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ABSTRACT
Tra�c estimation has been a long-studied problem, but prior work
has mostly provided coarse estimates over large areas. This work
proposes e�ective �ne-grained tra�c volume estimation using in-
vehicle dashboard mounted cameras. Existing work on tra�c esti-
mation relies on static tra�c cameras that are usually deployed at
crowded intersections and at some tra�c lights. For streets with
no tra�c cameras, some well-known navigation apps (e.g., Google
Maps, Waze) are often used to get the tra�c information but these
applications depend on limited number of GPS traces to estimate
speed, and therefore may not show the average speed experienced
by every vehicle. Moreover, they do not give any information about
the number of vehicles traveling on the road. In this work, we focus
on harvesting vehicles as edge compute nodes, focusing on sensing
and interpretation of tra�c from live video streams. With this goal,
we consider a system that uses the dash-cam video collected on a
drive, and executes object detection and identi�cation techniques
on this data to detect and count vehicles. We use image processing
techniques to estimate the lane of traveling and speed of vehicles
in real-time. To evaluate this system, we recorded several trips
on a major highway and a university road. The results show that
vehicle count accuracy depends on tra�c conditions heavily but
even during the peak hours, we achieve more than 90% counting
accuracy for the vehicles traveling in the left most lane. For the
detected vehicles, results show that our speed estimation gives less
than 10% error across diverse roads and tra�c conditions, and over
91% lane estimation accuracy for vehicles traveling in the left most
lane (i.e., the passing lane).
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1 INTRODUCTION
With the evolution of technology, vehicles are becoming increas-
ingly connected and automated. They have evolved into rich sens-
ing platforms with a plethora of diverse sensors. While the stream
of sensor data can be communicated to and processed in a remote
cloud, bandwidth and latency challenges encourage processing of
this data near the edge and on the vehicles themselves.

Tra�c estimation. One sample application to use this data is
to estimate the tra�c. Existing work on tra�c estimation relies
on tra�c surveillance cameras or the GPS-based speed estimation
used by navigation apps. However, most roads are not covered
by tra�c cameras, and GPS-based works estimate the speed of a
few users that share their location information with the server
which might belong to outliers. Also existing GPS-based approach
can only determine the overall direction-level information; but
in many cases, lane-level tra�c information is critical for both
navigation and futuristic autonomous driving features. Therefore,
a new method that could be deployed widely and give better speed
estimation results is needed.

With high computing power and less power constraints, vehicles
provide plentiful opportunities to sense the dynamic environment.
We propose to use vehicles as edge compute nodes, focusing on
sensing and interpretation of tra�c from live video streams. Un-
like smartphones, that are constrained in compute resources and
available power, vehicles can support e�cient compute platforms
without the constraints of a small form factor compute node. Addi-
tionally, they provide wide reach into remote areas, where other
platforms may be unavailable.

With the help of the front facing cameras that are installed in
vehicles, we propose to record the tra�c and count the vehicles that
are traveling. Further, the average speed experienced by each driver
can be used to estimate the tra�c. Under free-�ow tra�c conditions
drivers have the �exibility to choose higher speeds. However, when
the density of vehicles increases, vehicle speeds tend to decrease.
Cameras allow capturing this information from many surrounding
vehicles, and often many oncoming vehicles. They can therefore
gather rich data about tra�c conditions.

Existing work. Well-known navigation applications such as
Google maps or Waze use the GPS traces of some users, that use
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these apps on road, to calculate the speed of these vehicles to es-
timate the overall tra�c conditions. However, since these apps
are not used by every single driver on road, the calculated speed
belongs only to the drivers that report GPS traces, potentially intro-
ducing systematic bias due to uneven sampling. For instance, the
calculated speed could belong to a speeding driver in the left lane
or a cautious, slow driver in the right lane. Therefore, the estimated
tra�c information may not be accurate. By using tra�c cameras
that are deployed on roads more complete tra�c data could be
obtained at one location. The number of vehicles traveling, their
speeds, and congestion on a given road, are just a few questions that
could be answered using tra�c cameras and have been investigated
previously [38], [27], [33], [14] and [10]. However, the number
of deployed tra�c cameras is not su�cient to cover all roads and
vehicles, especially in remote areas.

This work seeks to overcome these challenges with a collab-
orative sensing system, with vehicle detection, vehicle tracking
and tra�c estimation components, as shown in Figure 1, by lever-
aging a dash-cam mounted in vehicle and a processor to process
the video stream. The vehicle detection component of such a sys-
tem could work continuously to detect vehicles and determine
bounding-boxes around each vehicle. The vehicle tracking com-
ponent then tracks the movement of each detected vehicle. With
the tra�c estimation component, we can then count the number
of vehicles on roads, estimate the lane in which they are traveling
and their speeds using image processing techniques.

The salient contributions of this work are summarized below.
• An automated tra�c estimation framework that manages

vehicle detection, vehicle tracking and tra�c estimation
using a dashboard camera that can achieve wide coverage
at low cost.

• We evaluate through multiple days of roadway experi-
ments on a campus road and a major highway, and show
it is possible to count the vehicles that are traveling on a
given road and determine their speeds. Our system can
detect about 90% of vehicles traveling in the left most lane,
estimate their speeds with about 10% error.

• Lane estimation for vehicles in the camera’s view. Our
system achieves more than 91% accuracy in lane estimation
for the vehicles that are traveling in the left most lane, a.k.a
passing lane.

