

�����
��������

!"��
#$

��

��%

��&� � �� ������

����� ��	
����
��� ����� ���������

�

'�() *��
+,��)
',,- ��� �������
�	����

���� ��	
����
��� ���� ����� 	��� �����

�
�

��
�����
	
�������
�	���
	�
'�(
��.	

	����.
���
��

�����
��������

!"��
#$/

Fig. 1. Motivating scenario of Geocache.

techniques used for detecting divergence from a recorded tra-

jectory based on GPS traces. Section V analytically evaluates

the boomerang protocol’s performance on a Manhattan grid.

Section VI compares the performance of the two boomerang

protocol variants using real world road maps and traffic pat-

terns. Section VII extends the protocol to support applications

with return time constraints. Section VIII discusses the related

work, and Section IX concludes the paper.

II. SYSTEM MODEL AND APPLICATIONS

We consider a scenario where nodes move along constrained

two-way paths. Nodes can communicate intermittently via

high-bandwidth short-range radios (e.g., 802.11) with other

nearby nodes or through a continuous low-bandwidth wide-

area network (e.g., cellular network). We assume that nodes

have high storage capacity and are aware of their geographic

positions (e.g., via GPS), but the communication and localiza-

tion systems do not rely on proprietary road maps.

Mobile Data Management Through Geocache: As mo-

bile devices start to produce large volumes of data, efficient

management of such data can bring great convenience to our

daily life. Let us look at the motivating scenario illustrated in

Fig. 1.

Alice took a picture of a car accident using her cell phone

when she drove by the accident scene. Bob, the victim in the

accident, was eagerly seeking such pictures as evidence to

support his claims in front of the judge or his insurance com-

pany. A traditional solution for exchanging the information

would likely involve Alice uploading her picture to a server

where Bob can download from (after consulting popular search

engines such as Google). However, as mentioned earlier, this

solution does not scale well with the data volume we may

expect from anytime-anywhere mobile sensing. Instead, we

propose a highly distributed approach in which mobile devices

keep the data locally, but leave a log around the geographic

location where the data was generated. A typical log may

include the time and location at which the data was generated,

the data type (video, audio, picture, etc), and an (encrypted) ID

of the mobile device. In this approach, logs generated around

2

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

the same location from different mobile devices will form a

location-based log file, which we call Geocache, and it will

be retained around the anchor location by surrounding mobiles

(A and B in Fig. 1). The Geocache serves the same purpose

as the bulletin board in our daily lives. Queries such as “Is

there a picture taken at 2PM today around the New Jersey

Turnpike Exit 15?” will be routed to the corresponding anchor

location to look up the Geocache and find out whether related

information exists. If matching traces are found, the data

requester may directly contact the data producers, and possibly

paying a fee for the retrieved data. Based on the same idea,

range queries can also be enabled in which queries concerning

wider areas will be sent to multiple anchor locations.

A lot of issues need to be carefully evaluated in imple-

menting this architecture. To name just a few, a Geocache

may quickly become too large for a popular anchor location,

a Geocache may get lost for a remote anchor location that few

mobiles access, a Geocache may receive so many requests that

it incurs a large delay for an urgent request, etc. In this paper,

we set out to attack the most important challenge: how can a
Geocache be retained around its anchor location by passing
by mobile nodes in an efficient way?

III. GEOCACHE ANCHORING PROTOCOLS

The goal of the Geocache anchoring protocols is to retain

Geocache data around the corresponding anchor location while

minimizing communication overhead.

Intuitively, we envision the following anchoring process:

the mobile node that currently carries the Geocache (referred

to as the carrier) is moving away from the anchor location.

To avoid taking the Geocache away, it hands off the data

to other nodes, preferably those traveling towards the anchor

location. After receiving the data, the new carrier node will

periodically examine whether another handoff is needed. This

process repeats until the data returns to the anchor location,

and we call this protocol a boomerang protocol because the

data eventually returns to its origin like a boomerang.

To motivate how this boomerang approach can reduce

communication overhead, let us consider a brief thought ex-

periment. One could retain information at the anchor location

by simply handing off the Geocache whenever the anchor

location moves out of the radio range. In an idealized model

with constant radio range r, vehicular velocity v and high

vehicle density, retaining the Geocache for a duration t would

require m = tv
r handoffs. However, under ideal settings, the

boomerang approach can reduce the number of transmissions

to m = 2 (one to the new carrier heading back and one

to the anchor location). Thus, the boomerang approach has

the potential to significantly reduce transmission overhead

when the Geocache content is only needed periodically. Under

more realistic settings, the number of transmissions in the

boomerang protocol may be larger because the chosen carrier

may diverge at intersections from the original path and not

return to the anchor location. The vehicles may also need to

send periodic broadcast messages to identify the Geocache for

A

B

C

D

Fig. 2. Sometimes, a single carrier node is insufficient to anchor the data.
In this example, after A hands off the data, we need B, C, D to return the
data to its anchor.

the same anchor location on other nodes and enable operations

such as aggregation and update.

Some optimization techniques can be used to further reduce

the size of the Geocache. First of all, we can compress

Geocache entries. Similar logs from the same mobile can be

compressed into one entry. Even logs from multiple mobiles

can be compressed for spatial efficiency. Second of all, if

the geocache fills up, we can employ a ”chaining” technique

wherein the geocache only contains the latest log entries (or

the most relevant log entries based upon the replacement

algorithms). It also contains the ID of the mobile that has

the less recent entries, so that when needed later, the mobile

can be located via its ID for the geocache page it’s carrying.

A. Protocol Description

The main challenge for implementing the boomerang pro-

tocol lies in the choice of a new carrier node at each handoff,

especially if the first handoff occurs somewhere far away from

the anchor location. The data may have traveled along a rather

complicated route before the current carrier looks for a new

carrier, as illustrated in Fig. 2. In this case, a single carrier

node may not be sufficient to bring back the data; instead,

nodes B, C, and D all needed to be involved in this returning

process. Efficiently choosing a set of suitable carriers is thus

the key to the success of the boomerang protocol. A set of

poorly-selected carriers may incur a long delay in bringing

back the data (note that the data may lose its value after a

long delay). The task of choosing appropriate carrier nodes

is particularly daunting because at each handoff, neither the

current carrier nor the nodes within the hand off range have

knowledge beyond their current velocity and location, and the

traversed trajectory.

Another challenge is the handoff criteria. When to hand off

is a tricky issue, especially at the first time. The first handoff

can greatly impact the handoff frequency (and thus commu-

nication overhead) and return probability of the Geocache.

Recognizing the importance of this problem, we dedicated

Section VII to study this issue. The rest of the handoffs

are easier to decide. In this paper, we propose a trajectory-

based carrier selection approach and compare it to a baseline

3

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

�

�

�

�

�

Fig. 3. An example handoff situation. In this case, B is the current carrier.
MaxProgress will choose node E as the new carrier (because its distance from
A is decreasing and it is currently the closest to A among all the nodes), while
RevTraj will choose C as the new carrier.

shortest-distance-based selection scheme, and we’ll discuss the

handoff criteria for both schemes in the following section.

Shortest-Distance-Based Selection: Heuristics that fall in

this category choose the node, among all those within the

handoff range, that is closest to and moving towards the anchor

location. They share the same rationale as many Geo-routing

algorithms [9], and we consider such an algorithm which we

refer to as MaxProgress. A simple example is given in Fig. 3.