2 RELATEDWORK

There has been much work about vehicle detection and tracking.
For vehicle detection, most works [10, 14, 26, 27, 33, 38] assume
that the camera is static and vehicles are detected by �nding the
di�erences of the images for that camera. Using well-known back-
ground subtraction techniques, the only moving objects, vehicles,
have been identi�ed and speed estimations are made. Zhu et al [38]
and Jung et al [27] have attempted to calibrate the tra�c camera
using scene information for a particular camera and managed to
count vehicles and estimate their speeds. Other works [14, 33] have
extended this idea and made it possible to cover any stable camera
by �rst calculating the relative position of the tra�c camera to ve-
hicles, then estimating the lane boundaries and �nally calculating
the mean vehicle speed for each lane. Beymer et al. [12] proposed

to use corner features to estimate the tra�c �ow. Hsu et al. [23]
propose to use entropy to estimate vehicle speeds.

Cameras are not the only sensors to detect and track vehicles.
Sonar and camera are being used at the same time [28], which
achieves vehicle detection at close distances (i.e., sonar distance).
Bruzzone et al [13] show that using multiple sensors provides better
accuracy in object detection.

In computer vision, for object detection a set of robust features
(SIFT [29], convolutional [17] etc.) from images is calculated and
then classi�ers are used to identify objects. Classi�cation is per-
formed by using a sliding window on some parts of the image. This
strategy has been used in many projects [15, 19, 35, 36].

Recently, the YOLO framework [32] created a single convolu-
tional network that can detect multiple objects in an image. It
requires a training phase at initialization to work on full images
and object coordinates. Then it can process the entire image, with-
out a need for sliding window, and provide relatively accurate object
detection, almost in real-time (with latency of 25 ms).

In the realm of object tracking, Xiang et al [37] proposed a multi
object tracking framework based on Markov decision processes
(MDP). They have two stages: �rst they collect ground truth trajec-
tories of pedestrians, then a second learning method takes place as
decision process is performed by current status and history of the
target. At every step, MDP attempts to track the target pedestrian
and collects feedback from the ground truth. Then a similarity
function is updated with the feedback. The authors manage to
track pedestrians 7% better than the second best tracker.

In another work [18], the authors proposed a framework to
estimate trajectories of nearby vehicles using four cameras placed
diagonally on the car. They modify the MDP tracker that’s also
being used in [37] to track vehicles. Since the movement of vehicles
is not as random as pedestrians, the tracking performance is much
better than in the previous e�ort. With 4 cameras, the trajectory
recall is over 90%.

Lane estimation and tracking have been investigated earlier [24,
30]. In these works, the camera, LIDAR, and GPS sensors are used
to extract road features such as lane markers and road curvatures,
to enable applications such as a lane departure warning system and
a driver attention monitoring system. However, only the lane that
the camera vehicle is traveling in, is estimated, not those for other
vehicles.

3 BACKGROUND AND APPLICATIONS

With rising tra�c congestion, many applications may bene�t from
an accurate estimation of tra�c on a particular road. Let us consider
the following examples.

Tra�c Flow Terms. Tra�c can be represented in several terms.
Tra�c �ow represents the number of vehicles that are passing a
reference point per unit time (e.g., vehicles per hour). Tra�c density
represents the number of vehicles per unit distance along the road.
The higher either number is, the more congested the road becomes.
As roads become more congested, vehicle speed decreases. There
exists a well-known relationship between tra�c congestion and
vehicle speed.

For ease of interpretation, tra�c congestion is often represented
through a set of discrete Levels of Service (LOS). Table 1 [22] shows
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this quantization and the relationship between the foregoing param-
eters. In this table, level A represents free-�ow tra�c while level F
represents congestion. The unit for Tra�c �ow is vehicle/hour/lane
and the unit for the density is vehicle/mile. Knowing the average
speed of vehicles traveling on the road or the tra�c-�ow, LOS could
be determined simply through a table lookup. By using the same
table, it is possible to calculate how many vehicles are traveling per
mile (i.e., tra�c density on the road).

LOS Speed Range Flow Range Density Range
A Over 60 Under 700 Under 12
B 57-60 700-1100 12-20
C 54-57 1100-1550 20-30
D 46-54 1550-1850 30-42
E 30-46 1850-2000 42-67
F Under 30 Over 2000 Over 67

Table 1: Levels of Service of a road

The tra�c �ow and density are direct metrics that show the
congestion of roads, or simply the tra�c. With higher tra�c �ow
and density numbers, one might expect heavier tra�c on roads.

Real-time Car Mapping. With the deployment of DSRC sys-
tems, vehicles have the capability to communicate with each other
and learn the positions of nearby vehicles. However, for older
cars that do not support DSRC, their location would not be known
by other vehicles. Some newer vehicles come with built-in GPS
receivers but since they don’t transmit that information, nearby
vehicles are not aware of the location of these cars. Access to a �ne-
grained tra�c estimation system creates awareness of a driver’s
surroundings by mapping cars in real-time.

Rear-End Collision Prevention. Rear-end collisions are the
most common tra�c accident in the United States [1]. Vehicles
traveling in close proximity to the vehicle in front usually cannot
stop in time if the vehicle in front needs to stop suddenly. With
DSRC, such accidents are expected to decrease because each vehicle
supports DSRC, transmits their location and speed in real time.
Being able to stop, of course, depends on the speed of other vehicles
and the following distance. The earlier a stopped vehicle is detected,
the more time a following driver has to stop in time. A stand-
alone speed estimation system on each car, that does not rely on
technology that is unavailable on all vehicles, is the need of the
hour. A continuous speed estimation of the vehicles around a car,
can prevent many mishaps, such as rear-end collision prevention.

4 VEHICULAR EDGE NODES
Vehicles have evolved from mechanical systems to cyber phys-
ical systems, generating large amounts of real-time data. They
o�er high compute capabilities with far less power consumption
concerns compared to other mobile platforms. Vehicles are power-
houses of energy, traversing through our physical world, and with
the many sensors built in to them they are capable of sensing our
dynamic environments.