A is the anchor location, and B is the carrier node. At handoff,

E will be chosen as the next carrier node because its distance

from A is the shortest among all other nodes within radio

range and still decreasing.

Next, let us look at the detailed handoff procedure for

MaxProgress. After traveling away from the anchor location

for a certain amount of time, the carrier initiates a handoff by

first broadcasting the Geocache along with the anchor location.

Every node within the handoff range responds by checking

its distance from the anchor location, and will become a

candidate if it’s moving towards the anchor location. Next,

each candidate node will calculate their individual backoff

time before sending the acknowledgement (ACK). The backoff

time Tbackoff is defined by:

Tbackoff =
(d− d0 + r)

2r
Tmax, (1)

where Tmax is the maximum backoff time set by the system;

d is the distance between the candidate node and the anchor

location; d0 is the distance between the carrier node and the

anchor location; r is the radio range. Using this equation, we

can distribute the ACK backoff times between [0, Tmax]. More

importantly, the node with the shortest distance to the anchor

location will have the smallest backoff time, and send out ACK

the earliest, thus becoming the next carrier.

The new carrier will carry the Geocache until it finds out its

distance to the anchor location starts increasing. It will then

initiate another handoff to look for new carrier nodes using

the same procedure.

Trajectory-Based Selection: While the distance-based ap-

proach works well for geographic routing in ad-hoc networks,

3

2

1

E

DC

B

A

[-35945.06, 29235.35]

-35941.32, 29577.19]

[-35825.13, 29237.44]

r

Fig. 4. Illustration of segments and trajectory-based handoff procedure.

it may not be suitable for vehicular networks because it

ignores the fact that vehicles only move along fixed roadways.

Therefore, progress in euclidian distances does not always

yield a feasible path that returns to the anchor location. For

instance, node E in Fig. 3 is on a path (dead end) that never

lead to A.

The above concerns lead us to the trajectory-based selection

approaches. These approaches select new carrier nodes from

those that are traveling in the opposite direction of the same

trajectory passed by the Geocache. The rationale is that the

trajectory describes a general feasible return path (with the

exception of one-way paths scenarios). The heuristic we con-

sider in this study is thus called RevTraj (Reverse Trajectory).

Under this scheme, in the same example given in Fig. 3, node

C which is in the opposite direction of B’s trajectory will be

chosen as the next carrier node.

The key component of RevTraj is trajectory recording: the

aggregated path the previous carriers have traveled so far.

The trajectory grows when a carrier is moving away from

the anchor location, and shrinks when it’s moving towards

the anchor location. Depending on the storage and processing

power available on the mobile units, we can use either raw

GPS traces or “segmented” trajectory which only consists of

the critical points on the path.

Next, let us look at the detailed handoff process in

RevTraj. In the discussion below, we assume a seg-

mented trajectory is used instead of a continuous trace.

As illustrated in Fig. 4, a segment is represented by

the coordinates of the two end points, e.g., seg1:

[(−35941.32, 29577.19), (−35945.06, 29235.35)]. The trajec-

tory is implemented as a stack of end points, so that the latest

segment is always on top of the stack. Below is the summary

of the handoff procedure used in RevTraj:

1) Handoff Initiation. Non-first time Handoff occurs a

divergence is detected from the recorded trajectory. The

current carrier broadcasts the Geocache along with the

trajectory.

2) Candidate Identification. Every node within the radio

range pops out the latest segments from the trajec-

tory stack. We use a parameter, lookahead distance
(LD), to limit how many recent segments we exam-

4

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

A’

B

B’

C

C’

P

Q

Q

O

A
A

B

C

D

E

a
b

(b) Curve Segmentation.(a) Segmented Path.

Fig. 5. Segmented path and curve segmentation.

ine. These lookahead segments can be numbered as

seg1, seg2, ...segLD, with seg1 being the latest segment.

If the node finds itself on one of these lookahead

segments, it becomes a candidate node and proceeds to

the next step.

3) Candidate Prioritization. All the candidates are priori-

tized according to the following rules: (1) nodes trav-

eling on higher-numbered segments are granted higher

priority than those on lower-numbered segments; (2) for

nodes traveling on the same segment, we give higher

priority to those closer to the anchor location.

The prioritization rules can be easily implemented if

each candidate node calculates its ACK backoff time

using the following equation:

Tbackoff =
LD − i+ d−d0+r

2r

LD
Tmax, (2)

where the definitions for d, d0, Tmax are the same as

before, and i is the segment number.

4) Carrier Selection. The node with the smallest ACK

backoff will send out the ACK earliest among all the

candidates. To avoid hidden or exposed terminal prob-

lem, we suggest ACK be sent using higher transmission

power to cover a wider range. Upon receiving the ACK,

the old carrier as well as other candidates can decide

whether to delete the Geocache, or keep it for some

amount of time to increase the overall reliability..

5) No Acknowledgement. If the current carrier does not

receive any ACK, it keeps the Geocache and initiates

another handoff after a short interval.

We further distinguish between prioritized RevTraj as de-

scribed above, and non-prioritized RevTraj, where all candi-

date nodes pick a random backoff value from [0, Tmax], and

the node with the smallest backoff becomes the new carrier.

IV. TRAJECTORY CONSTRUCTION IN REVTRAJ

The primary challenge in implementing the trajectory-based

boomerang protocol lies in the construction of the Geocache

trajectory, and the detection of divergence from a given trajec-

tory. To illustrate these challenges, let’s consider the example

in Fig. 5, where the Geocache was handed off to Q who

was traveling in the opposite direction of P ’s trajectory. After

traversing the path until B′, Q diverges from P ’s trajectory

Fig. 6. Traces before (two pictures on the left) and after (two pictures on
the right) data pre-processing.

and heads for A′. In this case, Q must be able to detect the

divergence and start extending the path history from B′, so

that at its next handoff, a modified path A → B(B′) → A′

will be passed to the new carrier node O. The challenge in

this implementation lies in developing robust trajectory update

and divergence detection algorithms that are feasible across a

variety of road networks.

A. Data Pre-processing and Trajectory Recording:

In RevTraj, we need to construct trajectories from location

(latitude and longitude) recordings reported by the GPS. First,

we aggregate consecutive samples with little spatial distance

in between (20m in our experiments), to reduce sample noise.

The effect of this pre-processing is illustrated in Fig. 6.

Next, we segmentize the path, retaining only critical turning

points by comparing the heading difference between the node’s

driving direction and the direction of the current segment. If

the heading difference exceeds a threshold, we decide we are

heading at a new direction and add the turning point to the

trajectory to mark the start of a new segment. Consider the

consecutive GPS recordings A,B,C,D,E as illustrated in

Fig. 5(b). Initially the heading is the direction of AB. When

C is present, we check the angle α between BC and AB,

and determines α is small enough to consider C still on the

same segment as AB. Next when D is recorded, we check

the angle b between CD and AB. At this time, b is above the

threshold, therefore we identify a new segment CD. At the

end of this example, we have two segments: AC and CE.

In the implementation, we also defined a threshold for the

minimum segment length, to deal with large curve scenarios

with consecutive small angle differences.

B. Divergence Detection:

When on the return path to the anchor location, a node

shrinks the saved trajectory by removing segments it has

passed. Meanwhile, it also needs to continuously check if it

has diverged from the remaining trajectory.