Vehicles are increasingly being installed with front facing cam-
eras. Originally, these cameras were intended for a speci�c purpose
such as lane detection, lane keeping, and evidence in case of theft

or vandalism. However, recently, with the trend in autonomous
driving, dashboard mounted cameras have been used for applica-
tions ranging from simple pedestrian/car detection [11, 16, 20, 21]
to enabling a self-driving system [31, 34]. In addition to enabling
vehicle speci�c or driver speci�c services, these cameras can be
leveraged for large-scale tra�c analytics. Cameras in each vehicle
have a unique perspective of the observed environment. For ex-
ample, a car driving in the left most lane has a clear view of the
cars driving in the same direction, as well as those in the opposite
direction. Similarly, a car in the rightmost lane is optimally placed
for detecting stalled vehicles. Each car can be enabled to process
raw video streams and compute high level semantic information.
Pre-processing raw video streams to extract high level information
optimizes bandwidth usage, reduces latency, and conserves privacy.

This information can then be shared with neighboring vehicles
or a centrally located map service. The cloud-based map service
can aggregate the information from a large number of vehicles
to provide an up-to-date map of the region, overlaid with precise
tra�c and other road conditions information. This constitutes a
more accurate and sophisticated assessment of regions, compared
to other approaches such as surveillance cameras, that do not cover
all areas. Such near real-time �ne grained tra�c analytics can
enhance tra�c �ow and regulations, optimize transportation, and
further assist in provisioning city services.

Using vehicles as edge compute platforms has become possible
because of the increasingly powerful computing resources that are
becoming available from multiple vendors.1 These energy e�cient
compute platforms bring cutting-edge processors and accelerators
to cars, enabling sophisticated and very deep networks to process
rich video data in near real-time. As we bridge the gap in hardware,
this work aims to demonstrate continuous large-scale tra�c volume
estimation techniques on distributed compute nodes, such as those
in vehicles, to demonstrate that such compute resources are not
just valuable for advanced driver assistance and automated driving
systems, but could also support a plethora of (potentially third-
party) analytics applications if the platform becomes more openly
programmable.

5 SYSTEM OVERVIEW
To leverage the computation capabilities of vehicular edge nodes
and to demonstrate their potential, we design and implement a
tra�c estimation system. Our goal is to detect and count vehicles,
estimate the lanes they are traveling in and calculate the speed
of each vehicle. The system consists of three main components:
Vehicle Detection, Vehicle Tracking and Tra�c Estimation as depicted
in the Figure 1. The Vehicle Detection module aims to detect all
vehicles in the camera’s �eld-of-view, in real-time. A bounding box
is generated for each vehicle, which is then used for tracking the
vehicle along its trajectory in the car’s view. With simple parking
lot experiments, we could detect up-to 6 vehicles in one frame.
For real road tests, we could detect up-to 5 vehicles traveling in
both directions. Once a vehicle is detected, the vehicle tracking
module extracts Scale Invariant Feature Transform (SIFT) feature
descriptors within each vehicle’s bounding box. A vehicle is tracked
by matching these feature descriptors between consecutive frames.

1A well-publicized example is the NVIDIA DrivePX 2 [4] platform.
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Algorithm 1 Vehicle Count Estimation

1: function unique_vehicle_detection(f ) . record frames f of
vehicles traveling in the opposite direction

2: for each consecutive frames fi and fi+1 do
3: N=count_si f t_f eatures(fi , f(i+1));

. Compare with the threshold
4: if N > 15 then
5: unique(i)=f alse;
6: else
7: unique(i)=true;
8: end if
9: end for

10: end function
11: function Increase Count(unique) . Increase the count if the

unique vehicle is being seen minimum 5 times
12: count=count ++
13: end function

To improve the con�dence associated with each detection, we focus
on �ve consecutive frames. If the same vehicle is identi�ed in at
least �ve consecutive frames, we recognize it to be the same vehicle.
The tra�c estimation module, �rstly, counts the vehicles in the
opposite lane by identifying unique cars based on frame to frame
feature tracking. Secondly, it estimates the lane that each car is
traveling in, by creating pseudo-lane markers. Thirdly, depending
on the lane that car is traveling in, we estimate the speed as shown
in Algorithm 3. Each component will be discussed in detail in the
next subsection.

For each frame, vehicle detection component outputs bounding
boxes around the detected vehicle(s). Since there could be multiple
bounding boxes, we always use the left most bounding box of the
left of the screen to identify the vehicle in the opposite lane. All
vehicles detected in the right half of the screen are traveling in the
same direction as the car with the dash-cam.

Ideally, a vehicle traveling in the opposite direction would be
detected in multiple consecutive frames. In order to get an accurate
vehicle count on roads, we need to identify each unique vehicle.
This can be achieved by �nding similarity for the vehicles in con-
secutive frames. With the vehicle tracking component, we compare
SIFT features of the vehicles for those frames. If we have a high
number of matched feature points, those two vehicles should be
the same one. After analyzing the frames, we observed that for the
same vehicle in consecutive frames, there are minimum 15 matched
features. So we compare the feature points from di�erent frames
and if the number of matching features is greater than 15, those
frames correspond to the same vehicle and we do not increase the
count. Finally, we check if the object is identi�ed 5 times. For
some non-vehicle objects, our algorithm classi�es them as vehicle.
We exclude them by checking if we have minimum 15 matched
feature for 5 consecutive frames. This algorithm is summarized in
Algorithm 1.

One can claim that not all the feature points are coming from
the vehicle, but also the outside world, such as road segment or
trees. The feature point distinction is discussed in tra�c estimation.

In tra�c estimation component, we can �rst calculate the number
of vehicles that are traveling by using the vehicle tracking results.