Intuitively, a divergence from the trajectory will result in

a noticeable change in the heading direction, as well as a

5

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Fig. 7. The routes we traversed in the experiment is colored in red.

12 2

L1 L3 L5

L2 L4 L6

p

distance

heading

Fig. 8. Divide route pairs into 2 groups.

distance increase from the trajectory. However, using one

factor alone to determine divergence could be erroneous. Lane

shift, the individual’s driving behavior and many other factors

may all lead to a sudden direction change without actual

divergence. Further, the variance in road widths (e.g., 15 to 60
ft for city roads2) makes the selection of a single distance

threshold difficult.

In our divergence detection algorithm, we monitor the

following conditions when a new GPS data is generated:

(1) if the distance d between the current location and the

trajectory has exceeded the distance threshold d0, and the

heading change has exceeded the heading threshold h0, (2)

if d has exceeded the maximum road width dmax. Divergence

is declared if either condition is met for k consecutive GPS

readings. Therefore, the rule for divergence detection is de-

fined as:

divergence =

⎧⎨
⎩

1 d > dmax, or

d > d0 and h > h0;
0 otherwise.

(3)

Here, dmax is the maximum road width, which can be ob-

tained from road design manuals. d0 and h0 are the thresholds

for distance and heading difference. Next, we will discuss how

these threshold values are determined based on analysis with a

real-time traffic trace collected from the southern New Jersey

area.

C. Divergence Detection Model based on Real-world Traces

Given the divergence detection method in Eq. 3, the key to

the solution is thus to set suitable values for the two thresholds:

2http://www.greensboro-nc.gov/visitors/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

Heading Difference (sin(hp))

D
is

ta
nc

e
(m

)

Records in Group 1
Records in Group 2

dmax

d0

h0

Fig. 9. The records of the two groups.

d0 and h0. In this study, we use the GPS samples taken from

a field study to determine appropriate threshold values.

We collected 2 hours of GPS traces in the New Brunswick

and North Brunswick area in New Jersey. We drove on both

highways and local streets, covering about 55 miles with an

average speed of 35 Mph. Fig. 7 depicts out route on the local

map. In the experiment, we covered the loop shown in Fig. 7

twice. In the first pass we strictly stayed on the main loop,

while in the second pass, we constantly drove into detour and

side streets to emulate divergence from the main loop.

Next, we overlay the traces from the two passes and

manually divide them into segment pairs. As shown in Fig. 8,

in each segment pair the two paths either diverge or remain

parallel. The segment pairs are then manually labeled into 2

groups: Group 1 for parallel pairs (e.g. the {L3, L4} pair in

Fig. 8) or Group 2 for diverging pairs (e.g. the {L1, L2} pair

in Fig. 8).

We then process the segment pairs in each group as the

following. Taking the {L1, L2} pair for example, for each

location record p on L1, we create a new record (dp, hp),

where dp is the distance from p to L2, and hp is the heading

difference between p and L2. Fig. 9 plots the distance and

heading difference values of all records from both groups

(5444 records in total). We apply a heuristic based classi-

fication method, and with d0 = 16m and h0 = 0.29, we

are able to achieve a detection rate of 98.7%. The average

detection delay is 2.26(sample), meaning the divergence will

be accurately detected at the 3rd sample from the start of the

divergence. dmax is set to 60m according to the street design

manual for the city of New Brunswick, NJ.

V. RETURN PROBABILITY ANALYSIS IN MANHATTAN

GRID

In this section, we analyze the performance of Geocache

anchoring protocols in terms of return probability using a

Manhattan grid topology. The return probability represents the

likelihood for the protocol to return the Geocache back to the

anchor location.

To simplify the analysis, we make the following assump-

tions: (i) the nodes are uniformly distributed on the roadways,

(ii) grid blocks are of the same unit-size length, (iii) the radio

range for all nodes are the same, which is also the unit-size, so

that at any time only one intersection is under the radio range’s

6

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1

2

5 6

7

8

B

3 4

Fig. 10. 8 possible directions for a car at a crossing.

coverage, (iv) the probability for a node to turn left, right,

or move straight at an intersection is equally set to pt = 1
3

(assuming no U-turns), and (v) in system implementation, if

the first handoff is not successful (due to low node density,

etc), we allow further handoff attempts after a certain time

interval. However, to simplify the analysis, for both protocols

we only consider a single attempt for each handoff.

We note that we use the above assumptions to simplify the

analysis, and we can apply the results derived from the analysis

to other situations as well.

A. Return Probability Analysis for RevTraj

In this subsection, we discuss the Geocache return probabil-

ity if carriers are chosen based on a recorded trajectory such

as in RevTraj.

First, we calculate the probability that a suitable carrier

node is available (within the transmission range) when handoff

occurs. Due to assumption (iv), the probability for one node

at a four-way intersection to follow a fixed trajectory is 1
4 (as

shown in Fig. 10, the probability that the node is already on

the trajectory with the correct direction, which is 1
8 , plus the

probability that the node will turn to the trajectory, which is
3
8 × 1

3). Therefore, the probability to find at least one node

on the trajectory given d nodes available in radio range is

ph = 1− (1− 1
4)

d.

Next, we calculate the return probability for a complete

trajectory with length L. By length L, we mean there are L
remaining segments on the trajectory other than the segment

the node is currently on. Therefore, for a path with length

L, there are L remaining intersections to the anchor location.

At each intersection, the node either follows the trajectory

with probability pt, or needs to hand off with probability 1-

pt. Therefore, in RevTraj, the return probability Preturn with

path length L is defined as:

Preturn = [pt + (1− pt)ph]
L. (4)

Fig. 11 plots the return probability for prioritized RevTraj.

We vary the distance L from 1 to 50, and the results show that

the return probably increases when the node density increases,

and gradually approaches 1 as the node density reaches a

certain level.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Node density

R
et

ur
n

pr
ob

ab
ili

ty

L=1
L=10
L=20
L=30
L=40
L=50

Fig. 11. Return probability for prioritized RevTraj with varying distance and
node density.

�

��

�	

�

��

��

�
 ���	 �� ��
�

	 �	
�

�	
	

�

�	

��

��

��

�	
�

��
�
��
�

��
� ��
�

��
�

��
�

��
�

��
�

��
	

��
	

Fig. 12. Dividing grid into groups of segments.

B. Return Probability Analysis for MaxProgress

In this subsection, we discuss the Geocache return proba-

bility if carriers are chosen according to its distance to the

anchor location such as in MaxProgress.

We start by labeling the road segments on a grid. Fig. 12

depicts a fully-connected grid with A as the anchor location.

First, we divide the segments into different sets Si based

on their distance to the anchor location. In Fig. 12, we are

showing 5 sets, S0 to S4. The ith set Si contains 2i + 2
segments. We label each segment as si,j , where i is its set

number, and j (0 ≤ j ≤ 2i+1) is the segment’s index number

within set Si. In Fig. 12, the segments within the same set are

numbered from lower left to upper right.

Next, we compute the return probability Pi,j for segment

si,j , which is the Geocache’s return probability when it’s

currently located on segment si,j . We distinguish four classes

of segments: (1) segments adjacent to A (in S0), (2) segments

on or adjacent to the left vertical edges where j = 0 or j = 1,

(3) segments on or adjacent to the upper horizontal edges

where j = 2i or j = 2i+ 1, and (4) all remaining segments.

According to the protocol, handoff will occur as soon as

the distance between the carrier and the anchor location starts

to increase, suggesting the carrier diverges from the shortest

path to the anchor location. As shown in Fig. 12, for the two

7

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

�

�

��������� ���������

�
 �	 ��
�

	 �	
� ��
�

�	

�

�

�	

�	
	
�	
�

��
�

��
�

��
�

��
	

Fig. 13. An example of partially-connected Grid.

segments connecting the anchor location in case (1), their

return probability is 1. In cases (2) and (3), there is only

one choice to remain on the shortest path (e.g., for s2,0, the

immediate next segment along the shortest path to A is via

s1,0). The node may turn into the shortest paths itself, or find

a node that is or will be on the shortest path with probability

k1 = 1 − (34)
d. In case (4), for each segment, there are two

choices of shortest path, so similarly, the probability k2 for the

Geocache to remain on the shortest path after the intersection

is k2 = 1−(12)
d. Therefore, we give our recursive equation for

the return probability in Eq. 5. Pi,j equals to the probability

for the Geocache to get onto the shortest path(s), times the

return probability of the chosen shortest path(s).

Pi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for i = 0;
(13 + 2

3k1)Pi−1,0 for j ∈ [0, 1];
(13 + 2

3k1)Pi−1,2i−1 for j ∈ [2i, 2i+ 1];
(13 + 1

6k2)(Pi−1,j−2 + Pi−1,j−1) otherwise,
when j’s odd;

(13 + 1
6k2)(Pi−1,j + Pi−1,j−1) otherwise,

when j’s even.
(5)

C. Return Probability Analysis in Partially-connected Grids

After analyzing the return probability in a fully-connected

grid, we next look at the return probability for MaxProgress

in partially-connected situations, which are more common in

real life.

First, we define a successful path as a shortest path that

can lead to the anchor location from the hand off location

in a partially-connected grid (e.g., the path{s2,3, s1,1, s0,0}
from B to A in Fig.13). We can always generate a partially-

connected grid with smaller ρ by removing segments from a

fully-connected grid. For instance, the incomplete grid shown

in Fig. 13 is generated by removing segments (s0,1 and s1,3)

from a full grid, and the value of ρ according to Eq. 6 is 1
3 .

Next, we introduce a parameter

ρ =
Nsuccess

Ntotal
, (6)

where Nsuccess is the number of successful paths in the

partially-connected grid, and Ntotal is the total number of

paths that head to (but not necessarily reach) the anchor

location’s direction. For a fully connected grid, like the one

in Fig. 12, we have ρ = 1.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Node density

R
et

ur
n

pr
ob

ab
ili

ty

MaxProgress ρ=1
MaxProgress ρ=2/3
MaxProgress ρ=1/3
RevTraj

Fig. 14. Comparing MaxProgress and RevTraj in grids with different
connectivity level.

To apply Eq. 5 on the example shown in Fig. 13, we assign

0 to P0,1 and P1,3 to invalidate the two missing segments.

Therefore, assuming Pt =
1
3 , with A as anchor location and

B as handoff location, we have the return probability in the

partially-connected grid as:

P = (
1

3
+

1

6
k2)(

1

3
+

1

6
k2)(

1

3
+

2

3
k1), (7)

while the return probability from B to A in an otherwise fully-

connected grid is:

Pcomplete = (
1

3
+

1

6
k2)(

1

3
+

2

3
k1)(1 +

2

3
k1 +

1

3
k2). (8)

Therefore we have

P

Pcomplete
=

1
3 + 1

6k2

1 + 2
3k1 +

1
3k2

. (9)

The equation P
Pcomplete

achieves its maximum 1
3 when both

k1 and k2 are equal to 0. That is, P
Pcomplete

≤ 1
3 . Note that

for this particular topology, ρ also equals to 1
3 . In fact, we

have examined numerous grid-based road topologies and we

are always able to observe P
Pcomplete

≤ ρ for the cases we have

studied.

This is a powerful observation, and it also confirms our

hypothesis about distance-based approaches such as Max-

Progress: the return probability will degrade when the con-

nectivity of the road network decreases. However, in the

trajectory-based approach, the return probability actually in-

creases when removing segments from the fully-connected

grid according to Eq.4. In the real world, the road topology ap-

proximating a fully-connected grid is very rare, but rather most

of the road maps have medium to low ρ values, which may

severely degrade the return probability using MaxProgress.

Fig. 14 compares the return probability of RevTraj with

MaxProgress using Eq. 4 and Eq. 5. L is fixed to L = 5.

For MaxProgress, we show the Geocache return probability

with varying ρ value. For RevTraj, we show its minimum

return probability value when ρ = 1. We observe that for

MaxProgress, the return probability degrades significantly

when ρ decreases, while the RevTraj outperforms MaxProgress

with medium and low ρ values, which corresponds to typical

road topologies in the real world.

8

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 �	��!��	��!

�� ����

� �����

�	
���

Fig. 15. Illustration of deadend’s impact to ρ in a roadmap.

anchorAnchor

Handoff
A

�

anchorAnchor

A

Handoff

X

��
B

X

(a). Fully-connected grid. (b). Two-city grid.

Fig. 16. Two road maps with different ρ values. (a). A fully-connected
grid with ρ = 1 representing the Manhattan city road map. (b). A partially-
connected twin-city grid with low ρ value, representing two cities being
connected by a major highway.

VI. PERFORMANCE EVALUATION

In this section, we study the performance of Geocache

anchoring protocol through simulation. We measure the re-

turn probability of the Geocache when varying the vehicular

density and the connectivity of the road map.

A. Effect of Road map Connectivity

As we have discussed in the previous section, intuitively,

the distance-based MaxProgress works better under fully or

mostly connected road map topologies. We capture the con-

nectivity characteristic using parameter ρ given in Eq. 6. Our

definition of ρ is different from the general concept of road

connectivity. Recall that in our definition, ρ at a location is

the ratio between the number of paths that pass this location

and can reach the anchor location and the total number of

paths that pass this location. For both the numerator and the

denominator, we only consider shortest-distance paths, i.e. we

do not backtrack once the map hits a dead end. According to

this definition, road conditions such as dead ends will result

in a relatively low ρ value in the roadmap. Fig. 15 illustrates

this point.

A well-connected city road map such as Manhattan’s is a

good example for road topologies with large ρ value, where

all road segments have outlets at both ends. Many other areas,

however, do not have this property because dead ends are

common in either urban or rural road systems. According to

[10], in the Digital Road Map Data Base (DRMap) for Japan,

among all the 354,000 investigated roads, there are 22,000

dead ends in total. In partially-connected areas, we expect

MaxProgress to exhibit suboptimal performance. An example

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Node density

R
et

ur
n

pr
ob

ab
ili

ty

MaxProgress
Non−prioritized RevTraj
Prioritized RevTraj

(a). Geocache return probability in fully-connected grid.

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Node density

R
et

ur
n

pr
ob

ab
ili

ty

Prioritized RevTraj
Non−prioritized RevTraj
MaxProgress

(b). Geocache return probability in twin-city grid.