Algorithm 2 Traveling Lane Estimation

1: function Initialize(r ) .We manually record
the trajectories of two vehicles from each lane and note down
the center coordinates for each bounding box for road r and
calculate the line equations for each lane

2: ll_f low_line = a1 . x + b1
3: ml_f low_line = a2 . x + b2
4: rl_f low_line = a3 . x + b3
5: end function
6: function Pseudo Lane Marker Generation(r ) . for a

particular road r , record frames f of vehicles traveling in the
opposite direction

7: Initialize(r ) .We calculate the lane markers
8: ll_marker = (a1+a2)/2 . x + (b1+b2)/2
9: rl_marker = (a2+a3)/2 . x + (b2+b3)/2

10: end function
11: function Estimate the Lane(bb) . Compare

the center coordinates coord of the bounding box bb with the
pseudo-lane markers

12: if coord > ll_marker then
13: le f t_lane_vehicles=le f t_lane_vehicles ++
14: else if rl_marker < coord < ll_marker then
15: middle_lane_vehicles=middle_lane_vehicles ++
16: else
17: riдht_lane_vehicles=riдht_lane_vehicles ++
18: end if
19: end function

For each unique vehicle, we increase the total count. The second
step would be to estimate the lane of travel for each detected vehicle.
For the vehicles that are traveling in the same direction, we propose
to use Hough lines [3], to extract line segments based on Hough
transform. In this way, we detect the lines in the road and identify
each lane separately. For vehicles traveling in the opposite lane,
estimating the traveling lane is harder since we may not always
observe the lane markers. We propose to create pseudo-lane mark-
ers in the opposite direction and estimate the traveling vehicle lane
using those markers. The process is summarized in Algorithm 2.

In order to estimate the speed of each vehicle, we need to know
how far that vehicle has moved for consecutive frames. We �rst
calculate the distance change of the matched SIFT feature points
in real world for consecutive frames. For this, the camera should
be calibrated and this will be discussed in Section 6.4. In this way,
we can calculate how each feature point is moved in real world as
shown in distanceCalculation function in Algorithm 3. However,
not all the feature points may belong to the vehicle Therefore,
some points may move di�erently for consecutive frames and the
relative distance change for these points should be avoided when
calculating the speed. This is the detectDistanceAnomaly function.
And �nally, by using the change of distance of the feature points of
the vehicle, we can calculate the speed of that vehicle as shown in
Speed Estimation function in Algorithm 3.

Our system does not require user interaction since it can auto-
matically detect vehicles and estimate the speed of vehicles. The
only exception is to estimate the lane for the opposite side tra�c.
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Figure 1: System Overview.

Algorithm 3 Vehicle Speed Estimation

1: function distanceCalculation(L, f ) . record frames f of
vehicles traveling in the opposite direction, L is the horizontal
distance between the vehicle and the camera

2: for each consecutive frames fi and fi+1 do
3: xi, j ,xi+1, j=дet_si f t_f eatures(fi , fi+1);

. Calculate the path distance
4: for each SIFT feature j do
5: dj=calculate_path_distance(L,xi, j ,xi+1, j );
6: end for
7: m(d)=averaдe(dj )
8: σ (d)=std_dev(dj )
9: end for

10: end function
11: function detectDistanceAnomaly(m(d),σ (d),d)
12: for each SIFT feature j do
13: if m(d) − σ (d) < dj < m(d)+σ (d) then
14: validd=validd ∪ dj
15: end if
16: end for
17: end function
18: function Speed Estimation(validd , f ps)
19: Speed=validdxf ps
20: end function

For each road, we need the Initialize step in Algorithm 2 to create
lane markers for that road, once.

6 TRAFFIC ESTIMATION

In this section, we describe how to detect vehicles on roads, cal-
culate the speed, and lane of travel information to estimate tra�c.
While we discuss this in the context of vision, similar methods
could be applied to other vehicle detection methods such as LIDAR.

6.1 Vehicle Detection
To detect vehicles on road in real-time, we need an object detection
framework that can detect vehicles regardless of make, model or

color. The detection system must be robust, and resilient to per-
spective. Prior detection systems often use hand-tuned features
to recognize objects in a frame. Recently, convolutional neural
networks (CNN) have been proven to perform better than tradi-
tional object recognition frameworks. We use a state of the art
CNN-based object detection framework called YOLO [32], for de-
tecting vehicles. The network uses features from the entire image
to predict objects and marks bounding-boxes around them. With
this method, the image is divided into grids and in each grid cell,
predictions and con�dence scores are generated for di�erent ob-
jects. The higher the con�dence score, the likelihood of correct
object detection increases. YOLO is designed as a convolutional
neural network: the initial layers are responsible for extracting
features and the connected layers are responsible for predicting the
objects with con�dence scores. It is extremely fast and streaming
videos can be processed with less than 25 ms of latency per frame.
Unlike classi�er-based approaches, YOLO directly corresponds to
detection performance and the entire model is trained jointly. The
pre-trained models have been trained for 20 di�erent objects. Since
it is designed to identify a wide range of objects, the car detection
performance is not satisfactory. We extend the provided car dataset
with publicly available car datasets by Stanford University [6] and
University of Illinois [7].

6.1.1 Training. With the extended dataset, we are using more
than 8000 images of vehicles that are taken from every angle, to train
the network. The training was done in a server with a GPU, Quadro
K-5000 [2]. The training stage requires labeled images, where the
images have a bounding box for each vehicle. The training takes
about 16 hours for 8000 images, and is a one-time process. At the
end of the training process, a weight �le is generated. We use this
weight �le with the YOLO network to detect vehicles in real-time.
We also need to note that in the dataset, we are using the images of
cars including sedans, SUVs, coupes, wagons with di�erent colors
and years. However, we don’t include the images of trucks or buses.
Therefore, the detection performance for those vehicles would not
be as high as personal cars. That said, YOLO can be trained with a
larger dataset to include all types of vehicles.
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Figure 2: Detected vehicle.