Fig. 17. Comparing RevTraj with MaxProgress using two road map settings.
MaxProgress fares better with ρ = 1, but is significantly outperformed by
RevTraj under a low ρ value.

is given in Fig. 16(b). The Geocache was handed off after

traveling along a trajectory l. When choosing the next carrier,

MaxProgress always favors those that are physically closer to

the anchor location, which is B in this case. But the nature of

the road map makes this choice a bad decision, because the

seemingly shortest path l′ does not exist in the actual road map

due to low connectivity, whereas the longer alternative l is the

only feasible path leading back to the anchor location. On the

other hand, according to RevTraj, node A who’s following the

trajectory l will be chosen as the next carrier. By following

the trajectory, no matter how poorly connected the road map

is, we are always confident that the trajectory can lead to the

anchor location. A trade-off is the probability for RevTraj to

find a carrier is lower than that of MaxProgress. Especially

with low node density, RevTraj may suffer from not being

able to find a carrier that’s exactly on the trajectory.

To verify the above hypothesis, we simulated the perfor-

mance for the two protocols on the two road maps depicted in

Fig. 16(a) and (b). Fig. 16(a) represents a well-connected city

road map with ρ = 1, while Fig. 16(b) shows a road map with

a low ρ value, representing two cities being connected by a

major highway. The simulator of choice is NS-2, with 802.11

as MAC and PHY layer protocol. The radio range is 250m.

At each intersection, the probability for a car to turn left, right

and go straight is equally 1
3 . The length of each segment is

300m. The vehicular has constant speed of 30m/s. In RevTraj,

the number of look ahead segments is 3, meaning we look

at the most recent 3 segments when comparing the trajectory.

Fig. 16 also indicates the approximate anchor location and

handoff location for the two topologies.

Fig. 17 present the return probability of the two proto-

9

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Fig. 18. We also evaluated the anchoring protocols using real traffic data
from south New Jersey. This is the road map for the traffic data.

cols. As expected, in Fig. 17(a) which shows the results for

the fully-connected grid topology, MaxProgress outperforms

RevTraj. This is consistent with the analysis results shown

in Fig. 14 where the return probability of MaxProgress is

generally higher than that of RevTraj with ρ = 1. But in the

partially-connected grid topology in Fig. 17(b), MaxProgress’s

return probability degrades severely, while RevTraj shows

much better performance. This is again consistent with Fig. 14

where the return probability of MaxProgress with small ρ is

generally lower than that of RevTraj. Therefore, the results

in Fig. 17 strongly confirm our hypothesis and analysis in

Section V.

B. Evaluating Anchoring Protocols

After studying the example scenarios, we next investigate

the protocols’ performances using a synthetic traffic trace col-

lected from the PARAMICS model. The Paramics simulation

model is based on southern New Jersey high way system and

traffic topology (as shown in Fig. 18). It captures the interac-

tions of real world road traffic through a series of complex

algorithms that describe car following, lane changing, gap

acceptance, and spatial collision detection. The trace contains

984, 445 records collected by 5000 cars for a duration of 3395
seconds during the 6am-7am off-peak traffic period. In our

simulator, free-space propagation is used as communication

model.

Every result we show in this section is averaged over 5000
simulation runs. In each run, we select a random car’s location

at a random time as the anchor location, and let that car drive

for a period of Th before handing off the Geocache. We end a

simulation run either when a successful return is made or after

Tend elapses but still no successful return. After completing

5000 simulation runs, the return probability is then calculated

as the ratio of the number of successful returns over 5000.

The return probability results are shown in Fig. 19. Since

the node density is fixed in the trace, we vary the radio range

in the experiments to change the number of cars covered in

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Radio range (m)

R
et

ur
n

pr
ob

ab
ili

ty

MaxProgress
Non−prioritized RevTraj
Prioritized RevTraj

Fig. 19. The comparison of three anchoring schemes when increasing the
radio range. Th = 750 seconds.

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Radio range (m)

R
et

ur
n

pr
ob

ab
ili

ty

MaxProgress
RevTraj
RevTraj+MaxProgress

(a). Return probability when varying radio range values with Th of 1000
seconds.

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

T
handoff

R
et

ur
n

pr
ob

ab
ili

ty

MaxProgress
RevTraj
RevTraj+MaxProgress

(b). Return probability when varying Th with radio range of 750 meters.

Fig. 20. Performance evaluation for the adaptive anchoring algorithm.

the handoff range, thereby simulating varying node densities.

Th is set as 750 seconds. We find that except for extremely

short radio ranges (100m), corresponding to extremely low

node density in our case, RevTraj significantly outperforms

MaxProgress, with an improvement of about 70%. This sug-

gests that many real-world road maps are of small ρ. Finally,

we notice that all three schemes benefit from a larger radio

range, which in our case, suggests that the anchoring protocols

benefit from larger vehicular densities.

C. Adaptive Anchoring Scheme

Through the previous simulation results, the two anchoring

protocols exhibit their individual advantages under different

circumstances. Therefore, it is natural to develop a protocol

which combines the two and take advantage of both their

strengths. In our enhanced scheme, we still keep the trajectory

to ensure a guaranteed return path to the anchor location.

10

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

When we can not find suitable carriers via RevTraj, we extend

our search by including nodes found using MaxProgress. At

all time we keep the trajectory, hoping that later carrier nodes

may return back to the trajectory, or at least follow the general

direction.
In Fig. 20(a), we set Th = 1000 seconds and vary the

radio range of the mobile nodes. Results show that across

all radio ranges we picked, the adaptive protocol always

returns Geocache with the highest probability. RevTraj exhibits

lower return probability when node density is low since it

misses many opportunities to conduct a successful return if

MaxProgress was used. MaxProgress shows the worst perfor-

mance among the three. In Fig. 20(b), we compared the three

protocols with constant radio range of 750m while varying Th.

We observe the adaptive approach still achieves the highest

return probability. And for all the three protocols, longer hand

off time leads to lower return probabilities.

VII. ADAPTIVE HANDOFF FOR IN-TIME ANCHORING

After studying how to return Geocache to the anchor

location in the general setting, we next look at a specific

anchoring requirement, in-time anchoring. Here, the Geocache

is required to return to the anchor location within a specific

time interval. A wide range of mobile applications have such

requirements. For example, a mobile user may have a query

“what is the average car speed around my location for the

next 5 minutes?” He only accepts real-time responses within

the next few minutes, and after that, he will lose interest and

leave.
The challenge here is two-fold. First, we would like to have

in-time returns. Second, we would like the return time to be as

close to the expected return time as possible. If the Geocache

is returned too early, we need to either keep the Geocache

exactly at the anchor location until the deadline, which incurs

high communication overhead, or continue to boomerang the

Geocache, with the risk of late returns.
To meet this challenge, we need to carefully control the

initial handoff time Th to ensure the Geocache’s timely return.

In this section, we discuss two such control algorithms.

A. Addictive Adjust Multiplicative Decrease Handoff Policy
The first protocol is called Addictive Adjust Multiplicative

Decrease (AAMD). Basically, we control Th based on the

observed Geocache return time Tr. Intuitively, Th should be

increased when the previous Tr is well below the expected

return time TERT , and should be decreased when the previ-

ous Tr approaches or even exceeds TERT . We introduce a

threshold rate β(0 < β < 1), and we increase Th by Δ if

Tr < βTERT , and decrease Th by Δ if Tr ≥ βTERT . Here Δ
is usually a small value compared to TERT , e.g., Δ = TERT

20 .
When we have a late return (Tr > TERT), Th is reduced by

half in order to quickly get back to in-time returns. Therefore,

the complete policy for AAMD is:

Th =

⎧⎨
⎩

Th +Δ, if 0 < Tr < βTERT

Th −Δ, if βTERT ≤ Tr ≤ TERT
Th

2 , if Tr > TERT

(10)

B. Q-Handoff: Q-Learning-based Handoff Policy

AAMD has two problems. First, it is very conservative by

cutting Th by half when late return occurs, which will lead

to a slow start for Th and therefore excessive communication

overhead. Second, it does not take history information into

consideration. We address these shortcomings in our second

policy. Here, we first build an MDP (Markov decision process)

model for the handoff adjustment scenario, then train the

policy using a reinforcement learning approach: Q-learning.

We also introduce an adaptive algorithm to adjust the setPoint
which is used to reset Th in case of late returns. We call this

handoff policy Q-Handoff.
1) MDP Model for Q-Handoff: Q-learning learns the ex-

pected utility of taking a given action in a given state, whose

quality is represented by the function: Q(s, a). Formally, the

basic reinforcement learning model, as applied to MDPs,

consists of:

• a set of environmental states S;

• a set of possible actions A;

• a set of scalar rewards R.

Therefore, we give the MDP model according to our prob-

lem scope:

• S = (s0, s1, s2, s3, s4, s5);
These states represent different Geocache return situa-

tions. s0 represents late returns with Tr > TERT , while

states si (i�=0) represent different in-time return situations

where
(i−1)TERT

5 < Tr ≤ iTERT

5 . For example, if we

have Tr = 0.35TERT , then the state is s2.

• A = (a0, a1, a2, a3);
These actions define how to adjust the value of Th.

Specifically,

– a0: reset Th;

– a1: increase Th by Δ;

– a2: keep Th unchanged;

– a3: decrease Th by Δ.

Next we define the reward function r. Between in-time

returns and late returns, the reward function would favor the

former. Further, among all the in-time returns, those that are

closer to the expected return time are preferred. Therefore, we

define the following reward function:

r = • Tr<TERT
− |Tr − TERT |

TERT
, (11)

let • Tr<TERT be the indicator that takes value 1 if Tr < TERT

and 0 otherwise.

We use the quality function Q

Q : S ×A → R

to calculate the score of an action in a certain state. At the

beginning, Q(si, aj) is initialized with random values, and

then gets updated iteratively by using:

Q(si, aj) = (1− α)Q(si, aj) + α[r + γmax
a∈A

Q(s′, a)], (12)

11

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

100 200 300 400 500 600 700 800
0.5

0.6

0.7

0.8

0.9

1

T
ERT

 (s)

IT
R

R

AAMD β=0.5
AAMD β=0.7
AAMD β=0.9
Q−Handoff

Fig. 21. In-time return probability for AAMD with various β values and
Q-Handoff Policy.

where r is the immediate reward defined by Eq. 11, and s′ is

the next state. The first term evaluates the importance of the

history information, where the learning rate α(0 < α ≤ 1)
determines to what extent the recent information will override

the old information. The second term in the equation evaluates

the immediate reward and the expected future reward, where

γ(0 < γ ≤ 1) is the discount factor.

Therefore, we have our ε-greedy Q-Handoff policy:

Policy: At each state si, the agent picks the action a =
argmaxa Q(si, a) with probability 1-ε, and picks a random

action with probability ε.
Using this policy, we guarantee that most of the time we

act greedily, selecting actions that lead to the greatest reward.

Occasionally, we select random actions to explore unknown

space which may potentially lead to even higher rewards. In

machine learning, ε-greedy policies are commonly used to deal

with the exploit-explore dilemma.

2) SetPoint Adjustment: In Q-Handoff, when a late return

occurs, Th is reset to a setPoint value (action a0). A ideal

setPoint should have “good record”, meaning previous Th

values around the setPoint have resulted in a large number

of successful in-time returns. A practical approach here is to

save all the successful Th values but give more weight to recent

ones, since recent Th, especially those a few iterations before a

reset usually yield in-time returns closer to the expected return

time. Therefore, we use an Exponentially Weighted Moving

Average (EWMA) to update the setPoint as the following:

setPoint = θTh + (1− θ)setPoint. (13)

C. Performance Evaluation

We evaluate the two policies using NS-2, with 802.11 as

MAC and PHY layer protocol. We use the same southern New

Jersey traffic trace as in Section VI, with TERT ranging from

100s to 800s. For each TERT , we run the simulation for TERT

10
times. For example, with TERT = 100s, we run the trace

for 10 times. This is because for the constant-sized trace file

(which covers approximately 5000s), large TERT values will

lead to fewer simulation results (number of results ≈
5000
TERT

).

By varying the number of runs for different TERT , we can

guarantee sufficient simulation results for each TERT value.

100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

T
ERT

 (s)

T r/T
E

R
T

AAMD β=0.5
AAMD β=0.7
AAMD β=0.9
Q−Handoff

Fig. 22. Return time ratio for AAMD with various β values and Q-Handoff
Policy.

In AAMD, we choose β from (0.5, 0.7, 0.9). In the ε-
greedy Q-Handoff policy, we set the learning rate α as 0.1, the

smoothing factor θ for EWMA as 0.1, and ε as 0.01. For both

protocols, the addictive adjustment amount is Δ = TERT

20 .

The first metric we look at is the in-time return rate (ITRR).

Fig. 21 shows the ITRR for Q-Handoff and AAMD with

different β values. For AAMD, smaller β values yield earlier

returns, thus higher ITRR, and the average ITRR ranges from

83.4%(β = 0.9) to 95.73%(β = 0.5). Using Q-Handoff, we

can achieve an average ITRR of 92.5%.

Next we compare the average return time of the different

policies. The metric we use here is the ratio of the average

return time to the expected return time. It is an important

metric because it reflects an algorithm’s ability to adjust the

handoff time to meet certain return time constraints. Further,

small return time usually indicates frequent handoff, and thus

higher communication overhead. Fig. 22 shows that Q-Handoff

yields closer-to-expectation returns. Its average ratio is 0.60,

which is 20% better than the best ratio of AAMD when β =
0.7.

VIII. RELATED WORK

This work spans the fields of mobile sensor networks and

vehicular networks. Perhaps closest in spirit to the Geo-

cache programming abstraction are geographic hash tables

[11], which provide a programming interface for data-centric

storage in stationary sensor networks. Spatialviews [12] pro-

vides location-oriented programming language abstractions for

mobile ad hoc networks, to ease application development

and maintenance. This work does not address distribution of

information at the protocol level, which is a key focus of this

paper.

a) Mobile sensor networks: Recent works in mobile

sensor networks exploit mobility when it is not feasible to

build a dense network of fixed sensors. Notably, Zebranet [1]

places sensors on zebras to collect valuable zoology data. In

under water sensor network [13], mobile nodes are robots that

collect data from regions of interest. Several projects target

specifically at vehicular sensing. CarTel [2], for example, is

a comprehensive distributed mobile computing system used

to collect, process and visualize data from sensors located

12

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

on mobile units. It aims at exploring in-network computing

on individual mobile units, as we do, but it does not use

inter-vehicle communication, which in our project, is a main

focus to enable distributed aggregation of sensor readings from

multiple cars. Another vehicular sensor network: MobEyes

[3], [14], introduces MDHP (MobEyes Diffusion/Harvesting

Processor), a protocol used to spread information within

wireless sensor networks and build low-cost index of mobile

storage. Although our projects bear similarities in that we also

aim to develop low-cost yet efficient inter-vehicle communica-

tion protocol, MobEyes relies largely on an opportunistically

broadcast approach, possibly with the emphasis of simplified

protocol, while we aim at minimizing traffic overhead caused

by more sophisticated schemes.