6.1.2 Testing. For testing the accuracy of vehicle detection, we
use a dashboard mounted camera and conduct a small set of exper-
iments in a parking lot with multiple vehicles. The camera is set to
record at 30 frames per second, and video recordings lasting a few
minutes were made. The primary objective is to detect vehicles in
most of the frames. From our tests, we observed that the detection
range is about 100 meters. For distances that are larger, the vehicle
is not always detected. In Figure 2, a detected vehicle has been
shown on the road. With extensive tests that were done both in
parking lot and on roads, we observed that vehicles are detected re-
gardless of model, color or type. In the night time, the performance
of vehicle detection su�ers, due to the lack of night time vehicle
images in the training set. The detailed results of vehicle detection
in various environments will be discussed in Section 7.

6.2 Vehicle Counting
We consider a system that counts the number of vehicles in the car’s
�eld of view. These vehicles could be traveling in the same direction
as the camera instrumented car, or in the opposite direction. While
traveling, the number of encountered vehicles in the same direction
is usually not relevant since we either detect the same vehicles (e.g.,
our car is following them with constant speed or in a tra�c jam)
or we keep seeing new vehicles (e.g., we are passing vehicles) or
don’t see any vehicles (e.g., there is no car traveling in the detection
range).

For vehicles traveling in the opposite direction, the camera in-
strumented car encounters every vehicle, even for a small duration.
The challenge however, lies in the detection of these vehicles due to
higher relative speeds. Specially at a highway, with average speeds
of 55-70 mph, vehicles traveling in the opposite direction make
�eeting appearances in the camera frame. Additionally, they are
often partially obstructed in the camera’s view due to the presence
of other vehicles. A counting algorithm must account for all these
factors.

The vehicle detection framework described in the previous sec-
tion can provide bounding boxes for cars in each frame. This gives
us an estimate of how many vehicles exist in the frame, and works
very well for scenes with static cars, such as our parking lot experi-
ment. However, on real roads, one needs to detect moving vehicles
with a camera in motion, which raises severe challenges.

While operating the counting system in-the-wild, on highways,
a major challenge is to avoid counting the same vehicle multiple
times as it is detected in consecutive frames. To overcome this,
we augment our detection with a vehicle tracking module to keep

track of vehicles that have been seen and accounted for in previous
frames. We use the detections provided by the vehicle detection
module, and extract Scale Invariant Feature Transform (SIFT) from
the bounding box of each vehicle in each frame. By matching
features between consecutive frames, we distinguish new cars in
the frame from those that have been sighted before.

Instead of calculating SIFT features over the entire frame, we
decide to use the leftmost bounding box in each frame. We �rst
check if the left most bounding box is in the left half of the screen.
If not, that vehicle is traveling in the same direction as us and we
don’t include it in the count. After making sure that vehicle is
indeed traveling in the opposite direction, we compare the SIFT
features of the objects in the bounding boxes for consecutive frame
as discussed in Algorithm 1. If a vehicle is detected for 5 consecutive
frames, we increase the count.

SIFT features of consecutive frames are calculated using VLFeat
library [8] in Matlab. Sample matched features for 2 consecutive
frames are shown in Figure 3. It should be noted that although
some features do not belong to the vehicle, most of them do. In
Algorithm 3, we discuss about how to eliminate features that don’t
belong to the vehicle.

Figure 3: Feature matching between consecutive frames.
The images shown above are captured from the bounding
boxes.

We also need to note that vehicle count depends on vehicle
detection. Vehicles that are not detected for various reasons, are
not counted. For example, vehicles that are obscured by other
vehicles, could not be counted with our algorithm.

6.3 Lane Estimation
Intelligent vehicle systems enable applications that work with or
for the human users with driver-assistance systems. Lane deter-
mination is an important concept of these apps and will also be
heavily used in autonomous driving. Lane keeping / departure
warning systems have already been investigated in the literature
and by tracking lane markers, it’s possible to determine the lane of
travel for the camera vehicle. Our system can compute lane-level
tra�c estimation while Google Maps/Waze has di�culty due to
GPS error (Lane =3.7 meter, but GPS error could be up to 10-20
meters in urban canyons).

By detecting and tracking lane markers, we can identify the
traveling lane for the vehicles that travel in the same direction. We
propose to create virtual lane regions using the lane markers and
determine the traveling lane for each vehicle by intersecting the
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vehicle bounding box with the virtual lane regions. These virtual
lane regions update with the motion of the car.

However, for vehicles traveling in the opposite direction, we
cannot always observe the lane markers due to barriers in between.
In order to estimate the lane for vehicles traveling in the opposite
direction, we propose to generate pseudo-lane markers that sepa-
rate the lanes of travel. To generate the pseudo-lane markers, we
identify two vehicles from separate lanes, and their correspond-
ing bounding boxes. It is useful to identify these vehicles when
one vehicle is partially obstructed by another. The virtual line in
between these two bounding boxes is considered to be a pseudo
lane marker. By creating these markers, the system identi�es lane
regions. After creating the virtual lane regions, we repeat the pro-
cess and determine the traveling lane for vehicles heading in the
opposite direction. The lane estimation results will be discussed in
Section 7.

6.4 Speed Estimation
For vehicles that are sold in United States since 1996, installation
of On-Board Diagnostics (OBD) II2 port is mandatory to provide
self-diagnostics and data reporting capabilities. With this port, in
addition to many things, speed information can be accessed. In
some cases, this information may be more accurate than GPS based
speed estimation, particularly in areas where GPS accuracy is low.

The average speed of vehicles determines the traveling time
which is a good measure of road congestion and tra�c performance.
By knowing the speed of each traveling vehicle, an average speed of
that route could be calculated and this information can potentially
be used by many applications. One way to achieve this information
is by mounting stereo cameras inside cars. These cameras can
estimate depth of vehicles in the camera’s �eld of view, at every
frame, and hence calculate the vehicles’ speed. However, the range
of these cameras is usually in the order of 20 meters, and may not
be su�cient for vehicles traveling on highways, where distances
are larger.