b) Inter-vehicle, geographic, and delay-tolerant commu-
nication: Many projects have addressed scalable communi-

cation in mobile ad hoc networks (e.g., [6]), in sparse or

disconnected mobile ad hoc networks (e.g., [15]–[18]), or

through Infostations. In [19], the authors introduce Infostations

to deliver data to mobile nodes. In [20], [21], the authors

aim at providing location-specific information to mobile de-

vices, in which they developed schemes for detecting and

transferring information of interest. All of these techniques

adopt a server-client approach, but in our case, the information

is provided by mobiles that have passed the location. The

MaxProp [16] routing protocol is used to ensure effective

routing of DTN (disruption-tolerant networks) messages via

intermittently connected nodes. These protocols are based on

different communication workloads, such as unicast between

randomly chosen nodes, or multicast to random node sets.

These techniques focus on delivering messages to certain

nodes, while our protocols try to keep information around

a certain location. In [15], designated mobile nodes (mes-

sage ferries) store and carry messages. Our project differs

in that virtually all nodes are “peers”. In [17], the authors

aim to guarantee message transmission in minimal time, at

the expense of additional messaging overhead. Instead, our

applications are more delay tolerant, and the main goal is to

reduce communication overhead.

Geocast protocols [7], [22], [23] transmit messages to a

predefined geographical region. They are suitable for location-

based services such as position-based advertising and publish-

and-subscribe. Repeated geocasts or time stable geocasts [8]

could also be used to maintain Geocache in a certain area

and bear similarities to our baseline scheme. It is different in

concept though in that it requires the definition of a geographic

region, which is not needed in our case. Most geocast schemes

concentrate on routing messages to the areas of interest, or

distributing messages to all nodes [7], [23], while Geocache

is established close to the anchor location and needs only

be known to very few nodes. Further, time-stable geocasts

continuously remain in the region of interest, while Geocache

can travel away from the anchor location.

In [24], it mentions some trajectory concepts, but it fails to

take into account the peculiarities of vehicular networks and

still only forwards data to a node that is physically closer to

the destination. Geopps [25], [26] are maybe the most similar

works to ours, however, it requires each mobile node to have

full topology information which is not feasible in realistic

scenario.

In [27], the authors examine the dissemination of availabil-

ity reports about resources in mobile peer-to-peer networks.

By opportunistically propagating exchanging the reports, and

decaying the relevance of the report as its age increases, the

proposed algorithm is able to limit the global distribution of a

report to a bounded spatial area and to the duration for which

it is of interest. Although we are also interested in retaining

spatio-temporal information to a local area, our focus is to

maximize the probability to find certain information, instead

of bounding its global distribution to a certain spatial area and

duration.

c) Matching GPS observations: The problem of map

matching based on GPS readings have been extensively stud-

ied. Some existing work include [28] [29] [30] [31]. Even

though we share some similarities with the map matching

problem when using gps readings to identify road segments,

we differ significantly with the general map matching problem

in the use of road maps. Map matching solutions generally

focus on matching a node’s position to the nearest street

presented in the map. This differs fundamentally from our

work since we don’t use street maps but only GPS readings of

traversed paths. Therefore, the general map matching approach

which involves searching and comparing nearby road segments

could not be applied to our problem. Instead, we propose using

absolute distances and heading differences with the recorded

road segment to determine divergence.

IX. CONCLUSIONS

We have presented the trajectory-based boomerang protocol

to periodically make available data at certain geographic lo-

cations in a highly mobile vehicular network. The boomerang

protocol returns the Geocache through nodes traveling toward

the anchor location. To increase the probability of successful

return, it records a node’s trajectory while moving away

from the anchor location then select nodes to return the

Geocache based on the trajectory (RevTraj). We compared

this scheme with a shortest-distance georouting scheme Max-

Progress, and demonstrated that our scheme significantly out-

performs its counterpart in realistic traffic simulation, with a

return probability improvement of up to 70%. We also extend

the boomerang protocol to satisfy more stringent anchoring

requirements, such as returning the Geocache within specified

time limits. This is achieved through adapting the initial

handoff time based on the return time history.

REFERENCES

[1] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with zebranet,” ACM SIGOPS Operating Systems
Review, vol. 8, pp. 96–107, 2002.

[2] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,
E. Shih, H. Balakrishnan, and S. Madden, “Cartel: a distributed mobile
sensor computing system,” in Proc. of the 4th international conference
on Embedded networked sensor systems, 2006, pp. 125–138.

13

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

[3] U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Corradi,
“Mobeyes: Smart mobs for urban monitoring with a vehicular sensor
network,” Wireless Communications, IEEE, vol. 13, pp. 52–57, 2006.

[4] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J. Herrera, A. Bayen,
and Q. J. M. Annavaram, “Virtual trip lines for distributed privacy-
preserving traffic monitoring,” in Proc. of the 6th International confer-
ence on Mobile Systems, Applications, and Services, 2008, pp. 15–29.

[5] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakr-
ishnan, “The pothole patrol: Using a mobile sensor network for road
surface monitoring,” in Proc. of the 6th International conference on
Mobile Systems, Applications, and Services, 2008, pp. 29–39.

[6] J. Li, J. Jannotti, D. Couto, D. Karger, and R. Morris, “A scalable
location service for geographic ad hoc routing,” in Proc. of the 6th
annual international conference on Mobile computing and networking,
2000, pp. 120–130.

[7] Y. B. Ko and N. H. Vaidya, “Flooding-based geocasting protocols for
mobile ad hoc networks,” Mobile Networks and Applications, vol. 7, pp.
471–480, 2002.

[8] C. Maihofer, T. Leinmller, and E. Schoch, “Abiding geocast: Time-stable
geocast for ad hoc networks,” in Proc. of the 2nd ACM international
workshop on Vehicular ad hoc networks, 2005, pp. 20–29.

[9] M. Mauve and J. Widmer, “A survey on position-based routing in mobile
ad hoc networks,” IEEE Network, vol. 15, pp. 30–39, 2001.

[10] K. O. S. Kamijo and A. Kitamura, “Orbit radio grid tested for evaluation
of next-generation wireless network protocols,” in Proc. of the first
vehicle and navigation and informaton systems conference, 1989, pp.
308–309.

[11] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker, “Ght: A geographic hash table for datacentric storage,”
in Proc. of the 1st ACM International Workshop on Wireless Sensor
Networks and Applications, 2002, pp. 78–87.

[12] Y. Ni, U. Kremer, A. Stere, and L. Iftode, “Programming ad-hoc
networks of mobile and resource-constrained devices,” in Proc. of the
2005 ACM SIGPLAN conference on Programming language design and
implementation, 2005, pp. 249–260.

[13] I. Vasilescu, K. Kotay, and D. Rus, “Data collection, storage, and
retrieval with an underwater sensor network,” in Proc. of the 3rd
International conference on Embedded networked sensor systems, 2004,
pp. 154–165.

[14] U. Lee, E. Magistretti, M. Gerla, P.Bellavista, and A. Corradi, “Dissem-
ination and harvesting of urban data using vehicular sensing platforms,”
IEEE Transactions on Vehicular Technology, vol. 58, pp. 882–901, 2009.

[15] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for
data delivery in sparse mobile ad hoc networks,” in Proc. of the 5th ACM
international symposium on Mobile ad hoc networking and computing,
2004, pp. 187–198.

[16] J. Burgess, B. Gallagher, D. Jensen, and B. Levine, “Routing for
vehicle-based disruption-tolerant networks,” in Proc. of the 25th IEEE
International Conference on Computer Communications, 2006, pp. 1–
11.

[17] Q. Li, D. Rus, M. Dunbabin, and P. Corke, “Sending messages to mobile
users in disconnected ad-hoc wireless networks,” in Proc. of the 6th
annual international conference on Mobile computing and networking,
2000, pp. 44–55.

[18] L. Briesemeister and G. Hommel, “Role-based multicast in highly
mobile but sparsely connected ad hoc networks,” in Proc. of the 1st ACM
international symposium on Mobile ad hoc networking and computing,
2000, pp. 45–50.

[19] R. H. Frenkiel, B. R. Badrinath, J. Borres, and R. D. Yates, “The
infostations challenge: balancing cost and ubiquity indelivering wireless
data,” Personal Communications, IEEE, vol. 7, pp. 66–71, 2000.

[20] Y. cai and T. Xu, “Design, analysis, and implementation of a large-scale
real-time location-based information sharing system,” in Proc. of the 6th
International conference on Mobile Systems, Applications, and Services,
2008, pp. 106–117.

[21] H. Lu, N. Lane, S. Eisenman, and A. Campbell, “Bubble-sensing: A new
paradigm for binding a sensing task to the physical world using mobile
phones,” in Proc. of the International Workshop on Mobile Device and
Urban Sensing, 2008.

[22] T. Small and Z. J. Haas, “The shared wireless infostation model: a new
ad hoc networking paradigm (or where there is a whale, there is a way),”
in Proc. of the 4th ACM international symposium on Mobile ad hoc
networking and computing, 2003, pp. 233–244.

[23] R. Morris, J. Jannotti, F. Kaashoek, J. Li, and D. Decouto, “Carnet:
A scalable ad hoc wireless network system,” in Proc. of the 9th ACM
SIGOPS European Workshop, 2000, pp. 61–65.

[24] J. LeBrun, C.-N. Chuah, D.Ghosal, and M.Zhang, “Knowledge-based
opportunistic forwarding invehicular wireless ad hoc networks,” in Proc.
of the 61st IEEE conference on Vehicular Technology, 2005, pp. 2289–
2293.

[25] I. Leontiadis and C. Mascolo, “Geopps: Geographical opportunistic
routing for vehicular networks,” in Proc. of the IEEE Workshop on
Autonomic and Opportunistic Communications, 2007, pp. 1–6.

[26] I. Leontiadis and C. Mascolo, “Opportunistic spatio-temporal dissemi-
nation system for vehicular networks,” in Proc. of the 1st international
MobiSys workshop on Mobile Opportunistic networking, 2007, pp. 39–
46.

[27] A.Sistla, O. Wolfson, and B. Xu, “Opportunistic data dissemination in
mobile peer-to-peer networks,” in Advances in Spatial and Temporal
Databases, ser. Lecture Notes in Computer Science, 2005, vol. 3633,
pp. 923–923.

[28] C.E.White, D.Bernstein, and A.L.Kornhauser, “Some map matching
algorithms for personal navigation assistants,” Transportation Research
Part C: Emerging Technologies, vol. 8, pp. 91 – 108, 2000.

[29] C. S. Jensen and N. Tradisauskas, “Map matching,” Encyclopedia of
Database Systems, vol. 13, pp. 1692–1696, 2009.

[30] JS.Greenfeld, “Matching gps observations to locations on a digital map,”
in Proc. of the 81th Annual Meeting of the Transportation Research
Board, 2002.

[31] M. Quddus, W. Ochieng, L. Zhao, and R. Noland, “A general map
matching algorithm for transport telematics applications,” GPS Solu-
tions, vol. 7, pp. 157–167, 2003.

Tingting Sun is currently pursuing her Ph.D degree in Electrical and Computer
Engineering at WINLAB, Rutgers University. Her Advisor is Prof. Yanyong Zhang, and
she is also working with Prof. Wade Trappe and Prof. Marco Gruteser. Before joining
Rutgers, she obtained her B.S. degree in the department of Computer Science at the
University of Science and Technology of China. Her research interest includes location-
aware systems, mobile networking, and resource management in WLAN and mobile ad
hoc network.

Bin Zan is currently a Ph.D student in Electrical and Computer Engineering department
at Rutgers University. He is working on location-aware systems, mobile networking,
privacy and security under the guidance of Prof. Marco Gruteser at Winlab, Rutgers.
He received his B.S. degree in Communication and Information Engineering department
from University of Electronic Science and Technology of China (UESTC). He received
his M.S. in Computer Science department from Clarkson University in 2006. Before
joining Rutgers, he was working as software engineer in Adknowledge. Inc, Kansas
City.

Marco Gruteser is an Associate Professor of Electrical and Computer Engineering
at Rutgers University and a member of the Wireless Information Network Laboratory
(WINLAB). He is a pioneer in the area of location privacy, having developed the
first cloaking algorithms for spatial information. Beyond location privacy, his expertise
includes location-aware networking and its connected vehicle applications. Previously, he
was also a research associate at the IBM T.J. Watson Research Center, where he designed
the software platform for the New York Times-featured BlueSpace smart office prototype.
He completed a Vordiplom at Darmstadt University of Technology, Germany in 1998,
received his MS and PhD degrees in Computer Science from the University of Colorado
at Boulder in 2000 and 2004, respectively, and held a visiting position at Carnegie Mellon
University. He has served on the technical program committees of numerous ACM and
IEEE conferences, including MobiCom, MobiSys and INFOCOM. He also serves on the
editorial boards of the journals IEEE Transactions on Mobile Computing and Elsevier
Computer Networks. His recognitions include an NSF CAREER award, the I/UCRC
Association’s Schwarzkopf Prize for the ORBIT wireless testbed team, a MobiSys best
paper award, and a Board of Trustees Research Fellowship for Scholarly Excellence at
Rutgers University.

Yanyong Zhang has 10 years research experience in the field of distributed computing
and performance evaluation. She is currently an Associate Professor in the Electrical
and Computer Engineering Department at Rutgers University. She is also a member of
Winlab. She has been involved in several NSF grants related to wireless networking,
including the ORBIT wireless testbed, the PARIS project on privacy, and the NSF
CAREER award that focuses on developing robust wireless sensor networks. She is an
organizer of several ACM/IEEE workshops on self-managing systems. She has published
over 45 papers on performance optimizations of various parallel and distributed systems,
including sensor networks. She has also led WINLAB’s efforts in performance evaluation
of MANET protocols on ORBIT for the Army CERDEC. She has published over 50
papers in journals and conferences. She is a member of the ACM, the IEEE, and the
IEEE Computer Society.

14

IEEE TRANSACTIONS ON MOBILE COMPUTING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