Instead, we propose to use the dashboard mounted camera to
estimate the speed of each vehicle. Since we don’t know the distance
of the car to our camera, we calculate the distance traveled by that
vehicle from one frame to another. If we assume the vehicle is
traveling parallel to the camera, by using the camera parameters,
we can estimate how far the vehicle has moved in real world during
that frame. First, we need to calibrate the camera.

Camera Calibration. We obtain the intrinsic camera parame-
ters by using the camera calibration toolbox in MATLAB [5]. With
these parameters, we can get the real-world distance to objects
in one frame, just by knowing the pixel coordinates of them in
the frame. For this reason, we take 20 pictures of a chessboard
from di�erent angles and di�erent distances. The other input to
the application is the actual size of chessboard square (3 cm). The
output of this application is focal length of the camera (both in x
and y axis) and intrinsic parameters that are needed to calculate
the distance between two objects in the image.

After determining these parameters, one can calculate the rela-
tive change in distance for an object in real world, assuming that

2www.obdii.com

object moves parallel to the camera by knowing the horizontal dis-
tance between the object and the camera. To check the calibration
performance, we conducted several tests where multiple objects
were placed in a straight line, and a picture is taken by the camera
facing parallel to that line. The maximum distance error is less than
2% for both inside and outside experiments.

The next step is to �nd the speed of the object. After observing
an object move about d meters in consecutive frames, the speed
of that object is computed as 30×d m/s for a 30 fps camera. For
vehicle speed estimation, we can calculate how far each matched
feature point moved from one frame to another as described in the
Algorithm 3. However, not all the matching features belong to the
vehicle and they might move di�erently. For that reason, we use
the distance values that are within one standard deviation of the
average distance value for consecutive frames. Since most of the
feature points would belong to the car and move similarly, we can
eliminate the feature points of non-vehicle objects such as trees,
lane markers etc.

One can claim that this speed estimation method works only for
the straight roads, and when vehicles travel parallel to the camera
vehicle. Although that’s a valid argument, even if the road is not
straight, vehicles move almost parallel to each other if we consider
only a short period of time where two vehicles are close to each
other. Therefore, we use last 10 frames of a vehicle in the view of
our camera, to calculate the relative distance change. If one vehicle
is tracked for more than 10 frames, we only use last 10 frames to
estimate how far that vehicle is moved. As a �nal step, since we
know how much time it took for the object to move that distance
(by using the speci�cations of the camera), we can calculate the
speed of the object. In Section 7, we present the speed estimation
results for three di�erent routes we use.

7 PERFORMANCE EVALUATION

For evaluating our system, we aim to answer the following ques-
tions:

• What is the vehicle detection accuracy on roads?
• How does this accuracy change with varying tra�c condi-

tions?
• Is it possible to detect lanes of the traveling vehicles?
• What is the speed estimation accuracy?
• How does this system perform compared to GPS-based

tra�c estimation systems?

To answer these questions, we conducted the following experi-
ments.

7.1 Experimental Setup
Hardware. In the proposed platform, we need a front facing cam-
era that can work with di�erent lighting conditions. After several
real-world experiments, we observed that Go Pro camera perfor-
mance deteriorates with exposure to direct sunlight. However, Om-
niVision camera gives similar performance results even with the
direct exposure of sunlight. The second component is a graphical
processing unit (GPU) to process the recorded stream in real-time.
With a TX1 board, more than 30 fps could be achieved. The vehicle
detection is achieved by a real-time object detection method. We
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use YOLO: Real-Time Object Detection method to detect vehicles.
We conduct our experiments on two di�erent routes in the United
States. Route 1 is a campus road with two lanes, one in each di-
rection. Route 2 is a highway in New Jersey with 3 lanes in each
direction. In both roads, we use 1 Omnivision OV 10635 camera
that is placed on the windshield of a car. We use a server with a
GPU, Quadro K-5000 to process the collected images.

Real Road Scenarios. Route 1 is a 0.4 mile stretch of a campus
road, depicted in Figure 4(a). We use two vehicles traveling in
opposite directions. We placed the camera in one vehicle and use
GPS in both vehicles to calculate speed for each vehicle. Since
there is only one lane in each direction, we focus on counting
vehicles, and estimating the speed of each. We watch collected
videos manually to obtain the ground truth for vehicle count, and
use GPS-based speed values to get the speed estimation accuracy
for our system.

Route 2 is a national highway through New Jersey, shown in
Figure 4(b). We covered a distance of 1 mile on this highway during
our experiments. We use a total of 4 cars; three of them traveling in
the same direction, one after the other, and the fourth car with the
camera traveling in the opposite direction. In all cars, GPS is en-
abled to calculate the speed as ground truth. We focus on counting
vehicles in the opposite lane correctly and estimating the speeds of
target vehicles with minimal error. We use the speed of known ve-
hicles as ground truth for evaluation. Since there are multiple lanes,
we also investigate the lane of travel for each traveling vehicles.
For vehicle counting and lane estimation accuracy, we manually
label the ground truth.

Metrics. In this work, �rst, we evaluate the performance of
vehicle detection using the following two metrics: (1) detection
rate (DR) is the percentage of vehicles that are detected by our
algorithm. For example, if x cars are traveling and if our algorithm
can detect y of them, then the detection rate becomes (y/x). (2)
False detection rate (FD) is the case when our algorithm detects a
non-vehicle object as a vehicle.

Second, we evaluate the performance of our lane estimation
technique by looking at the detection accuracy. For example, if
a target car is traveling in the left most lane and if the algorithm
detects the lane of travel as the left, the accuracy is 1, otherwise 0.
We evaluate lane estimation for vehicles traveling in both directions.

Third, we evaluate the performance of the speed estimation by
calculating the error; the di�erence between the estimated and true
speed of the vehicle. True speed of the vehicle is collected using
GPS traces.

7.2 Experimental Results
Counting Accuracy. For Route 1, we drove our vehicle with the
camera and detected all vehicles traveling in the opposite direction.
Since there is only one lane in the opposite direction, all vehicles
were detected and counted perfectly. We performed 10 driving tests
on this route, and counted a total of 25 vehicles traveling in the
opposite direction.

For Route 2, we drove our vehicle with the camera in the left
most lane of the highway in order to observe more vehicles driving
on the opposite side. With a total of 4 trips, we observed that all
vehicles traveling in the left most lane could be detected, but some

Tra�c Condition LL-DR ML-DR RL-DR Overall-DR FPR
Light 94.7% 91.6% 90.4% 92.1% 2
Light 100% 88.4% 84% 91.5% 1

Heavy 95.5% 70.8% 62.8% 75% 0
Heavy 98.1% 76.9% 56.3% 78.1% 0

Table 2: Detection performance for Route 2. LL-DR: Left
Lane Detection Rate; ML-DR: Middle Lane Detection Rate;
RL-DR: Right Lane Detection Rate; FPR: False Positive Rate.

vehicles traveling in the middle and right most lane could not be
detected because those cars are partially or fully obstructed by
another vehicle. Table 2 shows the detection rate and false positive
rate for 4 di�erent driving experiments made on that highway. In
this table, LL-DR represents the left lane detection rate, ML-DR
represents the middle lane detection rate, RL-DR represents the
right lane detection rate and FPR represents false positive rate.
When the tra�c is heavy, our detection rate su�ers slightly, since
more vehicles in the far away lane are now obstructed by vehicles in
the left lane. We de�ne any non-vehicle detection as a false positive.
These are generated from the vehicle detection module. However,
as mentioned in Section 6.2, we only consider a detection as a
vehicle if it is detected in consecutive frames. Since false detections
only appear intermittently, they are not counted as vehicles, since
they are not detected in consecutive frames.

Lane Estimation. To facilitate lane estimation, the system
needs to �rst de�ne the lane regions. To that end, we focus on
detecting lane markers in the view of the camera. Figure 5 shows
the detected left lane marker with a yellow line and the right lane
marker with the purple line. The region in between is the travel-
ing lane used by the camera vehicle. By using the features of the
detected lines (i.e., the yellow solid line, white solid line or white
dashed line), we can also determine if the traveling lane is the left
most lane, one of the middle lanes or the right most lane for multi-
lane roads. Using lane markers on the same side of the road as the
camera vehicle, we can generate lane regions. For each detected
vehicle, the system determines the traveling lane by checking the
overlap region of the vehicle’s bounding box with the nearest lane
region. The lane region with the maximum overlap is said to be the
traveling lane for that vehicle.

Unfortunately, for the opposite direction, we cannot always ob-
serve the lane markers due to barriers in between. In order to
estimate the lane in which the vehicles are traveling in the opposite
direction, we propose to generate pseudo-lane markers that sepa-
rate the lanes of travel. As discussed in Algorithm 2 in Section 5, we
create arti�cial lane markers and then classify the lanes using those
markers. Figure 6 shows the number of vehicles per lane calculated
by this algorithm for a sample road. Using our algorithm, we can
estimate how many vehicles are traveling in each lane, in real time.

For ground truth, we manually count the number of vehicles for
each lane and create a confusion matrix to evaluate the performance
of this technique for Route 2, as shown in Figure 7. From this �gure,
we can observe that the estimated lane performance is highest for
vehicles that are traveling in the left most lane. For the middle lane,
we still have high estimation rate, however, almost one-third of the
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(a) Route 1: Campus Road in New Jersey. One lane in each direction. (b) Route 2: Highway in New Jersey. Three lanes in each direction.

Figure 4: Experiment roads.

Figure 5: The lane of travel.

Figure 6: Vehicle count for each lane. RL:Right Lane;
ML:Middle Lane; LL:Left Lane.

right lane traveling vehicles are identi�ed as they are traveling in
the middle lane.

We want to mention that lane estimation needs a manual guid-
ance that needs to be done once, for each road. In this process,
two random vehicles need to be tracked from each lane and then
pseudo-lane markers are created by using the trajectories of these
vehicles. Finally, lane estimation is achieved by comparing the
center coordinates of each new vehicle with the lane markers.

Speed Estimation. As we discussed in Section 6.4, by using the
intrinsic camera parameters and the horizontal distance between
the camera and the target car, we can calculate the speed of the
target car.

Figure 7: Confusion matrix for Route 2

Relative Speed Estimated Speed Error
50 50.5 1.01%
60 61.6 2.71%
70 73.4 4.85%
80 81.4 1.76%
90 93.1 3.4%
95 99.4 4.6%

Table 3: Speed estimation error for Route 1

In Route 1, there is only one lane in each direction, therefore,
the horizontal distance between the target car and the vehicle is
3.7 m, which is the average lane width in the United States. Both
the target car and the camera car are driven at di�erent speeds and
encountered 6 times in Route 1. Table 3 shows the speed estimation
results for this road. The �rst column represents the relative speed
of two vehicles compared to each other. For example, if the target
car is traveling at 25 mph and the camera car is traveling at 35 mph,
the relative speed becomes 60 mph. Table 3 shows that the speed
estimation works well for a variety of relative speeds and is always
less than 5%.

Since Route 2 is a major highway, we could drive with higher
speeds and extend the results for speed estimation that we obtained
from Route 1. In this test, all target cars are traveling in the left
most lane of the opposite side at di�erent speeds. We performed
the test with 3 vehicles driving in the opposite direction. The
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Relative Speed Estimated Speed Error
100 108.3 8.32%
110 116.7 6.01%
120 125.5 4.58%
130 139.2 7.07%
140 152 8.57%

Table 4: Speed estimation error for Route 2

Figure 8: Speed values for vehicles on Route 2

Figure 9: Speed estimation error for all roads.

results are presented in Table 4. For Route 2, the error in the speed
estimation is generally larger than for Route 1, but still less than
9%. One possible explanation could be that there is a large barrier
separating opposite tra�c in Route 2, that blocks the lower parts
of the vehicles and causes fewer feature points to be detected, and
be used for speed estimation. Also, the distance between target car
and the camera car is also higher (6 m.) compared to Route 1 (3.7
m.).

In Figure 8, we show the speed values used by drivers for two
highways. In Route 2, vehicles are driven between 30-80 mph. For
majority of the drives, speed values of 50-60 mph have been used.
These results also prove that using GPS-based speed calculations
for a few drivers could give very di�erent results, so GPS-based
tra�c estimation may not be accurate.

In Figure 9, we show the error obtained in speed estimation for all
three roads. For Route 1, which is a one-lane road in each direction,
we have about 2.5% error in the speed estimation. For Route 2, the
error is slightly higher, 6.9%. This is because, in Route 2 tra�c for
each direction is separated by a big barrier, and therefore some parts
of the vehicles in the opposite direction are obscured. It a�ects our

speed estimation because we are using feature matching between
consecutive frames, and more matched feature points enable better
estimation.

8 DISCUSSION

We have presented the design, implementation, and evaluation of a
tra�c estimation technique using live video streams collected from
a moving vehicle. Unlike tra�c surveillance camera based works,
our work aims at detecting vehicles using front facing cameras in
vehicles in real-time. When driving a vehicle in the left most lane,
we have a clear view of the cars driving in both directions and it
enables us to count the maximum number of cars on roads.

In estimating the speed of vehicles, we employ camera parame-
ters and calculate the relative distance change of vehicles between
frames assuming that vehicle is moving parallel to the camera. One
might claim that roads are not always straight so this assumption
might not be valid. However, we only focus on 10 frames before the
vehicle leaves the camera view, and for this duration, the movement
of the vehicle is almost parallel to the camera.

One might argue that the hardware needed for our system could
limit the total number of users. Deploying such a system to public
buses, taxis or patrol vehicles could extend the usage of the system
widely.

Our system could easily be used by enforcement forces. Since
the speed estimation works with the error less than 12% even for
the roads with wide barriers, speed monitoring could be managed
when patrolling on the road. With this way, wide coverage could
be achieved at a low cost compared to using speed radars or speed
guns. Our system could also be extended to provide a platform for
environment-to-car communication, based on camera view [9].

It is easy to think that GPS-based navigation systems can also
calculate the speed, so why such a vision-based system would
be needed. With those systems, speed is calculated by using a
mobile device traveling on road with GPS activated. Due to battery
problems, a lot of users do not activate GPS for a long period of time.
Even if they do, those navigation systems can only calculate the
speed experienced by that mobile phone which could easily give an
outlier speed. For example, if the GPS is enabled for a motorcycle
driver, the estimated speed would most likely be higher than the
average speed of vehicles, or if the GPS is enabled for an old driver,
the estimated speed would be lower than the average speed of
vehicles. Also, GPS accuracy su�ers in urban environments [25].
On the other hand, by using our system, we can estimate the speed
of each vehicle. Therefore we can calculate the average speed of
vehicles on that road.

Depending on the application scenario, having a detection ac-
curacy less than 100% may not be enough. Since we are using
front facing cameras that are deployed in the vehicle, some vehicles
traveling in the opposite direction, especially traveling in the right
most lane, could be obstructed by other vehicles in between. Since
the vehicle is partially observed by the camera, our object detection
component may not identify the object as the vehicle. However, all
vehicles that are traveling in the left most lane of the other direc-
tion would be identi�ed as long as the barrier between the lanes is
not high. By counting the number of vehicles traveling in the left
most lane of the other direction, we can still determine the tra�c
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conditions. Also, by using a camera that is placed on the roof of
the vehicle, the vehicle count accuracy could be increased.

9 CONCLUSION

In this work, we use vehicles as edge compute nodes and estimate
the tra�c from video streams using front facing cameras. With
a real-time deep neural network object detection method, we can
detect vehicles in both directions and count the number of vehicles
traveling. This number could give much meaningful information
about the tra�c when combined with the estimated speeds of vehi-
cles. Such information could be shared with neighboring vehicles
or a map service. A service that collects such information from
large numbers of vehicles could create an up-to-date map with �ne-
grained, near-real time vehicle positions for that road. This results
in more accurate and sophisticated assessment of roads, compared
to tra�c surveillance cameras, that do not cover all roads. With
such a system, tra�c �ow can be enhanced and route planning for
new cities could be achieved.

We used a dash-camera to collect the footage of the tra�c and a
GPU-equipped laptop for real-time vehicle detection and tracking.
Speci�cally, we have shown that all oncoming vehicles could be
detected, counted, and tracked with less than 5% speed estimation
error in two-lane campus road trials. In highway experiments, we
achieved a minimum 75% vehicle counting accuracy under crowded
tra�c conditions, and over 90% accuracy for light tra�c conditions.
The speed estimation error is about 9% for the highway. This
error can further be decreased for most common tra�c roads, with
shorter median strips. For example, we observed about 3% error
in speed estimation for campus road experiments with no median
strip on the road. We also have shown that the lane of travel for
each vehicle could be estimated in both directions. Speci�cally, we
could estimate the lane of travel perfectly for the vehicles that are
traveling in the same direction with the camera vehicle, and over
90% for the vehicles traveling in the left most lane of the opposite
direction. Future work can integrate these techniques into a live
tra�c-view of real-time vehicle locations and speeds.
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